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Exercices Series 2    

 

Solutions 

 

1.  Les transformations dans le fer 

 

a. Cet exercice fait appel à l’équation de Clausius–Clapeyron qui lie le changement de 

température d’équilibre d’une transition de phase en fonction d’un changement de la 

pression externe au changement en volume molaire et au changement en entropie lors 

de la transformation. Elle est donnée par : 

 

(
𝑑𝑇

𝑑𝑝
)
𝑒𝑞

=
𝑑𝑇𝑓

𝑑𝑝
=
∆𝑉𝑚

∆𝑆𝑚
= 𝑇𝑓

∆𝑉𝑚

𝐿𝑓
 

Les valeurs pour (dT/dp)eq peuvent être tirées du diagramme donné dans l’énoncé. On trouve : 

 

Transition   : (dT/dp)eq = -910K/135kbar 

Transition   : (dT/dp)eq = 610K/27kbar 

Transition   l: (dT/dp)eq = 462K/177kbar 

Pour trouver l’entropie de transformation il faut calculer le changement en volume molaire lors 
de la transformation. Avec les valeurs de l’énoncé pour les paramètres de maille à la température 
de transition à 1 bar on trouve pour les volumes molaires respectifs: 

Vm,a =
aa

3

2
NA =

0.2906 ×10-9 m( )
3

2
6.022 ×1023 = 7.389 ×10-6 m3mole-1  

et  
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Vm,g =
ag

3

4
NA =

0.3648 ×10-9 m( )
3

4
6.022 ×1023 = 7.309 ×10-6 m3mole-1   

∆Vm est donc ≈ -8.10-8 m3 mole-1. 

L’entropie de transformation de   peut donc être estimée à: 

∆𝑆𝑚
𝛼→𝛾

= −8 ∙ 10−8𝑚3𝑚𝑜𝑙𝑒−1  
 135∙108𝑁.𝑚−2

−910𝐾
= 1.2 𝐽𝑚𝑜𝑙𝑒−1𝐾−1          

À l’équilibre 

∆Gm,a®g = 0      et donc    ∆ H m,a®g= Ta®g ∆ Sm,a®g   

avec Ta®g =1183K ,     donc ∆𝐻𝑚,𝛼→𝛾 = 1.41 𝑘𝐽/𝑚𝑜𝑙 

En prenant pour masse atomique du fer 55.85 g/mol, ∆𝐻𝑚,𝛼→𝛾 = 25.2 𝑘𝐽/𝑘𝑔    

 

b. Changement de volume lors de la transformation d’austénite  en ferrite  

Avec la pente (dT/dp)tirée du diagramme en haut et avec l’équation de Clausius-Clapeyron 

on trouve: 

∆𝑉𝑚,𝛾 →𝛿 = (
𝑑𝑇

𝑑𝑃
)
∆𝐻𝑚,𝛾 →𝛿

𝑇𝛾 →𝛿
= (

𝑑𝑇

𝑑𝑃
)
∆𝐻𝑚,𝛾 →𝛿

𝑇𝛾 →𝛿
= (

610

27. 108
)
837

1667
= 1.13 ∙ 10−7 𝑚3/𝑚𝑜𝑙 

 

c. Dilatométrie : 

L’acier est dans un état initial 100% ferrite. Au chauffage la ferrite commence à se transformer 
en austénite à T = As, et la transformation est complète à T = Af. Au refroidissement la 
transformation inverse de l’austénite en ferrite se produit à plus basse température, la ferrite 
apparait à Fs et arrête de se former à Ff. Attention cependant la transformation n’est pas complète 
car le refroidissement était assez rapide (le taux de refroidissement n’est toutefois pas précisé). 
L’austénite restante finit de se transformer en martensite : le début a lieu à Ms et la transformation 
est complète à Mf. Au final après un cycle la structure est un mélange de ferrite et de martensite. 
Les phases ferrite et martensite sont toutes deux bcc. La seule différence entre elles est que la 
martensite contient du carbone en sursaturation, mais les deux phases ont le même coefficient de 
dilatation comme le montre la superposition parfaite de la courbe aux basses températures (entre 
20°C et 300°C) entre la montée et la descente.  

Le coefficient de dilatation linéaire (en dilatomètrie on mesure l’allongement le long d’une 
direction) est approximativement de 23 ∙ 10−6 𝐾−1 pour l’austénite et de 15 ∙  10−6 𝐾−1 pour 
la ferrite. 

Le coefficient de dilatation volumique est approximativement trois fois le coefficient de 
dilatation linéaire. En effet 𝑙(𝑇 + Δ𝑇) = (1 + 𝛼Δ𝑇)𝑙(𝑇) donc 𝑙3(𝑇 + Δ𝑇) = (1 + 𝛼Δ𝑇)3 𝑙3(𝑇) 
avec 𝛼Δ𝑇 ≪ 1, donc (1 + 𝛼Δ𝑇)3 ≈ 1 + 3𝛼Δ𝑇 
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2. Regular solutions and miscibility gap 

a. En examinant les courbes nous voyons qu’il existe une température critique Tc. Pour T < Tc il 

y a démixtion et les compositions XB1 et XB2 sont données par la tangente commune. Lorsque 

la température augmente les compositions XB1 et XB2 se rapprochent pour ne former qu’une 

seule XB1 = XB1  = ½ à T = Tc . Pour T > Tc il n’y plus de démixtion, la phase stable est celle 

du mélange A et B. La courbe la plus proche de à T = Tc est en violet sur la Fig3. Elle 

correspond à une température de 1300K. 

 

b. Examinons de plus près en Fig. 3 de l’énoncé une des courbes qui correspond à ce cas, ; par 

exemple celle à 1000K (en vert sur la Fig3 de l’énoncé). 

    

   

 

 

 

 

 

Courbe de G et ses dérivées pour une température T < Tc (ici T = 1000K) 

XB1 XB2 

XB3 XB4 

XB 

XA 

GB-GA 

GA 

GB 
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Les compositions des phases pauvres et riches en B sont XB1 et XB2 donnés par la tangente 

commune (en pointillé vert). Ces points sont symétriques autour de la valeur x = ½ . Pour le 

prouver écrivons 𝐺𝑚(𝑥) comme la somme d’une fonction affine de 𝑥 et d’une fonction 𝑆(𝑥) 
symétrique de part et d’autre de x = ½, i.e. 𝑆(𝑥) = 𝑆(1 − 𝑥). Nous avons en effet 𝐺𝑚(𝑥) =
𝐺𝐴
𝑚 + (𝐺𝐵

𝑚 − 𝐺𝐴
𝑚)𝑥 + 𝑆(𝑥) avec 𝑆(𝑥) = 𝑅𝑇 𝑥𝑙𝑛𝑥 + 𝑅𝑇 (1 − 𝑥) ln(1 − 𝑥) + Ω𝑥(1 − 𝑥). On 

vérifie aisément que 𝑆(𝑥) = 𝑆(1 − 𝑥). Comme 𝑆(𝑥) est une fonction symétrique autour de la 

valeur x = ½, la dérivée est antisymétrique, 𝑆′(𝑥) = −𝑆′(1 − 𝑥). Pour des valeurs de 𝑥 

symétriques de part et d’autre de x = ½, nous avons 𝐺′(𝑥) = (𝐺𝐵
𝑚 − 𝐺𝐴

𝑚) + 𝑆′(𝑥) et 

𝐺′(1 − 𝑥) = (𝐺𝐵
𝑚 − 𝐺𝐴

𝑚) + 𝑆′(1 − 𝑥), donc si 𝐺′(𝑥) = 𝐺′(1 − 𝑥), c’est forcément que 𝑆′(𝑥) =
𝑆′(1 − 𝑥), or nous avons vu que 𝑆′(𝑥) = −𝑆′(1 − 𝑥), donc 𝑆′(𝑥) = 𝑆′(1 − 𝑥) = 0, et par 

conséquent 𝐺′(𝑥) = 𝐺′(1 − 𝑥) = (𝐺𝐵
𝑚 − 𝐺𝐴

𝑚) qui est bien la pente de la tangente commune 

(parallélisme des droites vertes en pointillés). 

 

c. Il existe aussi deux points d’inflexion 
𝑑2𝐺𝑚

𝑑𝑥2
= 0, XB3 et XB4, qui sont eux symétriques 

autour de la valeur x = ½  (car 
𝑑2𝐺𝑚

𝑑𝑥2
 est symétrique autour de x = ½).  

A la température critique Tc, les 4 points XB1, XB2, XB3, XB4 se réduisent en seul point qui est 

forcément en x = ½. La condition recherchée est donc 
𝑑2𝐺𝑚

𝑑𝑥2
(
1

2
) = 0  et 𝑇 = 𝑇𝑐. Comme 

𝑑2𝐺𝑚

𝑑𝑥2
=

𝑅𝑇 (
1

1−𝑥
+

1

𝑥
) − 2Ω , la condition s’écrit 

2𝑅𝑇𝑐 = Ω 

soit, avec les valeurs numériques de l’énoncé, Tc = 1265 K 

 

d. Courbe du solvus : 

Nous savons que pour T < Tc les fractions d’équilibre de la lacune de misciblité XB1 et XB2 sont 

symétriques, XB1 = 𝑥 et XB2 = 1 − 𝑥. La fraction 𝑥 vérifie 𝐺′(𝑥) = 𝐺′(1 − 𝑥) = 𝐺𝐵
𝑚 − 𝐺𝐴

𝑚 

comme vu en b), ou directement 𝑆′(𝑥) = 0 comme vu en b). De cette dernière nous avons 

 𝑅𝑇𝑙𝑛𝑥 − 𝑅𝑇𝑙𝑛(1 − 𝑥) + Ω(1 − 2𝑥) = 0 

Pour chaque température fixée, nous pouvons donc déduire numériquement la valeur de 𝑥 (en 

fait les deux valeurs symétriques 𝑥 et 1 − 𝑥. Le graphique des solutions est donné ci-après. 
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Lacune de miscibilité d’une solution régulière 

 

Note 1: Il existe une autre façon pour trouver l’équation du gap de miscibilité, 𝑆′(𝑥) = 0. 

Thermocalc fonctionne par minimisation de l’énergie de Gibbs totale qui est la somme des 

énergies de Gibbs individuelles de chaque phase de fonction connue. Appliquons cette approche 

en considérant la phase pauvre en B de composition x et la phase riche en B de composition 1 −
𝑥. Appelons y et 1 − 𝑦 la fraction molaire respective de chaque phase. Nous écrivons donc   

𝐺𝑡𝑜𝑡
𝑚 (𝑥) = 𝑦 𝐺𝑚(𝑥) + (1 − 𝑦)𝐺𝑚(1 − 𝑥) 

et la fonction 𝐺𝑚(𝑥) = 𝐺𝐴
𝑚 + ∆𝐺 𝑥 + 𝑆(𝑥) avec ∆𝐺 = (𝐺𝐵

𝑚 − 𝐺𝐴
𝑚) 

Il s’agit de minimiser la fonction 𝐺𝑡𝑜𝑡
𝑚 (𝑥) avec la contrainte sur le bilan molaire qui est 

𝑦𝑥 + (1 − 𝑦)(1 − 𝑥) = 𝑋𝐵= Cst (fraction molaire en B de l’alliage) 

Nous avons donc un système à optimiser sous la forme 

{
𝑓(𝑥, 𝑦) =  𝑦 𝐺𝑚(𝑥) + (1 − 𝑦)𝐺𝑚(1 − 𝑥)         𝑓 à 𝑜𝑝𝑡𝑖𝑚𝑖𝑠𝑒𝑟

𝑔(𝑥, 𝑦) = (2𝑦 − 1)𝑥 − 𝑦 =  𝑋𝐵                            𝑔 𝑐𝑜𝑛𝑡𝑟𝑎𝑖𝑛𝑡𝑒 
 

Thermocalc fonctionne en utilisant les multiplicateurs de Lagrange. Je propose ici une solution 

d’optimisation sans avoir recours aux multiplicateurs ; elle consiste à dériver les deux fonctions. 

L’optimum de la fonction f est obtenue quand sa dérivée est nulle. Quant à la fonction de 

contrainte g, étant constante, sa dérivée est aussi nulle : 

{
 
 

 
 𝑑𝑓(𝑥, 𝑦) =

𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 = ((2𝑦 − 1)𝑆′(𝑥) + ∆𝐺)𝑑𝑥 + ∆𝐺(1 − 2𝑥)𝑑𝑦 = 0

𝑑𝑔(𝑥, 𝑦) =
𝜕𝑔

𝜕𝑥
𝑑𝑥 +

𝜕𝑔

𝜕𝑦
𝑑𝑦 = (2𝑦 − 1)𝑑𝑥 + (1 − 2𝑥)𝑑𝑦 = 0                                        

 

XB1 XB2 

T Tc 
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Ceci pour un vecteur de dérivation (𝑑𝑥, 𝑑𝑦) qui est non nul. Le déterminant du système doit 

donc lui être nul, et donc  

|
(2𝑦 − 1)𝑆′(𝑥) + ∆𝐺 ∆𝐺 (1 − 2𝑥)

(2𝑦 − 1) (1 − 2𝑥)
| = 0 

Soit x = ½  ou/et  y = ½ 

Soit 𝑆′(𝑥) = 0. Nous retrouvons donc l’équation. 

 

e. Le diagramme de phase Pt-Ir n’est pas exactement symétrique, donc la solution n’est pas 

exactement régulière. Les interactions atomiques font dévier la distribution des atomes A et B 

d’une distribution « statistique » dans laquelle leur probabilité de présence sur le réseau 

cristallin serait proportionnelle à leur faction molaire.  

Note : Si on utilisait malgré tout la formule de la solution régulière, on trouverait: Ω = 2𝑅𝑇𝑐 =
20.7 kJ/mol. C’est une valeur très proche de celle-ci qui avait été choisie (volontairement) 

pour les questions a-d.  

 

Note 2 : Pour 𝑇 < 𝑇𝑐 et un composition X comprise entre XB2 et XB3, la décomposition en deux 

phases de compositions XB2 et XB3 se produit de façon spontanée et progressive ; ce type de 

transformation est appelée décomposition spinodale. Pour une composition X comprise entre XB1 

et XB2, ou entre XB3 et XB4, la décomposition nécessite de franchir un gap en énergie, la 

transformation se produit alors sous forme de germination/croissance comme pour la 

précipitation.  

 


