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REMINDER FROM LAST WEEK
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THIRD LAW

3

Near the turn of the last century, experiments studying the behavior of matter at very low temperatures established that 
there is a lower limit to the temperature that matter can exhibit.

To illustrate the principle, consider the following cyclic process. A system consisting of one mole of pure silicon and one 
mole of carbon is initially at temperature zero, and is then heated from 0 to 1500 K.

The third law of thermodynamics states: 
There exists a lower limit to the temperature that can be attained by matter, called the absolute zero of 
temperature and the entropy of all substances is the same at that temperature.
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SECOND LAW
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Under a given set of conditions, a system can be imagined to undergo several processes in which the energy is 
conserved (first law). However, it is common experience to observe that the only processes which occur are those 
which bring the system to a state of rest, i.e. to a state of equilibrium. By considering that this state of equilibrium is a 
property of the system, thus this state can be described by a function, the second law of thermodynamics determines 
the direction and extent of such processes. It affirms the existence of a state function, the entropy S, which for all 
reversible processes is defined by: 

and for all irreversible processes is such that:

Specifically stated, in every volume element of every system and surroundings that may be experience change, the 
entropy production is positive. HOWEVER, this does not imply that the entropy of a system can only increase.



RELATIONSHIP BETWEEN ENTROPY TRANSFERRED AND HEAT ABSORBED
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A quantitative treatment of entropy transfer for reversible processes establishes a connection between the reversible 
heat flow across the boundary of the system and its change in entropy. The argument applies to any system that is 
taken through a reversible process.

Let 𝛿𝑞!"# be the heat absorbed by the system during an infinitesimal step in the reversible process. The system is at 
temperature 𝑇. The differential form $%!"#

&
  has units J/K. The sum of the values of this differential form is the sequence 

of states traversed for the process. The sum has the mathematical form of a line integral along the path:

$
𝛿𝑞
𝑇

The consequence is that although 𝛿𝑞!"# is a path-dependent variable , $%!"#
&

  is the differential of a state function.

The state function is then defined to be the entropy of the system:

𝛿𝑞!"# = 𝑇𝑑𝑆'(')  and 𝑞!"# = ∮𝑇𝑑𝑆'(')

which permits the computation of the heat absorbed for any reversible process by integration of the combinations of 
the state functions of temperature and entropy



ENTROPY CONDITION FOR EQUILIBRIUM
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In the equilibrium state of a process, the entropy is a maximum. Any variation about the equilibrium state can only 
decrease the entropy.

In general for systems of constant internal energy and volume, the condition of equilibrium is the attainment of the 
maximum entropy. 

!



EQUIVALENT STATEMENTS OF THE SECOND LAW
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Clausius:
 Heat never spontaneously flows from an object of lower temperature to one of higher temperature

Kelvin:
 It is impossible to continuously perform work by cooling a body to a temperature below that of the lowest 

temperature of its surrounding

Kelvin: 
 Using a system which undergoes a cyclic thermodynamic process, it is impossible to obtain usable work if 

globally heat is only exchanged with one thermal reservoir

Ostwald:
 A perpetual motion machine “of the second type” has never been observed

Caretheodory:
 In the neighborhood of every thermodynamic state that can be reached by a reversible path, there exists 

states which cannot be reached along a reversible adiabatic path (isentropic), or which can be reached either 
irreversibly or not at all



ENTROPY | Example: Hot bodies in contact
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Consider the passage of heat from a hot body to a cold one, with no other work being performed. Consider two very 
large bodies, one at T=400K and the other at T=300K.

Case 1: Suppose 400 Joules of heat are transferred 
from hot object A to the cooler body B

Case 2: Suppose 400 Joules of heat are transferred 
from cold object B to the hotter body A



ENTROPY IMPLICATIONS: SPONTANEITY
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We now consider a closed adiabatic system. We assume this system evolves spontaneously and adiabatically from 
initial state I to final state F. Let us know imagine a reversible, isothermal process that brings the system back from 
state F to state I. During this part of the process, the system can eventually exchange heat with a thermal reservoir. 
The first law for the total process states: 



HEAT ABSORBED IN REVERSIBLE VS IRREVERSIBLE PROCESSES
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We investigate next an infinitesimal process of a closed system. This system can exchange heat with only one thermal 
reservoir at temperature Ttherm. The global system is a closed adiabatic system. The system receives an amount of 
heat and since the global system is adiabatic, the amount of heat received by the thermal reservoir is:



THE FUNDAMENTAL EQUATION OF STATE FOR A 
CLOSED SYSTEM
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The basic equation for a closed system can be derived as follows. From the first law:

And for a reversible, quasi-static change we can substitute:

This equation is applicable ONLY when volume change is the only form of work. It is also applicable to closed systems 
which are in a state of internal equilibrium.
All of these quantities are state functions. Therefore, provided there is no irreversible changes in composition, if we go 
from an initial state A (pA, TA) to a final state B (pB, TB), the changes of S, U and V all have definite values, depending 
only on these states.

Finally for a cyclic process, we have:

The work performed in a reversible cycle may be obtained as an area on a p-V diagram or an area on a T-S diagram



DESCRIPTION OF THERMODYNAMIC SYSTEM
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How many variables do you need in order to fully describe a thermodynamic system?



INTRODUCTION OF AUXILIARY FUNCTIONS

MSE-204:L2 | 13

For many problems though there are functions that can be derived from these variables that are more convenient. 
These are:

1.  

2.

3.

These functions can be considered as Legendre transformations of the main variables.

More importantly, please note that because all of the above functions are linear combinations of state functions, they 
are also state functions. They are also extensive variables.



THE MEANING OF INTERNAL ENERGY DURING ISOCHORIC PROCESSES
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First, we will look at an isochoric transformation: 



THE MEANING OF ENTHALPY DURING ISOBARIC PROCESSES
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Let’s look at an isobaric transformation: 



MEASURABLE QUANTITIES IN THERMODYNAMICS:  
 HEAT CAPACITY
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Heat capacity is an amount of heat required to raise the temperature of a system (or material) 
by 1 K. Alternatively, the heat uptake per unit temperature change is called the heat capacity.

You can measure an object’s heat capacity in a calorimeter.
 The heat capacity is the ratio of heat input to temperature change.

The instantaneous heat capacity, C, at the temperature T is the limiting value of the following
 ratio at the quantities q and Δ𝑇 become infinitesimal. Therefore, by definition:

𝐶 ≡
𝛿𝑞
𝑑𝑇

If follows that in order for the heat capacity to have a definite value, it must be specified that the heating is slow enough 
for the internal equilibrium to be achieved. Similarly, the measurement must always refer to a closed system.

Finally, the value of C remains indefinite until the path of heating is specified. This can be done by replacement of the 
heat through the first law. However, the mere statement that there is a temperature change in the system, as defined 
by the heat capacity, is insufficient to fix the values of 𝑑𝑈 or 𝛿𝑤. Some other variable must be changed in a known 
manner or held constant. 



MEASURABLE QUANTITIES IN THERMODYNAMICS:  
 HEAT CAPACITY AT CONSTANT VOLUME AND PRESSURE
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For an isochoric process the heat capacity is:

𝑑𝑈 = 𝛿𝑞 + 𝛿𝑤 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉

𝑑𝑉 = 0

𝐶* =
𝛿𝑞
𝑑𝑇 *

=
𝑑𝑈
𝑑𝑇 *

Similarly, the heat capacity at constant pressure can be defined:

𝐶+ =
𝛿𝑞
𝑑𝑇 +

=
𝑑𝐻
𝑑𝑇 +

And these are intensive properties of the system. 



MEASURABLE QUANTITIES IN THERMODYNAMICS:  
EXPANSIVITY AND ISOTHERMAL COMPRESSIBILITY COEFFICIENTS
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These coefficients refer to fractional changes in volume ,*
*

 and are independent of the actual volume of the system.

The expansivity coefficient or coefficient of thermal expansion is defined: 

𝛼 ≡
1
𝑉

𝜕𝑉
𝜕𝑇 +

The isothermal compressibility coefficient is defined:

𝛽 ≡ −
1
𝑉

𝜕𝑉
𝜕𝑝 &

And there are also intensive properties.



MEASURABLE QUANTITIES IN THERMODYNAMICS:   
HEATS OF PHASE CHANGE AND OF REACTION
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When these quantities are measured under conditions of constant volume, they are equal to the change in internal 
energy of the process in question.
More usually, however, they are measured at constant pressure and are equal to the change in enthalpy (provided that 
𝑝𝑑𝑉 is the only form of work).

For example, in the vaporization of a pure liquid at constant pressure, the latent heat is:

𝐿 = 𝐻- − 𝐻.

Where 𝑔 and 𝑙 denote gas and liquid respectively.



WHAT IS THE PHYSICAL MEANING OF THE FREE ENERGIES?
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Let’s consider a closed system that undergoes some change from initial state I to a final state F. The system can be in 
contact with a thermal bath, which is at temperature Ttherm. Together they are in an adiabatic enclosure.



WHAT IS THE PHYSICAL MEANING OF THE FREE ENERGIES? CONT’ED
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Let’s consider a closed system that undergoes some change from initial state I to a final state F. The system can be in 
contact with a thermal bath, which is at temperature Ttherm. Together they are in an adiabatic enclosure.



WHAT IS THE PHYSICAL MEANING OF HELMHOLTZ FREE ENERGY?
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𝑤 = 	𝐴/
0('− 𝑇)1"!2 − 𝑇/

0(' 𝑆/
0(' − 	𝐴3

'('− 𝑇)1"!2 − 𝑇3
0(' 𝑆3

0(' + 𝑇)1"!2∆𝑆-.45

During a monothermal process of a system which is at 
the same temperature as the thermal reservoir in its 
initial and final state, the change in A of the system 
corresponds to the minimum amount of work that 
must be done on the system to achieve the change.

During a monothermal process of a system which is at 
the same temperature as the thermal reservoir in its 
initial and final state, the change in A of the system 
corresponds to the maximum amount of work that 
can be obtained from the system.



WHAT IS THE PHYSICAL MEANING OF GIBBS FREE ENERGY?
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𝑤 = 𝐺/ − 𝑝/𝑉/ − 𝑇)1"!2 − 𝑇/ 𝑆/ − 𝐺3 − 𝑝3𝑉3 − 𝑇)1"!2 − 𝑇3 𝑆3 + 𝑇)1"!2∆𝑆-.45
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During a monothermal and monobaric process of a 
system receiving work, the change in G of the system 
corresponds to the minimum amount of work other 
than work due to volume change that must be done 
on the system to achieve the change.

During a monothermal and monobaric process of a 
system supplying work, the change in G of the system 
corresponds to the maximum amount of work other 
than work due to volume change that can be 
obtained from the system.



CRITERIA OF EQUILIBRIUM IN TERMS OF THE EXTENSIVE PROPERTIES

MSE-204:L2 | 24

We now envisage a closed system in contact with a thermal reservoir that undergoes an isothermal infinitesimal 
change during which it cannot exchange work under any form with its surroundings.

A spontaneous evolution of an isothermal closed system 
that does not exchange work under any form with its 
environment takes place in such a way that A decreases. 
The system will be at equilibrium when A reaches its 
minimum value.

A spontaneous evolution of an isothermal isobaric closed 
system that exchanges only work due to its volume 
change with its environment takes place in such a way 
that G decreases. The system will be at equilibrium 
when G reaches its minimum value.



THE FUNDAMENTAL EQUATIONS IN TERMS OF U, H, A, AND G 
& THE NATURAL VARIABLES OF EACH FUNCTION
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We will now open the system and consider systems having only one single phase.



THE FUNDAMENTAL EQUATIONS IN TERMS OF U, H, A, AND G 
& THE NATURAL VARIABLES OF EACH FUNCTION
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If you know the natural variables of a state function, you can define the derivative of this function by its partial 
derivative expression. Let’s look at the partial derivatives of U, H, A, G with respect to their natural variables.

𝑑𝑈	 = 	𝑇𝑑𝑆 − 𝑝𝑑𝑉	 𝑑𝐻	 = 	𝑇𝑑𝑆 + 𝑉𝑑𝑝	 𝑑𝐴	 = 	−𝑆𝑑𝑇 − 𝑝𝑑𝑉	 𝑑𝐺	 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝



THE CHEMICAL POTENTIAL
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The chemical potential was introduced by J. Willard Gibbs and it is defined as:

𝜇6 =
𝜕𝑼
𝜕𝑛6 𝐒,	𝐕,	;<=;6

=
𝜕𝑯
𝜕𝑛6 𝑺,	𝒑,	;<=;6

=
𝜕𝑨
𝜕𝑛6 𝑻,	𝑽,	;<=;6

=
𝜕𝑮
𝜕𝑛6 𝑻,	𝐩,	;<=;6

The chemical potential has an important function, analogous to temperature and pressure. A difference in chemical 
potential may be regarded as the cause of a chemical reaction or a tendency of a substance to diffuse from one phase 
into another. The chemical potential is a kind of ”chemical pressure” and it is an intensive property of the system.



SUMMARY: FUNDAMENTAL EQUATIONS OF STATE FOR 
OPEN SYSTEMS
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The basic equations are:

𝑑𝑈	 = 	𝑇𝑑𝑆 − 𝑝𝑑𝑉 +E
6

𝜇6 𝑑𝑛6

𝑑𝐻	 = 	𝑇𝑑𝑆 + 𝑉𝑑𝑝 +E
6

𝜇6 𝑑𝑛6

𝑑𝐴	 = 	−𝑆𝑑𝑇 − 𝑝𝑑𝑉 +E
6

𝜇6 𝑑𝑛6

𝑑𝐺	 = −𝑆𝑑𝑇 + 𝑉𝑑𝑝 +E
6

𝜇6 𝑑𝑛6

𝑇 =
𝜕𝑈
𝜕𝑆 *,;$

=
𝜕𝐻
𝜕𝑆 +,;$

𝑝 = −
𝜕𝑈
𝜕𝑉 0,;$

= −
𝜕𝐴
𝜕𝑉 &,;$

𝑆 = −
𝜕𝐺
𝜕𝑇 +,;$

= −
𝜕𝐴
𝜕𝑇 *,;$

𝑉 =
𝜕𝐺
𝜕𝑝 &,;$

=
𝜕𝐻
𝜕𝑝 0,;$

From these, the following equations can be extracted:



GIBBS-HELMHOLTZ EQUATIONS
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By combining the previous identities with defining equations for A and G, further expressions can be obtained. 
Specifically, we will look into how the free energy of a system depends on temperature.

𝑆 = −
𝜕𝐺
𝜕𝑇 +,;$

= −
𝜕𝐴
𝜕𝑇 *,;$



CHANGE OF CHARACTERISTIC VARIABLES
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One can change the characteristic variables of U, H, A, and G, according to what fits best the experiment. Below, we 
will change the characteristic variables of internal energy from U=U(S, V, ni) to variables that we can measure easier 
U=U(T, V, ni). We will do the transformation in a closed system.

𝑑𝑈 = 𝑇𝑑𝑆 − 𝑝𝑑𝑉



MATHEMATICAL RELATIONS BETWEEN THE VARIOUS 
FUNCTIONS OF STATE: MAXWELL’S RELATIONS
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An additional number of useful identities, know as Maxwell’s relations, can be obtained by applying a theorem of the 
calculus concerning exact differentials (Euler’s reciprocal relation). Maxwell’s relations are relationships between 
partial derivatives.

For example, let consider the internal energy:

𝜕C𝑓
𝜕𝑥𝜕𝑦

=
𝜕C𝑓
𝜕𝑦𝜕𝑥

=
𝜕
𝜕𝑥

𝜕𝑓
𝜕𝑦

=
𝜕
𝜕𝑦

𝜕𝑓
𝜕𝑥



SUMMARY: IMPORTANT MAXWELL’S RELATIONS
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𝜕𝑇
𝜕𝑉 0,;$

= −
𝜕𝑝
𝜕𝑆 *,;$

𝜕𝑇
𝜕𝑝 0,;$

=
𝜕𝑉
𝜕𝑆 +,;$

𝜕𝑆
𝜕𝑉 &,;$

=
𝜕𝑝
𝜕𝑇 *,;$

−
𝜕𝑆
𝜕𝑝 &,;$

=
𝜕𝑉
𝜕𝑇 +,;$

𝜕𝜇6
𝜕𝑇 +,;$,;%

= −
𝜕𝑆
𝜕𝑛6 &,+,;%

𝜕𝜇6
𝜕𝑝 &,;$,;%

=
𝜕𝑉
𝜕𝑛6 &,+,;%

𝜕𝜇6
𝜕𝑇 *,;$,;%

= −
𝜕𝑆
𝜕𝑛6 &,*,;%

𝜕𝜇6
𝜕𝑝 0,;$,;%

=
𝜕𝑉
𝜕𝑛6 0,+,;%

𝜕𝜇6
𝜕𝑆 *,;$,;%

=
𝜕𝑇
𝜕𝑛6 *,0,;%

𝜕𝜇6
𝜕𝑉 0,;$,;%

= −
𝜕𝑝
𝜕𝑛6 *,0,;%

𝜕𝜇6
𝜕𝑛< *,0,;&'%

=
𝜕𝜇<
𝜕𝑛6 *,0,;&'$



METHOD FOR CHOICE OF MAXWELL’S RELATIONS

MSE-204:L2 | 34

Suppose you want to understand how the entropies of materials change as you squeeze them:

First, identify what independent variables are needed.

Second, find the natural function of these variables.

Third, express the total deferential of the natural function.

Fourth, based on Euler’s reciprocal relation, set equal the two cross derivatives you want.

The Maxwell’s relation gives you a quantity you cannot measure            from a quantity that is easy to measure

𝜕𝑆
𝜕𝑝 &,;$

𝜕𝑆
𝜕𝑝 &,;$

𝜕𝑉
𝜕𝑇 +,;$



EXAMPLE: INTERNAL ENERGY (& ENTHALPY) OF IDEAL GAS
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Earlier, we expressed the internal energy of a closed system using V and T as the characteristic variables:

Through Maxwell’s relations we know that:

Therefore, for an ideal gas the variation of internal energy with respect to volume is:

𝑑𝑈 = −𝑝 + 𝑇
𝜕𝑆
𝜕𝑉 &	

𝑑𝑉 +𝑇
𝜕𝑆
𝜕𝑇 *	

𝑑𝑇

𝜕𝑆
𝜕𝑉 &

=
𝜕𝑝
𝜕𝑇 *


