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Homework 3 solution 

Short questions 
 

1. Practice obtaining Maxwell’s relations, show: 
 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

 

 
We first need to understand which auxiliary function we should use. By looking at the 
denominator and the constant, we understand that we need the Helmholtz free energy: 

𝑑𝑑𝑑𝑑 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉
𝑑𝑑𝑑𝑑 + �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇
𝑑𝑑𝑑𝑑 

 
𝑑𝑑𝑑𝑑 = −𝑆𝑆𝑆𝑆𝑆𝑆 − 𝑝𝑝𝑝𝑝𝑝𝑝 
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2. An ideal gas system undergoes isothermal expansion from an initial volume Vi to a final 

volume Vf. What is the change in enthalpy of the system? 
 
In a general case, enthalpy is defined as: 

 𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝  

For an ideal gas, the internal energy 𝑈𝑈 and 𝑝𝑝𝑝𝑝 depend only on 𝑇𝑇 (𝑝𝑝𝑝𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛 and, for 
example, 𝑈𝑈 = 3

2
𝑛𝑛𝑛𝑛𝑛𝑛 for a monoatomic ideal gas). Therefore, the enthalpy of the idea gas 

also depends solely on T. Hence, the change of enthalpy ΔH of an isothermal expansion 
from Vi to Vf is zero. 
 
𝐻𝐻 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 = 𝑈𝑈 + 𝑛𝑛𝑛𝑛𝑛𝑛 → Δ𝐻𝐻 = 0 
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3. For an arbitrary process in a closed system, a plot of the Gibbs free energy looks like this: 

 
If the process is at the state A, is it possible for the system to spontaneously go to state B? 
Why or why not? 

A spontaneous reaction means ΔG<0. Therefore, state A will spontaneously go to state B. 

 

4. The heat capacity at constant volume 𝐶𝐶𝑉𝑉 of many solids at low temperature has the 
proportionality: 𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑇𝑇3. What function describes the internal energy of such a material? 

 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑉𝑉

= 𝐶𝐶𝑉𝑉 = 𝛼𝛼𝑇𝑇3 

 Therefore the internal energy of this material at constant volume  

 𝑈𝑈 = ∫𝐶𝐶𝑉𝑉𝑑𝑑𝑑𝑑 = 1
4
𝛼𝛼𝑇𝑇4 + 𝑐𝑐 

 
5. In many thermodynamics’ exercises a thermal bath is mentioned. Essentially, a thermal 

bath is an object or vessel, which can receive or give heat. We also consider it to be large 
enough so that it does not change its temperature. Usually water is used for such 
applications due to its large heat capacity. A copper piece (m = 10 g, CCu = 0.385 J/g∙K) 
that has initial temperature TCu = 100 °C is dropped in a tank of water (CH2O = 4.184 J/g∙K) 
with temperature TH2O = 25 °C. How much water is needed in the tank so the final 
equilibrium temperature of water and copper piece would be 25.1 °C? Note that in this 
exercise, we assume a constant heat capacity. 
 
Heat is just the energy; therefore, it must be conserved: 
 

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∆𝑇𝑇𝐶𝐶𝐶𝐶 = 𝑚𝑚𝐻𝐻2𝑂𝑂𝐶𝐶𝐻𝐻2𝑂𝑂∆𝑇𝑇𝐻𝐻2𝑜𝑜 
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𝑚𝑚𝐻𝐻2𝑂𝑂 =
𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶∆𝑇𝑇𝐶𝐶𝐶𝐶
𝐶𝐶𝐻𝐻2𝑂𝑂∆𝑇𝑇𝐻𝐻2𝑜𝑜

 

 

𝑚𝑚𝐻𝐻2𝑂𝑂 =
10 ∙ 0.385 ∙ (100 − 25.1)

4.184 ∙  0.1
 

 
𝑚𝑚𝐻𝐻2𝑂𝑂 = 689 𝑔𝑔 

 
The large heat capacity of water leads to a situation where water can give and take a lot of 
heat and not change its temperature a lot. In many cases, a change of temperature during 
an experiment by 0.1 °C can be easily neglected and the water bath can be considered as a 
thermal bath. 

 
 

Exercise 1 

 

The thermodynamics of a rubber band.  Rubber bands are narrow bands of an elastic polymeric 
material used to hold things together. Suppose you apply a quasi-static stretching force that 
increases the length L of a rubber band. The force of retraction f exerted by the rubber band is 
equal and opposite to the applied stretching force.  

a) Find the expressions of the differential of the internal and Gibbs free energy equations 
when elastic forces are involved. You have U= U (S, V, L) and n is fixed. 

First, we write down the fundamental equation of internal energy in the differential form. 
n has a fixed value and, therefore, we consider the system closed. However, we have 
another form of work that we have to consider, the stretching force. 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓 

 

You don’t have to remember the expression for the differential of the Gibbs free energy. 
You can find it by recalling its definition, differentiate, and substitute for 𝑑𝑑𝑑𝑑: 

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇 = 𝑈𝑈 + 𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑇𝑇 

𝑑𝑑𝑑𝑑 = 𝑑𝑑(𝑈𝑈 + 𝑝𝑝𝑝𝑝 − 𝑇𝑇𝑇𝑇) = 𝑑𝑑𝑑𝑑 + 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆 

𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑆𝑆𝑆𝑆𝑆𝑆 

And we arrive at the Gibbs free energy equation for a rubber band: 

𝑑𝑑𝑑𝑑 = 𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑉𝑉𝑉𝑉𝑉𝑉 − 𝑆𝑆𝑆𝑆𝑆𝑆 
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b) The retractive force f of polymeric elastomers as a function of temperature T and expansion 
L is approximately given by f(T,L) = aT(L-L0) where a and L0 are constants, and doesn’t 
depend on the pressure 𝑝𝑝. Use Maxwell relations to determine the entropy S(L) at constant 
T and p.  

From the Gibbs free energy, we can see that 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝,𝑇𝑇

= 𝑓𝑓 

 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝,𝐿𝐿

= −𝑆𝑆 

 

Now, we remember the equality of the second derivatives (i.e. deriving order does not 
matter for a second derivative). Here we are being very rigorous, but after understanding 
the basic principle of how the Maxwell’s relations are built, you can do this step easily: 

 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝,𝑇𝑇
�
𝐿𝐿,𝑝𝑝

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐿𝐿,𝑝𝑝

 

 

�
𝜕𝜕
𝜕𝜕𝜕𝜕

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑝𝑝,𝐿𝐿
�
𝑇𝑇,𝑝𝑝

= −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

 

 

And since the left hand side is equal to each other (Euler’s reciprocal relation), the right 
hand side is also equal to each other: 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐿𝐿,𝑝𝑝

= −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

 

Now we solve for S: 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

= −�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐿𝐿,𝑝𝑝

= −𝑎𝑎(𝐿𝐿 − 𝐿𝐿0) 

 

𝑆𝑆(𝐿𝐿) = −𝑎𝑎�
𝐿𝐿2

2
− 𝐿𝐿0𝐿𝐿� + 𝑆𝑆0 

𝑆𝑆0 is an integration constant. 
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c) Based on the results for the entropy 𝑆𝑆(𝐿𝐿) you obtained in b), determine the enthalpy 𝐻𝐻(𝐿𝐿) 
at constant 𝑇𝑇 and 𝑝𝑝. 

Considering the enthalpy dependence on the length (T and p are constant), we recall the 
definition of the Gibbs free energy: 

𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇     so      𝐻𝐻 = 𝐺𝐺 + 𝑇𝑇𝑇𝑇 

 

Now we write it in the differential form (no temperature derivative, because T=const): 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

= �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

+ 𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

 

 

We add previously found values in the equation: 

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑝𝑝

= 𝑓𝑓 − 𝑇𝑇 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝐿𝐿,𝑝𝑝

= 𝑎𝑎𝑎𝑎(𝐿𝐿 − 𝐿𝐿0) − 𝑇𝑇�𝑎𝑎(𝐿𝐿 − 𝐿𝐿0)� = 0 

Therefore: 

𝐻𝐻(𝐿𝐿) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 

d) If you adiabatically stretch a rubber band by a small amount its temperature increases, but 
its volume does not change. Derive an expression for its temperature T as a function of L, 
L0, a and its heat capacity at constant volume. Assume that the heat capacity is constant. 

𝑑𝑑𝑑𝑑 = 𝛿𝛿𝛿𝛿 + 𝛿𝛿𝑤𝑤𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝛿𝛿𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑐𝑐 

𝛿𝛿𝛿𝛿 = 0 

𝛿𝛿𝑤𝑤𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 0 

𝑑𝑑𝑑𝑑 = 𝛿𝛿𝑤𝑤𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑓𝑓𝑓𝑓𝑓𝑓 

As it is stated: 

𝐶𝐶 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 

Therefore: 

𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑎𝑎𝑎𝑎(𝐿𝐿 − 𝐿𝐿0)𝑑𝑑𝑑𝑑 
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Now we just have to solve the differential equation. T0 and L0 are starting temperature of 
the band and starting length of the band, T and L are generalized ending temperature and 
ending length of the band: 

 

�
𝐶𝐶
𝑇𝑇
𝑑𝑑𝑑𝑑 = �𝑎𝑎(𝐿𝐿 − 𝐿𝐿0)𝑑𝑑𝑑𝑑

𝐿𝐿

𝐿𝐿0

𝑇𝑇

𝑇𝑇0

 

 

After integration and some simplification, we are left with: 

𝐶𝐶 𝑙𝑙𝑙𝑙 �
𝑇𝑇
𝑇𝑇0
� =

𝑎𝑎
2

(𝐿𝐿 − 𝐿𝐿0)2 

𝑇𝑇 = 𝑇𝑇0 exp �
𝑎𝑎

2𝐶𝐶
(𝐿𝐿 − 𝐿𝐿0)2� 

 
e) Is the retraction of a rubber band driven by a change in enthalpy or in entropy? The answer 

to this question helps us to construct a model for the microscopic behaviour of polymeric 
materials. (Polymeric material refers to a molecule whose structure is composed of multiple 
repeating units, from which originates a characteristic of high relative molecular mass and 
attendant properties, e.g. plastics, etc.) 
 

As we found out in the part (b), H(L)=const., but entropy has a dependence on the length: 

𝑆𝑆(𝐿𝐿) = −𝑎𝑎�
𝐿𝐿2

2
− 𝐿𝐿0𝐿𝐿� + 𝑆𝑆0 

Entropy is maximized if L=L0. Which indicates, that the rubber band naturally (i.e. driven 
by entropy) wants to be in the retracted state. 

Usually materials increase in size, if the temperature is increased, but the rubber bands 
contract upon heating, which can be explained with the relation above. Microscopically it 
can be understood through the structural nature of fibres. The rubber band at microscopic 
scale contains many tiny fibres, which are tangled up, when the rubber band is stretched, 
the fibres become straight (associated with the decrease of entropy). On the other hand, if 
the rubber band is heated, entropy increases, the fibres tangle up more and macroscopically 
this can be observed as rubber band contraction.  


