
Homework 8 solutions 
 
Exercise 1 
Why do spray cans get cold? Explain why an aerosol spray can gets cold when you spray the 
contents. 
 
The spray can is in liquid and gas equilibrium. It contains both liquid and gas. When we are 
spraying the can, some gas molecules leave the can. The pressure in the spray can then 
decrease. At this time, liquid and gas are no more in equilibrium. Liquid starts to boil and 
become gas. This can be explained by looking the μ, p diagram below. Gas is a more stable 
phase when the pressure drop below equilibrium pressure. Liquid turns into gas to rise the 
pressure and reach equilibrium.  

 
 
In order for the component to transform from liquid to vapor, an amount of heat is required. 
During the transformation, the component absorbs heat from the can, causing it to get cold. 
 
 
Exercise 2 
 
In this exercise, we try to better understand the phase diagram of a typical material. 
 

a) Consider the three coexistence lines of fusion, melting and vaporization. Based on your 
thermodynamic understanding, which of these is going to have the largest slope? Please 
explain your reasoning. 
 
Based on the Clausius-Clapeyron equation, we know that �𝑑𝑑𝑑𝑑
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, where Δ𝑣𝑣 is 

the difference in the molar volume between the two phases under consideration. We 
know that typically, the molar volume of a gas is about three orders of magnitudes 
larger than that of solids and liquids, while the molar volume of liquid and solids is on 
the same order of magnitude. Furthermore, the order of magnitude of the different latent 
heat does usually not change much. 
Thus, we expect the slope of the fusion line to be the steepest since this is the line along 
which we divide by Δ𝑣𝑣 = 𝑣𝑣𝑙𝑙 − 𝑣𝑣𝑠𝑠 which is expected to be small. 
 

  



b) Let us assume that we know the pressure 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and temperature 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 at the triple 
point. For a given latent heat 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣 of vaporization (between the liquid and gas phase), 
calculate approximately the function 𝑝𝑝𝑣𝑣𝑣𝑣𝑣𝑣(𝑇𝑇) that describes the pressure of Carbon 
dioxide along the vaporization line. Explain the used approximations. 
 
The key idea here is to use the Clausius-Clapeyron equation �𝑑𝑑𝑑𝑑
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integrate it. 
Since the molar volume of gases is many orders of magnitude larger than that of the 
liquid, we simplify Δ𝑣𝑣 = 𝑣𝑣𝑔𝑔 − 𝑣𝑣𝑙𝑙 ≈ 𝑣𝑣𝑔𝑔. 
Furthermore, we use the ideal gas law to approximate 𝑣𝑣𝑔𝑔 ≈

𝑅𝑅𝑅𝑅
𝑝𝑝

 
As a third and final approximation, we will assume that the latent heat 𝐿𝐿𝑙𝑙𝑙𝑙 does not 
depend on the temperature. 
Plugging this into the Clausius-Clapeyron equation and integration, we obtain 
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c) For a given latent heat 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of sublimation, calculate approximately the function 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇) that describes the pressure along the sublimation line. 
 
Since the molar volume of a solid is on the same order of magnitude as a liquid, we 
can use the same approximations and directly obtain 

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝0𝑒𝑒
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d) For a given latent heat 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓 of fusion, calculate approximately the function 𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓(𝑇𝑇) 

that describes the pressure along the fusion line. Explain the used approximations. 
 
In this case, we are no longer allowed to simplify the volume difference Δ𝑣𝑣 = 𝑣𝑣𝑠𝑠 − 𝑣𝑣𝑙𝑙 
since the two terms are on the same order of magnitude. Instead, we shall assume that 
the difference remains constant and does not depend on the temperature along the 
fusion line. As before, we assume that the latent heat is independent of the temperature 
as well. Then, we obtain 
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e) For Carbon dioxide, the explicit values are given by: 

Triple point at 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =5.1atm and temperature 𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = −57°C. 
Molar volumes: 𝑣𝑣𝑠𝑠 =28ml/mol, 𝑣𝑣𝑙𝑙 =40ml/mol, 𝑣𝑣𝑔𝑔 =22l/mol 
Latent heats: 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 8.8kJ/mol, 𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣 = 13kJ/mol, 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓 = 25kJ/mol 
Plot the complete phase diagram of the system and compare it to the experimental phase 
diagram shown below: 

 
 
The important thing to notice is that all three curves computed in the previous exercises 
meet at the triple point. Thus, we can use the values of the triple point for 𝑇𝑇0 and 𝑝𝑝0 in 
the formulae above, as well as the correct latent heats for the respective curves. This 
provides us with the following phase diagram: 

 
Qualitatively, our phase diagram looks pretty good compared to the experimental one. 
An obvious “mistake” is that our approach does not know about the existence of the 
critical point which was to be expected since we didn’t put any information about it in 
the calculations. 
Beyond this, we can see that while not perfect, our oversimplified models seem to 
capture many essential features of the correct phase diagram. Clearly, if we would use 
the more exact latent heats and volume differences that depend on the temperature, we 
would get even better results. 
 
 

  



f) Explain why or why not using the ideal gas approximation for the calculations done in 
this exercise are justified from a conceptual point of view. 
 
In the ideal gas law, we are completely neglecting the interactions between the particles. 
On the other hand, if we have a phase transition to the liquid or solid phase from the 
gas phase, it means that the interactions between the particles has become so important 
that the behavior of the system becomes completely different. Thus, from a conceptual 
point of view, using the ideal gas law is completely unjustified. 
In practice, the obtained predictions are still not too bad, at least after some rescaling, 
so it is a useful first approximation. 
 
 

Exercise 3 
An element x exists in nature in two different solid forms, xα and xβ. The molar Gibbs energy 
of xα and xβ at 298 K and atmospheric pressure (also called the standard Gibbs energy of 
formation) are 510 J/mol and 485 J/mol, respectively. 
 

a) Plot the molar Gibbs free energy of xα and xβ
 as a function of temperature at constant 

pressure. The standard molar entropies of xα and xβ are 23.6 J/mol K and 34.8 J/mol K, 
respectively. 
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Since the value of molar entropies 𝑠𝑠𝛽𝛽 > 𝑠𝑠𝛼𝛼, xβ has a more negative slope in (μ, T) 
diagram.  

 
  



b) Under atmospheric pressure, does the increase in temperature make xα more stable than 
xβ? If so, at what temperature will the transition occur? Which form of x is the more 
stable at 298 K? 
 
No, the increase in the temperature won’t make xα

 more stable. Since xβ has a more 
negative slope, molar Gibbs free energy of xβ goes lower as the temperature increases. 
xβ will be more stable when the temperature increases. 
 

 

 
Assume that molar entropies are not as a function of temperature 
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 ∆𝜇𝜇 = 𝜇𝜇𝛽𝛽 − 𝜇𝜇𝛼𝛼 = 0    𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑡𝑡ℎ𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑎𝑎𝑎𝑎 𝑇𝑇𝑡𝑡 
 
 𝜇𝜇𝛽𝛽 = 𝜇𝜇𝑜𝑜,𝛽𝛽 − 𝑠𝑠(𝑇𝑇𝑡𝑡 − 𝑇𝑇0) = 485 − 34.8(𝑇𝑇𝑡𝑡 − 298) 
 

𝜇𝜇𝛼𝛼 = 𝜇𝜇𝑜𝑜,𝛼𝛼 − 𝑠𝑠(𝑇𝑇𝑡𝑡 − 𝑇𝑇0) = 510 − 23.6(𝑇𝑇𝑡𝑡 − 298) 
 

485 − 34.8(𝑇𝑇𝑡𝑡 − 298) = 510 − 23.6(𝑇𝑇𝑡𝑡 − 298)            𝑇𝑇𝑡𝑡 = 295.76 𝐾𝐾    
 
 
xβ is more stable since it has lower Gibbs free energy at 298 K. 
 



 
 

c) Plot the molar Gibbs free energy of xα and xβ
 as a function of pressure at constant 

temperature. The molar volumes of xα and xβ are 25 cm3/mol and 30 cm3/mol, 
respectively.  

 
Since the value of molar volumes 𝑣𝑣𝛽𝛽 > 𝑣𝑣𝛼𝛼, xβ has a more positive slope in (μ, p) 
diagram.  
 

  



d) Keeping the temperature constant at 298 K, does the increase in pressure make xα more 
stable than xβ? If so, at what pressure will the transition occur? 

 
Yes, the increase in the pressure makes xα more stable. Since xα has a less negative 
slope, molar Gibbs free energy of xα goes lower when the pressure increases. xα will be 
more stable when the pressure increases. 
 

 
Consider the reaction: xα → xβ     
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= 𝑣𝑣       𝜇𝜇 = 𝜇𝜇𝑜𝑜 + 𝑣𝑣(𝑝𝑝 − 𝑝𝑝0)     

 
 ∆𝜇𝜇 = 𝜇𝜇𝛽𝛽 − 𝜇𝜇𝛼𝛼 = 0   when the transition occurs at pt 
 
 
 𝜇𝜇𝛽𝛽 = 𝜇𝜇𝑜𝑜,𝛽𝛽 + 𝑣𝑣(𝑝𝑝𝑡𝑡 − 𝑝𝑝0) = 485 + 30 ∗ 10−6(𝑝𝑝𝑡𝑡 − 101325) 
 

𝜇𝜇𝛼𝛼 = 𝜇𝜇𝑜𝑜,𝛼𝛼 + 𝑣𝑣(𝑝𝑝𝑡𝑡 − 𝑝𝑝0) = 510 + 25 ∗ 10−6(𝑝𝑝𝑡𝑡 − 101325) 
 

 485 + 30 ∗ 10−6(𝑝𝑝𝑡𝑡 − 101325) = 510 + 25 ∗ 10−6(𝑝𝑝𝑡𝑡 − 101325) 
 
  𝑝𝑝𝑡𝑡 = 5101325 𝑃𝑃𝑃𝑃 = 51.01 𝑏𝑏𝑏𝑏𝑏𝑏    

 


