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REMINDER FROM LAST WEEK
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REAL GASES

We can now start studying real gases. The molecules of these gases have interactions with each other and
occupy a finite volume. Thus, they do not follow the equation of state of the simple form.

The simplest type of interaction that we can think of is a Lennard-Jones interaction (6-12 potential):
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EQUATIONS OF STATE FOR REAL GASES Y - v » pUs T e

Up to an atmosphere of pressure or more the behavior of most gases can be represented with fairly good accuracy by
introducing into the equation of state an adjustable parameter B :

> p(v—B) = RT & H ’-U-c:P

The quantity B has the dimensions of a volume, is usually negative at low temperatures but changes sign at high
temperatures. Thus it cannot be interpreted as being proportional to the volume occupied by the molecules.

Larger deviations from the gas law can be represented by means of an equatlon containing a greater number of
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Where the term 18 regarded as an “internal pressure” arising from
the attractive forces between the molecules.

Large deviations from the ideal gas law can also be represented by means of the power series:
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Where B and C are called the second and third V|raI coeff|C|ents respectlvely and are in general Q"' BRY c me?
functions of temperature. Alternatively, the volume may be expressed as a power series in the pressure.



THE FUGACITY OF A REAL GAS

We saw that the ideal gas, by definition, is one whose chemical potential, at constant temperature, is a linear function
of the logarithm of its pressure.

In the case of gases which are not ideal, it is convenient to define a kind of pressure, called the fugacity, to which the
chemical potential of the gas bears the same linear relationship.

Let u be the chemical potential of the pure gas at temperature T and pressure p. The fugacity f of the gas is defined
by the following relations in which u° is a function of T only:

M= 4 RT coleal cane /P/d&* @T&f

p=pu’+RTInf when 79—>1 as p—0
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This limiting relation makes the fugacity equal to the pressure under conditions where the gas obeys the ideal gas law.
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IDEAL MIXTURES OF REAL GASES
\,
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The mixture of ideal gases has been defined as: /{,{ c ://;(73‘[‘ Ta ( ’en/ 7" + 2‘ &Al A'/‘
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where p is a function of temperature only. The chemical potential is thus a linear function of the logarithm of the total
pressure, and this is why the mixture obeys the ideal gas law.
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A much less restrictive model of a gas mixture is one that obeys the equation:
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where u; is both a function of temperature and pressure. In thls case, on endence on composmon is
made explicit — the chemical potential of i depends only on its own mole fractlon x; and not on the mole

fractions of any other component, at constant total pressure and temperature. This relationship defines the
ideal mixture of real gases.
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THERMODYNAMIC FUNCTIONS OF IDEAL MIXTURES OF REAL GASES

Such mixtures also have the property of having a zero volume change of mixing, zero internal energy of mixing,
and a zero enthalpy of mixing at constant temperature and pressure.
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THE FUGACITIES OF THE IDEAL MIXTURES OF REAL GASES

e definition of the ideal mixture of real gases has an important consequence to the fugacities in the mixture.
It canbe shown that: E__
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The right-hand side is independent of composition, and therefore the ratio=" must remain unchanged as x; is brought

Xi

up to unity: (9
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where f;' is the fugacity of pure component i at the same temperature and total pressure as the mixture. This is known

as the Lewis and Randall’s rule, i.e. the fugacity of each constituent is equal to its mole fraction multiplied by
the fugacity which it would exhibit as a pure gas, at the same temperature and the same total pressure.

Thus, the problem of knowing the fugacity of a component of a mixture is reduced to knowing the fugacity of the same
gas in its pure state.
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THE ACTIVITY AND ACTIVITY COEFFICIENT OF IDEAL MIXTURES

Experimental measurements of the thermodynamic behavior of solutions are not aimed at the determination of
chemical potentials, although this quantity lies at the core of the description of such systems. Common practice
measures another property, the activity of component i, which is defined in terms of the chemical potential by the

equation:
ui = pp = Ay =]RT1n a; l

a; is the activity of i in a solution at a given temperature, pressure and composition. Activity is a unitless
quantity, as is the mole fraction of component i.

Another convenient measure of solution behavior, called the activity coefficient of component i, y;, is defined as:
a; = Yix; & ui — i = Ap; = RT Inyx;

If y; = 1, the activity of component i is equal to its mole fraction and the behavior of i, in terms of its chemical
potential is determined completely by its composition. If y; > 1, a; > y; and in the evaluation of chemical
potential, component i acts as if the solution contains more i than the mole fraction suggests.
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NOTE ON IDEALITY AND ITS DEVIATION [Fucacity FuncTion]

standard state
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DEFINITION OF PHASE

In real systems, we often find different materials and within these materials we can find different parts of the same
materials coexisting. For example, a glass of water with ice cubes. In materials, this kind of coexistence is quite

common.

A phase is a part of a system that on a macroscopic scale can be considered as homogeneous.
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FUNDAMENTAL RELATIONS OF MULTIPHASE, CLOSED,
NON-REACTING SYSTEMS

What we now need to study is what are the conditions of the multiple phases to coexist and to be at equilibrium.

Let us consider a heterogeneous closed system
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TEMPERATURE CONDITIONS FOR EQUILIBRIUM

A possible process can be characterized by the following variations in entropy, volume and composition of the phases:
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PRESSURE CONDITIONS FOR EQUILIBRIUM
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CONDITIONS ON THE CHEMICAL POTENTIALS FOR

EQUILIBRIUM
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SPONTANEOUS TRANSFER OF A SPECIE FROM ONE
PHASE TO ANOTHER

We will now consider a system that can only exchange volume work with its environment. It comprises of two phases
and the various species can freely exchange g‘om one phase to another. They do so at constant pressure and
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GiBBS PHASE RULE (FOR NON-REACTING SYSTEMS)

We need to establish a rule, which will allow us to determine the number of intensive variables that can be
independently modified. This modification will induce a change in all the other intensive variables in such a way that a

new state of equilibrium will be reached. i
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PHASE EQUILIBRIA OF A PURE SUBSTANCE

Let’s apply the Gibbs phase rule to single component coexistence of phases.
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WHY DO LiQuiDs BOIL? | LET’S DEFINE THE SYSTEM
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LATTICE MODEL FOR THE DESCRIPTION OF THE
THERMODYNAMIC BEHAVIOR OF LIQUIDS/SOLIDS

We model a liquid (or a solid) as if its particles occupied a crystalline lattice, with every site occupied by one particle.
For practical reasons the lattice is considered to be infinite. The main insight represented by the lattice model is that
the most important energetic interactions for holding liquids together are the short-range interactions of its particle with
its nearest neighbors, and that the number of nearest neighbors has a relatively well-defined average.
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CAVITIES IN LIQUIDS AND SOLIDS

Does it matter whether an atom/molecule leaves from the surface or the bulk?
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EQUILIBRIUM OF TWO PHASES OF A PURE SUBSTANCE

Each line on a phase diagram (also called a phase boundary) represents a set of (p,T) points at which two phases are

equally stable. We can mathematically calculate these coexistence lines and then we can construct a phase diagram.
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EQuUILIBRIUM OF TWO PHASES OF A PURE SUBSTANCE:
THE CLAPEYRON EQUATION | CONTINUED
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EQUILIBRIUM OF TWO PHASES OF A PURE SUBSTANCE:

THE CLAUSIUS CLAPEYRON EQUATION | CONTINUED
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EXAMPLE OF TWO PHASE EQUILIBRIA

THE REFRIGERATOR

In a refrigerator, a “working fluid” is pumped around a system of tubes and
undergoes repeated thermodynamic cycles of vaporization and condensation.

Their operation is based on two
principles:

a. That boiling stores energy by breaking
noncovalent bonds and condensation
gets that energy back, and

b. That a fluid can be boiled at a low
temperature and re-condensed at a

high temperature by controlling the
pressure
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