
Examen Bachelor « Transformation de phases »  

29 juin 2023 - Solutions 

 

Section I Thermodynamique 

 

Partie A. Questions de cours.  

a. Voir cours : évaporation de l’eau, et refroidissement de l’eau qui reste au besoin en énergie 

(chaleur latente) de l’évaporation ; la température suit la courbe d’équilibre liquide-gaz du 

diagramme de l’eau (loi de Clausius-Clapeyron). La température de l’eau baisse jusqu’à 

atteindre le point triple de l’eau proche de 0°, ensuite de quoi la glace est en équilibre avec la 

vapeur d’eau à faible pression et la glace continue à refroidir pour subvenir au besoin en 

énergie (chaleur latente) de la sublimation (transformation glace  vapeur d’eau). Pour info 

le point triple est à 0.01°C – 611 Pa.  

b. L’état amorphe est un état métastable, comme un liquide figé. La cristallisation est donc une 

transformation exothermique. L’enthalpie de transformation est donc ∆𝐻 < 0. Elle est lié à la 

variation d’entropie par ∆𝐻 = 𝑇∆𝑆. Les auteurs comparent deux alliages 1 (bas % Cu) et 

l’autre 2 (haut % cuivre). Pour chacun d’entre eux nous avons ∆𝐻1 = 𝑇1∆𝑆1 et ∆𝐻2 = 𝑇2∆𝑆2, 

et ils précisent que 𝑇2 < 𝑇1 et |∆𝐻2| > |∆𝐻1|. Par conséquent, |∆𝑆2| =
|∆𝐻2|

𝑇2
> |∆𝑆1| =

|∆𝐻1|

𝑇1
. 

Il faut garder à l’esprit cependant que la variation est négative car l’ordre augmente lors de la 

cristallisation (l’entropie baisse). Il est vrai que la variation d’entropie en valeur absolue pour 

l’alliage 2 qui est plus grande que pour l’alliage 1. Les auteurs vont un peu vite en corrélant 

directement ∆𝑆 à la valeur d’entropie de la phase amorphe (initiale) sans considérer l’entropie 

de la phase cristalline. Néanmoins la tendance |∆𝑆2| > |∆𝑆1| semble logique car l’alliage 2 

contient plus de Cu et offre donc un nombre de complexion plus important par échange avec 

les atomes Ni et Ti (même idée que pour les solutions idéales).  

c. Le diagramme présente une très nette lacune de miscibilité du liquide à 200°C pour un 

mélange 50-50 de Hg, ce qui est le cas typique d’une solution régulière avec un coefficient 

d’interaction Ω > 0 entre atomes Hg et Ga, montrant que les atomes Hg et Ga tendent à se 

« repousser » dans la phase liquide ; le liquide se dissocie en deux liquides, un riche en Ga et 

l’autre riche en Hg. Le point à 17.7° et 2-3% Hg est un point de transformation l1  Ga + l2 

est un monotectique. Le point à -39.7°C et presque 100% de Hg correspond à un eutectique l2 

 Ga + Hg. 

d. Voir cours, discuter du facteur v/G. En LPBF, les vitesses de solidification v et les gradients 

thermiques G sont importants (quelques 10000°C/mm et 100 mm/s), mais le rapport v/G 

montre que l’on est en général dans le régime de surfusion constitutionnelle et donc de de 

croissance dendritique. D’après le modèle de Hunt, pour avoir une croissance dendritique 

équiaxe il faudrait pouvoir abaisser encore plus la vitesse ou augmenter G pour jouer sur le 

facteur sqrt(v)/G, mais cela reste difficile en LPBF. Il existe malgré out des pistes de 

recherche par ajout d’agent de germination ou par modification de la composition des alliages 

pour augmenter la valeur ∆𝑇0 qui est l’intervalle de solidification, ie l’écart entre le liquidus et 

le solidus. 

 



Part B. Interprétation d’images.  

 

1 = d. On voit une microstructure en lattes typique d’une martensite. On pourrait hésiter avec l’image 

5 ou l’image 6 mais ces dernières ne sont pas des cartes EBSD. De plus on peut lire « Iron bcc » dans 

la légende. La seule réponse possible est donc d. Les couleurs de la carte correspondent à des 

orientations de la martensite bcc, les zones grises à l’austénite parente. Note : Les formes en zigzags 

de la martensite sont significatives d’une martensite « burst » autocalytique.  

2 = c. L’image est en niveau de gris caractéristique des images BSE. On voit les branches de 

dendrites. Les parties en gris foncé correspondent à la phase moins dense, ici riche en titane (note : 

Ti3Au), et les zones perlitiques faites de zébrures fines alternant phase en blanc riche en Au (note = 

AuTi) et phase pauvre en Au en gris foncé (Ti3Au).  

3 = a. L’image est colorée, typique des images optiques. On y voit les grains ferritiques en blanc et 

les grains perlitiques présentant des lamelles fines ferrite/cémentite. L’espacement entre les lamelles 

apparait différente de zone à zone par un effet de plan de coupe et projection. Note : Certaines zones 

apparaissent plus opaques. Elles peuvent être de la perlite corrodées (l’échantillon semble avoir été 

légèrement attaqué). 

4 = e. Les couleurs sont propres aux cartes EBSD. La microstructure est typique d’un alliage 

recristallisé car les grains sont équiaxes et présentent des macles à joints très rectilignes typiquement 

des macles de recristallisation (note : ces macles sont aussi appelées Sigma3, ce sont des symétries 

miroir sur des plans {111}). 

5 = f. C’est une image TEM en champ sombre. Les précipités sont très allongés car ils sont aussi de 

type martensitiques (partie displacive de la transformation). On voit plusieurs variants presque à 90° 

les uns des autres. 

6 = b. L’image est en effet une image optique (note : en mode appelé DIC pour differential 

interference contrast). La différence de hauteur entre les lattes de martensite provient de l’attaque 

chimique. On distingue les anciens grains bcc de la phase haute température beta (le joint triple est 

presque au milieu).  

 

Part C. Exercice diagramme de phase binaire 

 

a. Voici le diagramme de phase complet Ag-Cu (pris ici du web).  
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b. Le pourcentage massique de cuivre est de 6 %. Par les masses molaires on trouve que le 

pourcentage atomique est proche de 10%. La température à atteindre est celle du liquidus, soit 

approximativement 910°C. 

c. Par un refroidissement très rapide on peut imaginer que tout le cuivre reste sursaturé dans 

la structure Ag (comme dans les alliages d’aluminium 2xxx). Par un refroidissement lent et 

une diffusion complète dans la phase -Ag,  le dernier liquide disparait avant le point 

eutectique, l’unique phase est donc -Ag riche en Cu jusqu’à 720°C environ, puis cette 

phase s’appauvrit en Cu par précipitation de Cu presque pur. Par un refroidissement 

intermédiaire et une diffusion limitée dans la phase -Ag, la concentration en Cu dans 

cette phase ne va pas s’équilibrer et Ag sera sous-concentrée par rapport au diagramme 

de phase ; le liquide lui restera plus riche en Cu et pourra subsister jusqu’au point 

eutectique pour former une structure eutectique lamellaire Ag/Cu à 779°C. La 

microstructure finale sera donc une structure -Ag primaire, que l’on peut attendre sous 

forme de dendrites, avec une structure eutectique entre les dendrites. 

 

Section II Cristallographie 
 

 

 

Partie A 

Note : La base (𝐚𝛼, 𝐛𝛼) est utilisée pour la cristallographie de la phase  plutôt que la base formée 

par les vecteurs (𝐚𝛾′, 𝐛𝛾′) car elle possède les symétries du cristal. La cellule centrée (2 atomes par 

maille) est possède en effet deux symétries miroir (en plus de l’identité et de l’inversion).  

a. Matrices de transformations : 

 Matrice de correspondance C


  

a

 a

’
= ½ a


 - ½ b


 donc le vecteur [1/2,-1/2] dans la base (a


, b


) 

b

 b

’
= ½ a


 + ½ b


 donc le vecteur [1/2,1/2] dans la base (a


, b


) 



Donc en écrivant ces vecteurs en colonne nous avons 

C = (
1/2 1/2
−1/2 1/2

).  

Nous pouvons déjà calculer son inverse qui nous sera utile plus tard 

C = (
1 −1
1 1

). A noter que cette matrice correspond avec vecteurs (a

, b


) écrits dans la 

base (a
’
, b

’
). 

 Matrice de distorsion F
 
 

Il faut écrire les coordonnées de a
’
et b

’
dans la base initiale (a


, b


). Donc directement 

F
 
= (

1 cos⁡80°
0 sin⁡80°

) = (
1 sin⁡10°
0 cos⁡10°

) ≈ (
1 0.173
0 0.984

) 

 

 Matrice de passage T
 

  

Elle est donnée par les coordonnées des vecteurs (a

, b


) dans la base (a


, b


). Le plus simple 

est d’appliquer la formule du cours 

 T
 

 = F
 
C  = (

1 sin⁡10°
0 cos⁡10°

) (
1 −1
1 1

) = ⁡ (
1 + sin⁡10° −1 + sin⁡10°
cos⁡10° cos⁡10°

) 

b. Le changement de volume est donné par Det F
 
= ⁡cos⁡10°  0.984 soit une diminution du 

volume d’environ 0.16 %.  

c. La direction u = [1,1] devient la direction u’= F

 u = [1 + Sin⁡10°, Cos⁡10°]/𝛾 dans la base 

(a

, b


) et ses coordonnées sont données par  C u = [1,0]/𝛼 dans la base (a


, b


). 

d. Le plan p = (1,1)

 devient par distorsion p’= F

*
 p ≈ (1, 0.839)/𝛾 dans la base (a


, b


)* et ses 

coordonnées sont données par  (C)* p = (2,0)/𝛼 dans la base (a

, b


)*. Les matrices avec * sont 

les matrices du réseau réciproque et se calculent en prenant l’inverse de la transposée.  

 

Partie B 

a. Le tenseur métrique de la phase  est directement donné par 

𝐆 =⁡(
𝐚𝐚 𝐚𝐛

𝐚𝐛 𝐛𝐛
) = (

(2 Cos 40 °)2 0

0 (2 Sin 40 °)2
) = (

2.347 0.
0. 1.653

) .  

Son inverse est le tenseur 



𝐆∗ = (
0.426 0.
0. 0.605

) . 

 

b. L’angle entre les directions u = [1,1]

 et v = [1,2]


 est obtenu en calculant la norme des 

vecteurs,  √𝐮t𝐆⁡𝐮⁡= 2, √𝐯t𝐆⁡𝐯⁡= 2.993, et le produit scalaire est 𝐮t𝐆⁡𝐯 = 5.653. Le cosinus de l’angle 

est donc de 0.944, et l’angle est de 19.2° 

 

c. L’angle entre les plans (1,1)

 et (1,2)


 est obtenu en calculant la norme des vecteurs du réseau 

réciproque  √𝐩t⁡𝐆∗𝐩⁡= 1.015, √𝐪t⁡𝐆∗𝐪⁡= 1.687 et le produit scalaire est 𝐩t𝐆∗𝐪 = 1.031. Le cosinus 

de l’angle est donc de 0.955, et l’angle est de 17.2° 

 

Partie C 

 

a. Pour énumérer le nombre de variants d’orientation il faut considérer le nombre de symétries 

communes. De par la relation d’orientation entre les deux phases, nous voyons que même s’il existe 

toujours des symétries miroir dans la phase  celles-ci ne coïncident pas avec celles de la phase 

parent .  Il n’existe donc que 2 symétries communes, l’identité et l’inversion, |ℍ
𝛾
| = 2  et donc le 

nombre de variants est 𝑁𝛼 =
|𝔾

𝛾
|

|ℍ
𝛾
|
= 4.  

 

 
 

b. Si on applique une contrainte de compression le long de l’axe x,  

Le tenseur de contrainte est 𝛔 = ⁡(
σ𝑥 0
0 0

) avec σ𝑥 < 0 (compression). Pour déterminer quel variant 

sera sélectionné il faut calculer pour chacun des variants, le travail d’interaction. 

Pour le variant 1, 𝐅1
𝛾
= (

1 sin⁡10°
0 cos⁡10°

).  

Pour les autres variants, il faut effectuer un changement de repère.  



Le variant 2 est obtenu par symétrie miroir par le plan horizontal, 𝐦𝑥
𝛾
= (

1 0
0 −1

). 

Nous avons donc 𝐅2
𝛾
= (

1 0
0 −1

) 𝐅1
𝛾
(
1 0
0 −1

) = (
1 −sin⁡10°
0 cos⁡10°

). 

 

Le variant 3 est obtenu par symétrie miroir par le plan diagonal , 𝐦𝑥𝑦
𝛾

= (
0 1
1 0

). 

Nous avons donc 𝐅3
𝛾
= (

0 1
1 0

) 𝐅1
𝛾
(
0 1
1 0

) = (
cos⁡10° 0
sin⁡10° 1

). 

 

Le variant 4 est obtenu de 𝐅3
𝛾
 par symétrie miroir par le plan vertical, 𝐦𝑦

𝛾
= (

0 1
1 0

). 

Nous avons donc 𝐅4
𝛾
= (

0 1
1 0

) 𝐅3
𝛾
(
0 1
1 0

) = (
cos⁡10° 0
−sin⁡10° 1

). 

 

 

c. Le travail d’interaction des variants avec le champ de contrainte est donné par 

 𝐖𝑖 = (𝐅𝑖
𝛾
− 𝐈) ∶ 𝛔.  

Nous avons directement 𝐖1 = 𝐖2 = 0 et 𝐖3 = 𝐖4 = σ𝑥⁡(cos 10 ° − 1) > 0 

 

Donc les variants 3 et 4 seront formés par transformation sous contrainte de la phase . 

 

Pour une contrainte de cisaillement parallèle à l’axe x, le tenseur de contrainte, qui doit être 

symétrique, est⁡𝛔 = ⁡ (
0 τ
τ 0

) avec τ > 0 (cisaillement vers la droite pour la partie supérieure au plan 

de cisaillement) ou τ < 0 (cisaillement vers la gauche pour la partie supérieure au plan de 

cisaillement). Nous avons 

𝐖1 = 𝐖3 = sin 10° ⁡⁡τ 

𝐖2 = 𝐖4 = −sin 10° ⁡⁡τ 
 

Si τ > 0 , 𝐖1 et⁡𝐖3 > 0, 𝐖2 et⁡𝐖4 < 0, donc seuls les variants 1 et 3 se forment. 

Si τ < 0 , 𝐖1 et⁡𝐖3 < 0, 𝐖2 et⁡𝐖4 > 0, donc seuls les variants 2 et 4 se forment. 

 

 

d. La réversibilité de l’effet de superélasticité obéit aux mêmes règles que la réversibilité par 

déformation-chauffage de l’effet à mémoire de forme. Il faut donc voir si les variants de martensite 

vont donner par la transformation inverse à juste 1 variant d’austénite ou à plusieurs. Dans le 1er cas, 

la transformation est réversible, et donc superélastique, et dans le second cas non. Avec la relation 

d’orientation de l’exercice nous avons |ℍ
𝛾
| = |ℍ𝛼 | = 2  et donc le nombre de variants est 𝑁𝛾 =

|𝔾𝛼 |

|ℍ𝛼 |
=

4

2
= 2. Donc la martensite par transformation inverse pourra donner naissance à d’autres 

orientations de l’austénite que l’orientation initiale, la transformation n’est pas réversible. 




