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Exercise Set 11 - Solution

1 Confidence Intervals [basic]

We assume that the polymers’ strength is a random variable following the normal distribution. Since
we don’t know its variance in the population, we have to estimate it using the sample variance.
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We have Ng = 10 data points, thus we know that the T-statistic will follow a ty,_1 = tg distribution.
The value of t is given by: -
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(Remember that the population variance is 832/ but the variance of the mean of Ng data points is
SZ/Ns.) A level of a means that the fraction 1 — o of that distribution should be within the «
confidence interval. Here we are doing a two-sided test, so to get a confidence level of 1 — a we need
to compute 2 x CDF(t) — 1 = 1 — «, so for a significance level of a = 0.1 = 10% we need to use the
value of ¢ where CDF(t) = 0.95 i.e. the qt9(95%) quantile, which is 1.833. Using the quantile form the
student-test table (e.g. on www.tdistributiontable.com), we obtain:
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Le. there is a 90% probability that the true mean is within this range, and only a 10% probability
that it is outside this range.
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— [8.65;12.68]

For other «, the intervals are:
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We observe that the size of the interval increases as the significance level decreases. This makes sense:
We use the significance to mean "only with a probability of a could random fluctuations cause the
mean be outside the confidence interval" (where the latter part of the sentence is the null hypothesis
we test). Inversely speaking, if the null hypothesis is true, this means that we expect the mean to be
within the confidence interval with probability 1—«. The bigger the interval, the bigger our confidence
to find the mean in that range.

In the extreme, take @ = 0. Then the confidence interval would be [—oo;00] - as there is always
some (very small) probability for any possible value of § to occur randomly. Of course as long as
the approximation of § coming from a normal distribution is still correct - often so far away from the
mean this may fail. For example the mean height of a group of people may be well described by a
normal distribution for values reasonably close to the mean. But this can obviously not be true for
any distance from the mean, as then we would have to give a non-zero probability to negative heights!

The sample dataset was generated using a normal distribution A/(11,9), i.e. with a true population
mean of 11, which indeed falls into every confidence interval computed before.



2 Variance of intercept estimator [normall]

From expression of the regression, the intercept can be rewritten as ¢ =Y — bX. So:
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Var(a) = Var(Y') 4+ Var(bX“) = Var(Y') + X* - Var(b) - +X SACESE

To get this, note that for two independent variables A and B, we have Var(A—B) = Var(A)+Var(B).
Although X and Y may be correlated, the mean of Y is not correlated to the mean of X, as the latter is
not varying. Simple linear regression is based on the assumption that X does not have any error (and
hence the mean of X has no variance). Also the mean of Y does not correlate with the slope estimator
b (as can be seen from the definition of b). Finally, the expression for Var(Y) more generally follows
from the Central Limit Theorem (or more specifically from the fact that we take the error to follow a
normal distribution).

3 Linear regression with fixed intercept [normall

We can calculate b by minimizing the Sum of the Squared Errors (SSE).

SSE = z:(yz —Y;)? = Z(yz — ba;)?

OSSE _ Z ~2i(yi — bwi) = —2 @iy + 20> a?)

Setting the derivative to 0 and solving for b we get :
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Taking the second derivative we find

0?°SSE 5

So it is a minimum (unless we have the pathological case where all z; = 0 in which case we cannot
define a slope).

Note that this result is NOT the same as starting form the estimator in the usual linear case. There,
the "fixed point" is (X,Y), now it is (0, 0).

4 Linear regression with a quadratic law passing by zero [advanced]

The estimator b can be found the same differential approach as used in the previous exercise.
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To check if b is non-biased, we have to prove its expected value is equal to b.
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So our estimator is unbiased.

As above, the parameters x; are considered to be known and exact (i.e. they have no error). The
errors we treat are in the y; and expressed by &;. Since the average of a constant is the constant itself
and since its variance is zero, E(Y;) = bz? and Var(Y;) = Var(e;) = o2.

So b follows the normal law:

N(E(b), Var(b)) = N (b, Zilglffvar(m> =N (b, 21002>

(2 iz1 x§)2 :
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And the 99% interval of confidence is (using 99.5 because we do a two-sided test, as above):
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[bi,bs] = | b+ 299 5% = [0.747,0.812)

The figure below shows the linear regression as well as the functions with the upper and lower bound.
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5 Efficient methods of learning a course and Model selection

To compare the different model, we will start from the "Full" model containing all contributions
b1, b2, bg and see the effect of removing one of these slopes. To see the effect, we calculate the Fisher
statistic using the following formula :

(SSEfull - SSEreduced)/AVM
SSEpun/VEfun

Fobs =

where vg i = n —p — 1 is the error degree of freedom of the full model, with p the number of slopes
(regressions) in the model. By only removing one slope at the time, we will always have Avy = 1.

This value is then compared to the critical Fisher Statistic ¢F1 5., (P)- If Fops > ¢F1 054, (P), then
the reduced model (without the extra parameter) is statistically significantly worse than the full model.
Conversely, if Fops < qF1 fu”(P), the removed slope does not have a statistically significant effect on
the full model. L.e. any lowering of the SSE that the full model provides could just be the result of
random fluctuations (and the fact that with more free parameters, the fit is always better).

Starting with a + by - 1 + bz - 22 + b3 - 23 as the full model, with vgsy = 21 —3 — 1 = 17 and
F117(95%) = 4.451, we compare to the models with only 2 slopes and find (labelling them by the b
parameter that was removed) :

Frui—e1 = 28.2, Fru—ve =124, Frui—s3 =0.95

So we can say with a confidence level of 95% that parameter bs does not contribute to a statistically
significantly better full model, and removing it would be appropriate. In other words, we can’t reject
the hypothesis that b3 = 0. However, we can reject the hypothesis that by = 0 and even more so that
by =0

To go further we now set a + by - 71 + b - 72 to be the full’ model, and look at the effect of removing 1
and 2. We now have vy =21 —2 — 1 =18 and F},18(95%) = 4.414, we compare to the models with
1 slope and find :

Frupy-—n = 28.1, Fruy—p2 =124
So also here we find that we cannot remove any more parameters without significantly damaging the
model.

Note that we do not compare the full’ model to the model with only b3 as this would not be a nested
model of the full’ model.



