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Exercices Series 3        

 

Solutions 
 

  

1.  Le diagramme de phase binaire Mg-Zn 

 

a) Dessin schématique des courbes d’enthalpie libre, G pour: 

i) 500°C: la seule condition pour ce dessin schématique est qu’il représente correctement les 

zones de stabilité des phases avec les compositions des phases en équilibre à peu près correcte. 

Dessinons d’abord la courbe G du liquide en mélange régulier avec les « dos de chameaux » 

pour représenter la lacune de miscibilité (1). Ensuite, prenons à 66 at-%Zn un composé avec 

une courbe G en aiguille (2) et plaçons-la à une hauteur qui mène aux bonnes compositions 

d’équilibre avec le liquide. Pour finir nous plaçons la courbe du Mg (3) de sorte que les 

compositions du liquide et solide avec la tangente commune corresponde aux valeurs indiquées 

dans le diagramme de phases. Un arrangement schématique possible des courbes G se trouve 

ci-dessous, à gauche. 

ii) 355°C: Les phases présentes à 355°C sont le Mg, le liquide, Mg2Zn3, MgZn2, Mg2Zn11, et 

Zn. Encore une fois, les tangentes communes indiquant les compositions en équilibre doivent 

correspondre aux indications du diagramme de phase. Une solution possible est indiquée ci-

dessous, à droite. 
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b) Le détail du diagramme de phase 

 

c) Liste des points invariants: 

Température Composition Nature Réaction 

325°C 30 at-%Zn eutectoïde Mg7Zn3  MgZn + Mg 

340°C 28.1 at-%Zn eutectique L  Mg + Mg7Zn3 

342°C 30 at-%Zn péritectique L + MgZn  Mg7Zn3 

347°C 51.5 at-%Zn péritectique L + Mg2Zn3  MgZn 

364°C 92.2 at-%Zn eutectique L  Mg2Zn11 + Zn 

381°C 84.5 at-%Zn péritectique L + MgZn2  Mg2Zn11 

416°C 60 at-%Zn péritectique L + MgZn2  Mg2Zn3 

419.5°C 100 at-%Zn fusion substance pure L  Zn 

590°C 66 at-%Zn fusion congruente de MgZn2 L  MgZn2 

650°C 0 at-%Zn fusion substance pure  L  Mg 

 

2. Point eutectique  

a) Les courbes 𝐺 (𝑥𝐵, 𝑇) et 𝐺


(𝑥𝐵, 𝑇) sont très « piquées » autour de leur valeur à l’état pur  

𝐺𝐴
 et 𝐺𝐵


 car A et B sont immiscibles. Le liquide forme lui une solution idéale dont la courbe 
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est donnée par   𝐺𝑙 (𝑥𝐵, 𝑇) =  𝐺𝐴
𝑙 𝑥𝐴 + 𝐺𝐵

𝑙 𝑥𝐵 + 𝑅𝑇(𝑥𝐴𝑙𝑛𝑥𝐴 + 𝑥𝐵𝑙𝑛𝑥𝐵). Les courbes typiques à 

différentes températures ont été montrées en cours. Une courbe représentée ci-dessous.  

 

Elle correspond à une température pour laquelle les phases   et liquide coexistent pour une 

composition  𝑥𝐵 comprise entre 0 et XB1 ; la phase liquide existe seule pour une composition 𝑥𝐵 

comprise entre XB1 et XB2 ; les phases   et liquide coexistent pour une composition  𝑥𝐵 

comprise entre XB1 et 1. A une température plus élevée, la courbe de Gibbs du liquide baisse 

plus que celle des solides à tel point que et seul le liquide 𝐺𝐴
𝑙 < 𝐺𝐴

 ; le liquide devient alors la 

seule phase stable. A une température plus basse, la courbe de Gibbs du liquide remonte par 

rapport à celles des solides et devient tangente à la droite passant par les points (𝑥𝐵 = 0, 𝐺𝐴
) et 

(𝑥𝐵 = 1, 𝐺𝐴
𝛽

). A cette température précise 𝑇𝐸  et au point de tangence de composition 𝑋𝐵
𝐸, les 

trois phases sont en équilibre, c’est le point eutectique du diagramme de phase. Si on baisse 

encore la température, la phase liquide n’est plus stable, seules les phases solides coexistent 

mais elles sont « immiscibles », c’est-à-dire que la phase  a une composition 𝑥𝐴 = 1 , la phase 

 une composition 𝑥𝐵 = 1, et que tout alliage de composition entre 0 et 1 est nécessairement 

formé des deux phases  et  dont les proportions sont données par la règles des bras de levier. 

b) La composition du liquidus -l est donnée par l’égalité du potentiel chimique de A entre les 

phases  et l, soit 
𝐴
 = 𝐺𝐴

 =  
𝐴
𝑙 = 𝐺𝐴

𝑙 + 𝑅𝑇 𝑙𝑛𝑥𝐴. Même chose côté  avec B. Nous arrivons 

à deux équations (une par liquidus) : 

{
−𝑅𝑇 𝑙𝑛𝑥𝐴 =  𝐺𝐴

𝑙 − 𝐺𝐴


−𝑅𝑇 𝑙𝑛𝑥𝐵 = 𝐺𝐵
𝑙 − 𝐺𝐵

𝛽 

Mais les énergies molaires des éléments purs dépendent bien sûr de la température ; en toute 

rigueur nous aurions dû l’indiquer en précisant 𝐺𝐴
𝑙 (𝑇) au lieu de 𝐺𝐴

𝑙 , et idem pour 𝐺𝐴
 et 𝐺𝐵

𝛽
. 

Nous avions vu en cours (II)  que pour des températures assez proches de la température de 

fusion, la différence d’énergies de Gibbs molaires pour un corps pur, mettons ici A est 

∆𝐺𝐴
𝛼→𝑙(𝑇) =  𝐺𝐴

𝑙 (𝑇) − 𝐺𝐴
(𝑇) = ∆𝑇 ∆𝑆𝐴

𝑓
  avec ∆𝑇 = 𝑇𝑓 − 𝑇 et ∆𝑆𝐴

𝑓
  = (𝑆𝐴

𝑙 − 𝑆𝐴
) à  𝑇𝑓. Cette 

équation est en fait aussi valable pour des températures plus éloignées de la température de 

fusion si on admet, comme c’est le cas ici, que les capacités thermiques sont les mêmes pour le 

solide et le liquide car les variations d’enthalpie dans le solide et le liquide sont identiques. Les 

courbes de 𝐺𝐴
𝑙 et 𝐺𝐴

 ne plus des droites quand la capacité thermique est prise en compte, mais la 

différence entre les deux courbes reste constante et égale à ∆𝑆𝑓 (voir courbes dans la figure ci-

après). Une manière de le prouver est d’écrire 

XB 

XB1 XB2 
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(1) ∆𝐺𝐴
𝛼→𝑙(𝑇) = ∆𝐻𝐴

𝛼→𝑙(𝑇) − 𝑇∆𝑆𝐴
𝛼→𝑙(𝑇) 

(2) ∆𝐺𝐴
𝛼→𝑙(𝑇𝑓) = ∆𝐻𝐴

𝛼→𝑙(𝑇𝑓) − 𝑇𝑓∆𝑆𝐴
𝛼→𝑙(𝑇𝑓) = 0 

Comme 𝐻 =  ∫ 𝑐𝑝𝑑𝜃
𝑇

298
 (voir cours 2), nous avons ∆𝐻𝐴

𝛼→𝑙(𝑇𝑓) =  𝐻𝐴
𝑙 (𝑇𝑓) − 𝐻𝐴

(𝑇𝑓) =

(𝐻𝐴
𝑙 (𝑇) + ∫ 𝑐𝑝

𝑙 (𝑇)𝑑𝑇
𝑇𝑓

𝑇
) − (𝐻𝐴

𝛼(𝑇) + ∫ 𝑐𝑝
𝛼(𝑇)𝑑𝑇

𝑇𝑓

𝑇
) . Comme ∫ 𝑐𝑝

𝑙 (𝑇)𝑑𝑇
𝑇𝑓

𝑇
= ∫ 𝑐𝑝

𝛼(𝑇)𝑑𝑇
𝑇𝑓

𝑇
 

car il est supposé que 𝑐𝑝
𝑙 (𝑇) = 𝑐𝑝

𝛼(𝑇), nous avons ∆𝐻𝐴
𝛼→𝑙(𝑇𝑓) = ∆𝐻𝐴

𝛼→𝑙(𝑇).    

D’autre part, l’énoncé suppose que ∆𝑆𝐴
𝛼→𝑙(𝑇) = ∆𝑆𝐴

𝛼→𝑙(𝑇𝑓) =  8.4 J 𝑚𝑜𝑙𝑒−1𝐾−1- Appelons 

cette constante ∆𝑆𝐴
𝑓
. 

Par soustraction (1)-(2) nous obtenons 

 ∆𝐺𝐴
𝛼→𝑙(𝑇) − 0 = ∆𝐺𝐴

𝛼→𝑙(𝑇) = −(𝑇 − 𝑇𝑓)∆𝑆𝐴
𝑓

= ∆𝑇 ∆𝑆𝐴
𝑓
  (cqfd) 

c) Nous pouvons donc reprendre les équations  

 

{
−𝑅𝑇 𝑙𝑛𝑥𝐴 =  𝐺𝐴

𝑙 − 𝐺𝐴
 =  ∆𝐺𝐴

𝛼→𝑙(𝑇)

−𝑅𝑇 𝑙𝑛𝑥𝐵 = 𝐺𝐵
𝑙 − 𝐺𝐵

𝛽
=  ∆𝐺𝐵

𝛽→𝑙(𝑇) 
  

sous la forme 

{
−𝑅𝑇 𝑙𝑛𝑥𝐴 = (𝑇𝑓

𝐴 − 𝑇) ∆𝑆𝐴
𝑓

 

−𝑅𝑇 𝑙𝑛𝑥𝐵 = (𝑇𝑓
𝐵 − 𝑇) ∆𝑆𝐵

𝑓
 

avec ∆𝑆𝐴
𝑓

= ∆𝑆𝐵
𝑓

= 8.4 J 𝑚𝑜𝑙𝑒−1𝐾−1 , 𝑇𝑓
𝐴 = 1500𝐾, 𝑇𝑓

𝐵 = 1300𝐾. 

Au point eutectique, les deux courbes de liquidus se rencontrent au point T = 𝑇𝐸 , 𝑥𝐴
𝐸 = 1 − 𝑥𝐵

𝐸 ,  

La résolution numérique montre que 𝑥𝐴
𝐸 = 0.44, 𝑥𝐵

𝐸 = 0.56, 𝑇𝐸 = 826𝐾. 
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