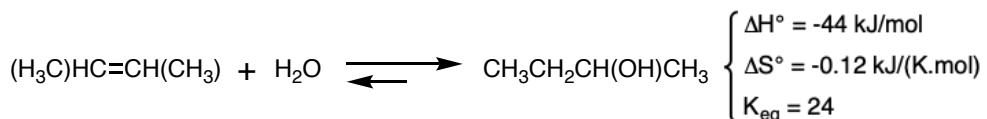
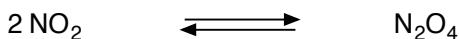

Organic Chemistry - Exercise 4

Distribution: October 10 2024

Help: October 17 2024


Return until: October 20 2024

1. Consider the following profile of a chemical reaction:


- Is ΔG° for the reaction positive or negative? Label it on the diagram.
- How many steps are involved in the reaction and how many transition states are there? Label the transition states on the diagram.

2. Consider the following chemical reaction:

- Give the IUPAC names of the starting material and the products. (Hint: you form more than one product).
- What is the reaction type?
- Is the reaction exothermic or endothermic?
- Is the reaction favorable (spontaneous) or unfavorable (non-spontaneous) at room temperature (298 K)?
- What is the consequence of increasing the temperature at which the reaction is conducted?

3. Consider the equilibrium of the following dimerization reaction:

NO_2 is a brown gas, whereas N_2O_4 is colorless. The Gibbs free energy of the dimerization reaction (left to right) is $\Delta G = -5.13 \text{ kJ/mol}$ at a temperature of 23°C and $\Delta G = 8.41 \text{ kJ/mol}$ at a temperature of 100°C .

- Draw the correct structural formulae (Lewis structures) of N_2O_4 .

- b. What would you expect to observe with regard to color upon heating a sealed flask from room temperature to 100°C?
 - c. A sealed flask with a volume of $V = 1$ L is filled with 0.26 mol of pure NO_2 . After a while the equilibrium is reached and a measurement shows that 0.08 mol N_2O_4 is present. Determine the equilibrium constant.
4. Dibromine can participate both in polar reactions and in radical reactions. Discuss why this is favorably possible in each case.
5. An alkene $\text{R}_2\text{C}=\text{CR}_2$ and a ketone $\text{R}_2\text{C}=\text{O}$ can undergo a polar reaction together. Draw the reaction mechanism correctly (hint: electron pair pushing, formal charges), and describe the respective roles of the two molecules in this reaction.

Reading Suggestions:

Clayden, Greeves, Warren, Wothers, *Oxford University Press*, **2001**, pp. 304–334.
Organic Chemistry, John McMurry, *Thomson Brooks/Cole*, **2008**, pp. 152-161.
Chimie Organique: Les Grands Principes, John McMurry, *Dunod Editeur*, **2015**, pp. 95-98.
Clayden, Greeves, Warren, Wothers, *Oxford University Press*, **2001**, pp. 407–441.
Organic Chemistry, John McMurry, *Thomson Brooks/Cole*, **2008**, pp. 152-161 + 359-381.
Chimie Organique, Paul Arnaud, *Dunod Editeur*, **2015**, pp. 103-125, 285-303, 327-351.