Transformations de Phase

Exercices Series 2

Solutions

1. Les transformations dans le fer

a. Cet exercice fait appel a I’équation de Clausius—Clapeyron qui lie le changement de
température d’équilibre d’une transition de phase en fonction d’un changement de la
pression externe au changement en volume molaire et au changement en entropie lors
de la transformation. Elle est donnée par :

(dT) _dTy _avm Ay
dp/,, dp — AS™ _

Les valeurs pour (d77dp)., peuvent €tre tirées du diagramme donné dans 1’énoncé. On trouve :
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Transition o0 — y: (dT/dp),, = -910K/135kbar
Transition y — 8: (d1/dp)., = 610K/27kbar

Transition 8 — 1: (d7/dp)., = 462K/177kbar

Pour trouver I’entropie de transformation il faut calculer le changement en volume molaire lors
de la transformation. Avec les valeurs de 1’énoncé pour les paramétres de maille a la température
de transition a 1 bar on trouve pour les volumes molaires respectifs:

3 0.2906x10°m)’
yma = % N, = ( 2 ) 6.022x10% = 7.389x10°  m*mole™
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a 0.3648110°m
(VA Zg N, = ( 2 ) 6.022x10% = 7.309x10° m’mole™

AVm.o—vest donc =~ -8'10-8 m3 mole-!.
L’entropie de transformation de oo — y peut donc €tre estimée a:

1 135-108N.m™2

ASy " = -8 -10"*m’mole™" ——

= 1.2 Jmole K1
A I’équilibre

AG™™ =0 etdonc AH™*Y=T*?AS™
avec T®¥ =1183K, donc AH™*7Y = 1.41 kJ/mol

En prenant pour masse atomique du fer 55.85 g/mol, AH™*”Y = 25.2 k] /kg

b. Changement de volume lors de la transformation d’austénite y en ferrite &

Avec la pente (d7/dp),—; tirée du diagramme en haut et avec I’équation de Clausius-Clapeyron
on trouve:

=1.13 - 1077 m3/mol

dT) AH™Y 20 (dT) AH™Y 2% ( 610 ) 837

AV™Y =8 = (— ==
dp) Tv~8 dp) Tv~9 27.108/ 1667

c. Dilatométrie :

L’acier est dans un état initial 100% ferrite. Au chauffage la ferrite commence a se transformer
en austénite a T = As, et la transformation est compléte a T = Ar. Au refroidissement la
transformation inverse de 1’austénite en ferrite se produit a plus basse température, la ferrite
apparait a F; et arréte de se former a Fr. Attention cependant la transformation n’est pas compléte
car le refroidissement était assez rapide (le taux de refroidissement n’est toutefois pas précisé).
L’austénite restante finit de se transformer en martensite : le début a lieu a Ms et la transformation
est complete & Mr. Au final aprés un cycle la structure est un mélange de ferrite et de martensite.
Les phases ferrite et martensite sont toutes deux bce. La seule différence entre elles est que la
martensite contient du carbone en sursaturation, mais les deux phases ont le méme coefficient de
dilatation comme le montre la superposition parfaite de la courbe aux basses températures (entre
20°C et 300°C) entre la montée et la descente.

Le coefficient de dilatation linéaire (en dilatométrie on mesure I’allongement le long d’une
direction) est approximativement de 23 - 107 K~ pour I’austénite et de 15+ 107% K~ pour
la ferrite.

Le coefficient de dilatation volumique est approximativement trois fois le coefficient de
dilatation linéaire. En effet (T + AT) = (1 + aAT)I(T) donc I3(T + AT) = (1 + aAT)3 13(T)
avec aAT « 1, donc (1 + aAT)3 ~ 1 + 3aAT



2.

a. En examinant les courbes nous voyons qu’il existe une température critique T¢. Pour T < T il
y a démixtion et les compositions Xgi et Xg2 sont données par la tangente commune. Lorsque
la température augmente les compositions Xgi et X2 se rapprochent pour ne former qu’une
seule X1 = Xp1 =% aT=Tc.Pour T>T.il ny plus de démixtion, la phase stable est celle
du mélange A et B. La courbe la plus proche de a T = T. est en violet sur la Fig3. Elle

Regular solutions and miscibility gap

correspond a une température de 1300K.

b. Examinons de plus prés en Fig. 3 de 1’énoncé une des courbes qui correspond a ce cas, ; par

exemple celle a 1000K (en vert sur la Fig3 de I’énoncé).
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Les compositions des phases pauvres et riches en B sont Xg; et Xg> donnés par la tangente
commune (en pointillé vert). Ces points sont symétriques autour de la valeur x =2 . Pour le
prouver écrivons G (x) comme la somme d’une fonction affine de x et d’une fonction S(x)
symétrique de part et d’autre de x = %, i.e. S(x) = S(1 — x). Nous avons en effet G (x) =
G*+ (Ggt — GM)x + S(x) avec S(x) = RT xIlnx + RT (1 —x) In(1 — x) + Qx(1 — x). On
vérifie aisément que S(x) = S(1 — x). Comme S(x) est une fonction symétrique autour de la
valeur x = Y4, la dérivée est antisymétrique, S'(x) = —S'(1 — x). Pour des valeurs de x
symétriques de part et d’autre de x = 4, nous avons G'(x) = (GF* — G*) + S'(x) et
G(1—x)=(Gl—-G")+S'(1—x),doncsi G'(x) = G'(1— x), c’est forcément que S'(x) =
S'(1 — x), or nous avons vu que S'(x) = —S'(1 — x), donc S’ (x) = S'(1 — x) = 0, et par
conséquent G'(x) = G'(1 — x) = (GF* — G*) qui est bien la pente de la tangente commune
(parallélisme des droites vertes en pointillés).

. . . . . digm . o
c. I1 existe aussi deux points d’inflexion 7 = 0, Xg3 et Xgs, qui sont eux symétriques

Gm e
—7~ est symétrique autour de x = ).

dZ

autour de la valeur x =2 (car .

A la température critique Te, les 4 points Xgi1, XB2, XB3, XB4 se réduisent en seul point qui est
daz¢™ 1 az¢m

a2 (5) =0 etT =T,. Comme el

forcément en x = %. La condition recherchée est donc

RT (ﬁ + %) — 20, la condition s’écrit

2RT, = Q

soit, avec les valeurs numériques de I’énoncé, T, = 1265 K

d. Courbe du solvus :

Nous savons que pour T < Tk les fractions d’équilibre de la lacune de misciblité Xg1 et Xg2 sont
symétriques, X1 = x et Xg2=1 — x. La fraction x vérifie G'(x) = G'(1 — x) = GF* — G}*
comme vu en b), ou directement S'(x) = 0 comme vu en b). De cette derniére nous avons

RTInx — RTIn(1 —x) +Q(1—2x) =0

Pour chaque température fixée, nous pouvons donc déduire numériquement la valeur de x (en
fait les deux valeurs symétriques x et 1 — x. Le graphique des solutions est donné ci-apres.



ListPt = {}

For[t =600, t=<Tc,t = t +106;

sol = NSolve[Rt (Log[x] -Log[l-x])+Q(1-2x) =0 && @ <x<1, x];
x1 =N[x/.sol][[1]];

x2 =N[x /.s0l][[3]];

ListPt = Append[ListPt, {x1, t}];

ListPt - Append[ListPt, {x2, t}];
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ListPlot [ListPt]
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Lacune de miscibilité d’une solution réguliere

Note 1: Il existe une autre fagon pour trouver 1’équation du gap de miscibilité, S'(x) = 0.
Thermocalc fonctionne par minimisation de I’énergie de Gibbs totale qui est la somme des
énergies de Gibbs individuelles de chaque phase de fonction connue. Appliquons cette approche
en considérant la phase pauvre en B de composition x et la phase riche en B de composition 1 —
x. Appelons y et 1 — y la fraction molaire respective de chaque phase. Nous écrivons donc

Gioe(x) =y 6™ + (1 —y)6™(1 —x)
et la fonction G™(x) = GJ* + AG x + S(x) avec AG = (GF' — GJY)
Il s’agit de minimiser la fonction G/, (x) avec la contrainte sur le bilan molaire qui est
yx + (1 —y)(1 — x) = Xg= Cst (fraction molaire en B de 1’alliage)
Nous avons donc un systéme a optimiser sous la forme

{f(x,y) =y6"x)+ A -y) ™1 —x) f a optimiser
gx,y)=Qy—Dx—y= Xp g contrainte

Thermocalc fonctionne en utilisant les multiplicateurs de Lagrange. Je propose ici une solution
d’optimisation sans avoir recours aux multiplicateurs ; elle consiste a dériver les deux fonctions.
L’optimum de la fonction f est obtenue quand sa dérivée est nulle. Quant a la fonction de
contrainte g, étant constante, sa dérivée est aussi nulle :

( d 0

! df (x,y) = %dx + %dy = ((2y — 1)S"(x) + AG)dx + AG(1 — 2x)dy = 0
0 0

Ldg(x,y) = %dx + %dy =Qy—1dx+(1—-2x)dy=0
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Ceci pour un vecteur de dérivation (dx, dy) qui est non nul. Le déterminant du systéme doit
donc lui étre nul, et donc

2y = DS'(@) +46 AG (1-2x)| _
Cy—-1) (1-2x) |

Soitx =% ou/et y="1

Soit S'(x) = 0. Nous retrouvons donc 1’équation.

e. Le diagramme de phase Pt-Ir n’est pas exactement symétrique, donc la solution n’est pas
exactement réguliere. Les interactions atomiques font dévier la distribution des atomes A et B
d’une distribution « statistique » dans laquelle leur probabilité¢ de présence sur le réseau
cristallin serait proportionnelle a leur faction molaire.

Note : Si on utilisait malgré tout la formule de la solution réguliere, on trouverait: 0 = 2RT, =
20.7 kJ/mol. C’est une valeur tres proche de celle-ci qui avait été choisie (volontairement)
pour les questions a-d.

Note 2 : Pour T < T, et un composition X comprise entre Xg2 et Xg3, la décomposition en deux
phases de compositions Xp2 et Xp3 se produit de facon spontanée et progressive ; ce type de
transformation est appelée décomposition spinodale. Pour une composition X comprise entre Xgi
et Xp2, ou entre Xp3 et Xps, la décomposition nécessite de franchir un gap en énergie, la
transformation se produit alors sous forme de germination/croissance comme pour la
précipitation.



