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Computing



What is a computer ? / What is 

computing? 
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A computer is a physical system that performs computation that is, it takes inputs,

processes them according to rules, and produces outputs.

Computing is the process of transforming information according to well-defined 

rules.

BROAD DEFINITIONS
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Computing: a nonlinear function
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Programming: identify 𝑓[𝑢(𝑛)]

Computation: calculate 𝑓[𝑢(𝑛)]

1. Programming strategies
• Algorithmic / analytical

• Regression to model input -> result

2. Computation strategies
• Abstract: Turing / von Neumann machine

• Substrate: System is function
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Turing concept and von Neumann architecture

1. Single ‘point’ operation, only local action

2. ‘Unlimited’, nonvolatile memory

➢Serial operation according to symbolic operations

➢Conceptual separation ‘operation’ and memory

© Hussein Nur

https://en.wikipedia.org/wiki/Von_Neumann_architecture

1. Essentially a ‘technical’ fix

1. Operation: in-silico (transistor)

2. Memory: punch cards / magnetic

➢ Combine different materials by spatially separating 

operation and memory



Motivation behind binary electronics
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“The binary scale seems particularly
well suited for electronic computation
because of its simplicity and the fact
that valve equipment can very easily
produce and distinguish two sizes of
pulse.”

Alan Turing

 Nature of algorithm defines ideal system
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Neural Networks (1852-1943): anatomical inspiration

© Ramón y Cajal

• Anatomical ‘analysis’ of human 

brain by Ramon y Cajal.

• Brain comprises discrete 

elements densely connected 

to a gigantic network.

• 1894: “The ability of neurons to grow in an adult and their power to create new 

connections can explain learning.” This statement is considered to be the origin of 

the synaptic theory of memory.

• Ramon y Cajal awarded Nobel prize in 1906.
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Neural Networks: computational basis
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Neural Networks: ‘programming’

• “The general idea is an old one, that any two cells 

or systems of cells that are repeatedly active at 

the same time will tend to become 'associated' so 

that activity in one facilitates activity in the other.”

• “When one cell repeatedly assists in firing 

another, the axon of the first cell develops 

synaptic knobs (or enlarges them if they already 

exist) in contact with the soma of the second cell.”

• ‘Fire together: wire together’

• Recipe for ‘continuous’ programming: incrementally modify 

topology instead of writing a premeditated program.
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First attempt: Perceptron

Wikipedia
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Initial enthusiasm

The New York Times 

13/07/1958:

"The Navy last week

demonstrated the embryo of an

electronic computer named the

Perceptron which, when

completed in about a year, is

expected to be the first non-living

mechanism able to "perceive,

recognize and identify its

surroundings without human

training or control."
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Problem: linear separation only

Wikipedia

Single Perceptrons cannot solve the 

XOR problem or separate linearly-non 

separable classes
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The basics: why the perceptron failed the XOR

Covers theorem:

“A complex (pattern-)classification 
problem, cast in a high-dimensional 
space nonlinearly, is more likely to 
be linearly separable than in a low-
dimensional space, provided that the 
space is not densely populated.”

Appeltant et al., Nat. Commun. 2, 468 (2011).



16

Dimensionality and nonlinearity

𝒚(𝑛) = 𝑓[𝑊𝒙(𝑛) + 𝑏]
• Collect set 𝒚(𝑛) for 𝒙 𝑛 , 𝑛 ∈ [1…𝑁], where 𝑁 is number of examples

• 𝒙 𝑛 ∈ ℝ1×𝐿

• 𝒚 𝑛 ∈ ℝ1×𝑀

• Lets assume : 𝐿 ≪ 𝑀
• Append all 𝒙 𝑛 and 𝒚 𝑛 to 𝑿 ∈ ℝ𝑁×𝐿 and 𝒀 ∈ ℝ𝑁×𝑀

• Dimensions in vector space

• scalar product between vectors is zero: orthogonal

• Linear independent vectors are not parallel

• Of a matrix: rank of matrix

• Without nonlinearity: rank of 𝑿 is rank of 𝒀 is 𝐿. 

➢ Why nonlinearity is essential: dimensionality expansion
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Why The interest in Neural Networks in the first place ? 

WHAT IS A NEURAL NETWORK?

Hidden Layers

Input Layer Output Layer

Interconnects / Synaptic weights

~

    
 1

 

1

 

 
tanh

sigmoid

Re U

 ea y Re U

Nonlinearity and depth allow for more complex information processing.

Ramon y Cajal
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Example : MNIST Dataset

Input images Labels / Target

“ ”

“4”

“1”

60 000 images with corresponding labels: supervised learning.

Hidden Layers

Input Layer Output Layer

Interconnects / Synaptic weights
“4”

" ”

“9”

“ ”

HOW DOES A NEURAL NETWORK LEARN?
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Example : MNIST Dataset

Input images Prediction

“9”

“0”

“1”

“8”

“6”

“3”

“2”

Hidden Layers

Input Layer Output Layer

Target

“ ”

“4”

“1”

“9”

“ ”

“4”

" ”

Backpropagation

Optimizer 

loop

𝐿 =
1

𝑁
෍

𝑖=1

𝑁

𝑦pred − 𝑦target
2

Forward 

pass

𝝏𝑳

𝝏𝑾
;
𝝏𝑳

𝝏𝒃

N ∶ number of elements in each vector

HOW DOES A NEURAL NETWORK LEARN?
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Example : MNIST Dataset

Input images Prediction

“0”

“4”

“1”

“9”

“6”

“4”

“0”

Hidden Layers

Input Layer Output Layer

Labels

“ ”

“4”

“1”

“9”

“ ”

“4”

" ”

NN structure embodies the task we want to perform.

Parallel Computing = propagation of information through the NN.

To ensure generalization the NN is tested on unseen data.

HOW DOES A NEURAL NETWORK LEARN?
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≠

NNs are an inherently connectionist approach to computing.

3Blue1Brown: https://www.youtube.com/watch?v=IHZwWFHWa-w&t=1087s

NNs are universal function approximators, with a NN that is big enough and lots of data you can fit anything.

NEURAL NETWORKS : PARALLEL COMPUTING



Analog computing
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Astrolabe
Slide rule

Analog

Process continuous values using physical quantities (voltages, currents, rotations, etc.)

EARLY ANALOG COMPUTING DEVICES

Telling time, finding position, position of stars at any 

given time.

Tracks Sun and Moon, predicts solar and lunar 

eclipses, shows the phases of the Moon, follows 

the calendar (including leap years).



24

Digital

Process discrete values typically binary (0s and 1s).

Pascaline

Abaccus

Babbage analyzer

Early digital computers are 

mostly calculators.

EARLY DIGITAL COMPUTING DEVICES
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Analog

Process continuous values using physical quantities (voltages, currents, rotations, etc.)

Analog: Digital (ex 4 bit):

Roughly 100 transistors Roughly 2000 transistors for 8-bit only

All about electronics @youtubeElevate electronics with Neha @youtube

ANALOG SUPREMACY?
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ANALOG SUPREMACY?

How do you multiply 2 numbers in a simpler way using electronics? 
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Analog

Process continuous values using physical quantities (voltages, currents, rotations, etc.)

Analog:

Roughly 100 transistors

Much simpler way of multiplying 2 numbers (we 

don’t especially care to encode them specifically 

in voltages):

Ohm’s  aw:

1. Choose a resistor

2. Apply a voltage

3. Measure current is I = V/R = V*G

4. Variable resistor and power supply! 

Elevate electronics with Neha @youtube

@Wikipedia

ANALOG SUPREMACY?
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Problem : Predicting the tides 

@Veritasium youtube

Timing as well as magnitude variation

ANALOG SUPREMACY?
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Problem : Predicting the tides 

Laplace found that tides are driven by a 

few specific astronomical frequencies

ANALOG SUPREMACY?
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Problem : Predicting the tides 

Laplace found that tides are driven by a 

few specific astronomical frequencies:

@Veritasium youtube

ANALOG SUPREMACY?
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Problem : Predicting the tides 

@Veritasium youtube

First: record the tide using a 

tide gauge.

ANALOG SUPREMACY?
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But, why digital was successful: physical limit to precision

Switching an electronic signal line:

o Charging wire:  E = CV2

o C/m = 1.5 pF/cm

o Mean square thermal noise: V𝑁 = 4𝑘𝑏𝑇𝐵𝑅

o 𝑘𝑏 = 1.38 × 10−23 J/K, 𝐵=1 GHz, 𝑅=1 MΩ, 
𝑇=300 K

➢ V𝑁=4 mV

R

Noise in digital signal:

o Digital sequence:

o DND𝑁−1⋯D1D0

o Noise will corrupt each of the digits with 

equal probability

o ഥ𝐷ND𝑁−1⋯D1D0
➢ Noise exceeding digitization threshold is 

unacceptable 

Noise in analog signal:

o Signal comprises noise less amplitude

o Noise is additive or multiplicative

o Always of scale unity for an normalized signal 

strength
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Boahen, Computing in Science & Engineering 2017.

Linked to devices:

• Limit for signal @1 GHz: P ≈ 0.3 𝜇W

• Detection: NEP ≈ 0.4
𝑝𝑊

√𝐻𝑧
,@1 GHz ≈ 10 nW

➢ For 1 GHz: PEN ⋅ 255 ≈ 3 𝜇W

Thermodynamic limits:

• Low pass circuit: SNR = 𝐸/𝑘𝑇

• 𝑘𝑇 @RT = 4 ⋅ 10−21 J
• For 8 bit: E = 2552 ⋅ 𝑘𝑇 ≈ 0.3 fJ

o Approach SNR limit within an order of magnitude

o For low precision analog is clearly superior

o Digital NN hardware: approaching few-bit precision(!!!???)

➢ ONLY x10

Physical limit to precision: Energy / Power
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Analog NNs: amplify, unitary or damp noise?
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Noisy neurons inside networks

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).Semenova , et al., Chaos 29, 103128 (2019).

Signal to noise ratio SNR=
E(𝑦𝑛,𝑖

𝑡 )

Var 𝑦𝑛,𝑖
𝑡

1/2
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Single neuron: linear AND nonlinear

Semenova , et al., Chaos 29, 103128 (2019).
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What influences noise propagation?

𝑆𝑛 = 𝑓 𝐸 𝑓−1 𝑦𝑛−1
𝑡 𝑆𝑛−1

Noise operator for cascaded layers 𝑛 :
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Noise accumulation

o Noise accumulates only for 𝛼 > 2

o For 𝛼 ≤ 2 output noise on level of individual neurons

o For strong nonlinearity: first order approximation fails

𝑓 𝑥 = 0.5
𝛼(𝑥 − 0.5)

1 + 𝛼2 𝑥 − 0.5 2

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).
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Noise accumulation

o Noise accumulates generally bound

o Can be frozen for𝑓−1 ⋅ < 1

𝑓 𝑥 = 0.5
𝛼(𝑥 − 0.5)

1 + 𝛼2 𝑥 − 0.5 2

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).

𝑆𝑛 = 𝑓 𝐸 𝑓−1 𝑦𝑛−1
𝑡 𝑆𝑛−1

This is a geometric progression: decreasing for 𝑓−1 ⋅ < 1
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And what with fully trained DNN?

o Trained networks: weight AND state statistics required

o Approximation state statistics: 𝑔 𝑥 = exp(𝑐4𝑥
4 + 𝑐3𝑥

3 + 𝑐2𝑥
2 + 𝑐1𝑥)

o Works very well through all layers

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).



Optical computing
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Classical (linear) optical computing

o Lens: focusing

o More precisely: Fourier transform

o 𝐸 𝑥, 𝑦, 𝑓 =
−𝑖𝑓

𝜆
0׬
𝜋
sin 𝜃 0׬

2𝜋
𝐸 𝜃, 𝜙 𝑒𝑖(𝑘𝑧𝑧−𝑘𝑥𝑥−𝑘𝑦𝑦)𝑑𝜃𝑑𝜙

o 𝐸 𝑥, 𝑦, 𝑓 =
−𝑖𝑓

𝜆
FT{

𝐸 𝜃,𝜙 𝑒𝑖 𝑘𝑧𝑧

cos𝜃
}

P. Ambs, “Optical Computing: a 60-year adventure”, Advances in Optical technologies (2010).

𝑓

𝑓𝑓

Fourier filtering

Object plane

Fourier (Spatial-frequency) plane
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Classical (linear) optical computing

o Long history, well established field

o Passive, fully parallel

o Ultra-high space/bandwidth 
product (PetaBit/s/cm^2)

o But: only linear

o Bulk optics: computer with a 
microscope objective?

P. Ambs, “Optical Computing: a 60-year adventure”, Advances in Optical technologies (2010).
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=



Principle and long-known motivation
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S. Martellucci, A. N. Chester (1990).
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Electrical connections: wires

Magen, et al., Proceedings of the 2004 international workshop on System level interconnect prediction.

Switching an electronic signal line:

o E = CV2

o Scaling: C ∝
𝜋𝜖𝑙

ln
𝑑

2𝑎
+

𝑑2

4𝑎2
+1

→ only log. Ratio (oh my god)

o Voltage: limited to 0.1 due to thermodynamics of semiconductors

o Charging wire:  E = CV2 ≃ 600 ∙ 10 −15 𝐽

1.5 pF/cm 2 pF/cm

o Problem: neural networks ARE wires

Miller, Journal of Lightwave Technology 35, 346 (2017).

d a
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Optical communication

𝐸 ∝ 𝐶 ∝ 𝐴

𝐴 = 𝑤2 𝑁𝑜 +
1

2
N𝑖𝑁𝑜 + 𝐶

𝐴 ≈ 𝑤2(𝑁 +
1

2
𝑁2)

Energy: switching of a capacity Energy: propagation losses need to be restored

Transmission = 𝑇 ∝ 𝑒−𝛾𝑙

𝐿min ≈ 2𝑤, 𝐿max ≈ 2𝑁𝑤
෠𝐿 ≈ 𝑁𝑤

This results in a cross-over point: at which lengths optical communication becomes more 

efficient? The determining factors are 𝛾
𝟏

𝐦
and electro <-> optical conversion.
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Electro-optical and opto-electronic conversion
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Electrical connections: hitting a wall

Miller, Journal of Lightwave Technology 35, 346 (2017).
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Unconventional optical 
computing
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Two schools of ‘philosophy’

top down vs. bottom up
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Hopfield networks

• 𝑉𝑠 are memory entries

• Stable if 𝑉𝑖
𝑠 is 𝑉𝑗

𝑠 -> correcting 

memory

• Connections 𝑇𝑖𝑗 analytically defined
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Hopfield, why its so nice for physicists
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Hopfield: why its nice II
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And finally: multilayer networks
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Implementation
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Another great starting concept: Reservoir computing / Extreme learning machines

Jaeger, Science 304, 78 (2004).

A: fully adjusted network

o Optimal performance (maybe)

o Exploding/vanishing gradients

o None-converging beyond stability

B: only output weights

o Random input/internal weights 

o Training is simple matrix inversion

Echo state networks

o Nonlinear maps with discrete time

o Origin in field of control system

o ELM: no recurrent connections

Liquid state machines

o Excitable (spiking) neurons

o Origin in Computational neuro science

Jaeger and Haas, Science 304, 5667 (2004). Buonomano, Maass, Nature reviews in Neuroscience 10, 113 (2009).
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Experiment type A: network state attainable

∑

∑

Input:

𝒖(𝑛 + 1)

Network state:

𝒙 𝑛 + 1 =
𝒇[𝑊𝒙 𝑛 +𝑊inj𝒖 𝑛 + 1 + 𝒃]

Output:

𝒚 𝑛 + 1 =
𝑊out𝒙(𝑛 + 1)

1. Training data: set of inputs 𝒖(𝑛) for which 𝒚 𝑛 is known

2. Collect 𝒙(𝑛) for 𝑛 𝜖[1,… , 𝑇]
3. 𝐿 -fold cross-validation: randomly label input data by 𝑙 𝜖[1,… , 𝐿]
4. Select one 𝑙𝑐 𝜖[1,… , 𝐿]

• 𝑀𝑥: concatenated 𝒙(𝑛) for 𝑙 ≠ 𝑙𝑐
• 𝑇𝑇: concatenated matrix of 𝒚(𝑛) for 𝑙 ≠ 𝑙𝑐
• Obtain 𝑊out = 𝑀𝑥𝑀𝑥

𝑇 + 𝜆𝐼 −1 𝑀𝑥𝑇
𝑇

• 𝒚 𝑛 , measure error for 𝑙𝑐
• Repeat for all 𝑙𝑐

5. Measure error for unseen data

Why is this great?

o Training offline

o ‘Short’ experiment

Why is this not great?

o Training offline

o Technological relevance?

Arecchi et al., Phys. Rev. A 45, 4225 (1992).

𝒙(𝑛)

𝑴𝒙 ×𝑊out

𝒚 𝑛



𝑊out

𝒚(𝑛)
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Experiment type B: network state not attainable

∑

∑

Input:

𝒖(𝑛 + 1)

Network state:

𝒙 𝑛 + 1 =
𝒇[𝑊𝒙 𝑛 +𝑊inj𝒖 𝑛 + 1 + 𝒃]

Output:

𝒚 𝑛 + 1 =
𝑊out𝒙(𝑛 + 1)

1. Training data: set of inputs 𝒖(𝑛) for which 𝒚 𝑛 is known

2. Define starting 𝑊out

• Collect 𝒚(𝑛) for 𝑛 𝜖[1, … , 𝑇]
• Measure error

3. Learn

• Modify 𝑊out

• Collect 𝒚(𝑛) for 𝑛 𝜖[1, … , 𝑇]
• Measure error

• Evaluate modification and repeat

4. Measure error for unseen examples

Why is this great?

o Training online

o In-situ (vs. in silico)

o ‘Autonomous’ system

Why is this not great?

o Training online

o Blind to network state

o Comparison tricky

𝒙 𝑛

𝒖(𝑛)



A good (well behaved) reservoir
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Diversity (dimensionality) Reproducibility (consistency)

Good: linear independent

Bad: linear dependent

Tn

𝒙
(𝑛
)

n T

𝒙
(𝑛
)

Tn

𝒙
(𝑛
)

Good: small variation

Tn

𝒙
(𝑛
)

Bad: big or exploding variation

Dambre et al., Sci. Rep. 2, 514 (2012). Uchida et al., PRL 93, 244102 (2004).
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Autonomous computing with a 
laser
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SCALING DIMENSION ENERGY EFFICIENCY / AUTONOMY

• These are highly multimode, highly non-linear devices.

• The VCSEL dynamics change with optical injection.

• Different injection conditions yield very different mode profiles.

• Can be modulated at high bandwidths (20 GHz)

• Large Area Multimode Vertical-Cavity Surface-Emitting Lasers (LA-VCSELs) are quantum well

semiconductor lasers. They differ from conventional VCSELs by their large (> 6 microns) diameter.

Single mode Multimode
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CONCEPT ILLUSTRATION

Resonant 

injection
Off resonant injection 

Free running
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Concept

Output

RNN

𝑾int

…

Input

u

…

y

𝑾in 𝑾out

𝒙(𝑡)

Working principle

Porte, et al., J. Phys. Photonics 3, 024017 (2021).

RNNInput
Output

𝑾out

DETmm-fibre
SLMDMDa

LA-VCSEL

𝐮 y𝑾rand
𝑾in

SLM

Injection 

laser
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SCALING DIMENSION: LEARNING

Nature Deep learning
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COMPATIBLE TRAINING STRATEGIES

Given the constrains we have :  Black box optimization

Evolutionary Strategies / reinforcement learning :  adaptation of distribution (mean, std. 

dev.) based on a sampled population.

Measured Gradient estimation: physically measuring the gradient with perturbations and 

performing gradient descent

1.Hansen, Nikolaus. "The CMA evolution strategy: A tutorial." arXiv preprint arXiv:1604.00772 (2016).

2.Spall, James C. "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation." IEEE transactions on automatic control 37.3 (1992): 332-341.

RNNInput
Output

𝑾out

DETmm-fibre
SLMDMDa

LA-VCSEL

𝐮 y𝑾rand
𝑾in

SLM

Injection 

laser
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GRADIENT-BASED STRATEGIES

• Initialize weights : 𝑾
• 𝜖 = small value
• 𝑓𝑜𝑟 𝑖 = 1: 𝑒𝑝𝑜𝑐ℎ𝑠

𝝏𝑳

𝝏𝑾
≈
𝐿 𝑾 + 𝜖 ∗ 𝚫 − 𝐿 𝑾− 𝜖 ∗ 𝚫

2𝜖
∗ 𝚫

𝑾 = 𝑾− 𝛼 ∗
𝝏𝑳

𝝏𝒘

𝚫 = rand −1,1 of size(W)

SPSA (Simultaneous Perturbation Stochastic approximation):Low hanging fruit Gradient Descent:

• Initialize weights : 𝑾
• 𝜖 = 𝑠𝑚𝑎𝑙𝑙 𝑣𝑎𝑙𝑢𝑒
• 𝑘𝑤𝑒𝑖𝑔ℎ𝑡𝑠
• 𝑓𝑜𝑟 𝑖 = 1: 𝑒𝑝𝑜𝑐ℎ𝑠

𝝏𝑳

𝝏𝑾
(𝒌) ≈

𝐿 𝑾(𝒌) + 𝜖 − 𝐿 𝑾(𝒌) − 𝜖

2𝜖

𝑾 = 𝑾− 𝛼 ∗
𝝏𝑳

𝝏𝒘

𝑓𝑜𝑟 𝑘 = 1: 𝑠

𝑠 = 𝑘𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑎𝑚𝑜𝑛𝑔 𝑊

Spall, James C. "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation." IEEE transactions on automatic control 37.3 (1992): 332-341.

Perturbs all weights according to one directionPerturbs each weights one by one
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SIMPLEST EVOLUTIONARY STRATEGY

• Generate a population P from a normal distribution

• Select the best point from the population.

• Set the new mean of the distribution to this best point

• Generate a new population P centered around the new

mean

While (termination criteria not met) do:



69

CMA-ES AND PEPG

https://en.wikipedia.org/wiki/CMA-ES

• CMA: Adapts the shape of a multivariate 

gaussian distribution, by estimating and 

mutating the covariance matrix, and mean 

according to some elites in the population.

• PEPG: Estimates the gradient of the Loss 

function  with respect to the parameters of the 

distribution, and updates the parameters of this 

distribution.
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CMA-ES AND PEPG

Toy optimization problem : Rastrigin function

https://en.wikipedia.org/wiki/CMA-ES
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CMA-ES AND PEPG

PEPGCMA-ES



72

TRAINING THE WEIGHTS SPSA

Manuscript in preparation
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• 5625 Neurons

• Linear limit: ~93% - computational 

benefit only above that. 

• Linear experiment shows how 

difficult in-situ learning is.

• SPSA: not sufficient to surpass 

linear limit.

• PEPG clearly goes beyond.

• First fully analogue neural network 

surpassing linear limit.

Manuscript in preparation
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• Neurons not the only ‘elements’

• 2nd type: Glia cells, potentially more than neurons
• Astrocites

• Wrap around up to 1   …        synapses and 
modulate their response

"Lab 1 Neurohistology - Neurons". vanat.cvm.umn.edu. By Dchordpdx - Own work, CC BY 4.0, 

• Spiking activity

• Dendrites are nonlinear

• That makes Nonlinearity change 

from O(N) -> O(N2)

• Will break back-propagation of 

errors algorithm

SCALING DIMENSION: COMPLEXITY OF OUR ‘NEURAL’ NETWORK

http://vanat.cvm.umn.edu/neurLab1/neuron.html
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Complexity of neurons and topologies

Henry Vandyke Carter - Henry Gray (1918) Anatomy of the Human Body

• Neocortex comprises of 6 layers

• Layers can host various types of neurons

• Some simplified canonical topologies:

• Layer 2: locally connects to other layers of 

Neocortex

• Layer 3: connects up and down and 

receives most of the external input 

(sensory stimuli)

• Layer 4: connect other areas out and 

inside of and neocortex

• Layer 5: connects outside of cortex, i.e. 

motor control

• Layer 6: connects to thalamus 
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Primer for beyond today: algorithm and functionality
• Learning without back prop

• Back propagation requires storing activations and 

derivatives

• How about N  weights? Can’t handle it

• Learning without forgetting

• Train output to identify ‘ ’ – now train the same to 

identify ‘4’ -> it will forget the ‘ ’

• Tokens of a GPT vs. human learning

• Transformers required an astonishing amount of 

tokens to learn, most likely orders of magnitudes 

more than humans

• Compositionality and systematicity

• Non-digital: NN hardware school??

• +++++++

V. Lavrenko
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Summary

•Long term field and undertaking (for me)
• New birds-eye view is required: systems, not components
• (Almost) as many fundamental questions as there are questions
• Concepts and systems need to converge
• Most importantly: how to learn conceptually more efficient / less complex

• Are epochs, #/o parameters and MAC/J really the right 
dimension?

• Good news
• Fascinating research and

possibilities
• Personal point of view:

we are only scratching the surface

• Most importantly: NNs are here to stay – unlike quantum comp. with 
already demonstrated clear computational relevance.
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Manuscript in preparation
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WHAT’S THE PROBLEM FOR MODEL BASED: VON NEUMANN AGAIN

D: population size

P: parameters neuromorphic system

K=1000 examples / batch

Training digital twin (model-based

DL200) NOT INCLUDED

1. From model-free to model-based: 106

increased memory cost (at least)

2. If we assume realistic drift, then training 

will happen frequently

➢ Training will most likely consume all 

benefits we get from photonics (or 

unconventional) hardware
Manuscript in preparation
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LONG TERM STABILITY

98% consistency

Enrico Fermi Colloquium Lens | Florence, Italy | January 18th 2024 
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Optical vs. electronic NN communication

Cross-over point

▪ At which number of neurons N optical communication becomes more efficient?

▪ Factors: losses 𝛾
1

m
and electro <-> optical conversion 𝐸EO.

▪ Electronic: 𝐸 ∝ 𝑤2(𝑁 +
1

2
𝑁2)

▪ Optical: 𝐸 ∝ 𝑒𝑁𝑤+ 𝐸EO

Of fundamental importance:

▪ Optical losses are not a natural constant -> 

engineering problem! (no absolut lower limit)

▪ EO conversion is a ‘point’ problem -> not 

dependent on N
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SCIENTIFIC MOTIVATION: OPTICAL NEURAL NETWORKS STATE-OF-THE-ART

Matrix-vector multiplier with coherent photonics [1]

[1] Y. Shen et al., Nature Photonics 93, 441-446 (2017)

Reservoir computing on silicon chips [3]

[3] Vandoorne, K. et al. Nat Commun 5, 3541 (2014)

Parallel convolutions using WDM [2]

[2] Feldmann, J. et al. Nature 589, 52–58 (2021)

[4] Psaltis, Demetri et al Optics letters 10 2 ,98-100 (1985)

Optical vector-matrix multiplier with optical feedback [4]

Enrico Fermi Colloquium Lens | Florence, Italy | January 18th 2024 
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COMMON TRAINING METHODS

Having a potentially resource heavy model is counterproductive, setup is not autonomous.

Training Mechanism Advantages Disadvantages

Reservoir Computing - easy to implement - does not exploit the full potential of the hardware

BP with backward pass in a digital twin ¹ - allows to train the full system - needs a precise model or digital twin, big overhead

Augmented Direct Feedback Alignment ² - allows to train the full system

- partial knowledge of the model is needed

- gradients have a random direction, reduced 

performance

Forward-Forward training ³ - allows to train deep models layerwise - needs a precise model or digital twin

Equilibrium propagation ⁴ - performs backprop based on system dynamics

- energy function of the system needs to match certain 

criteria

1.Wright, L. G., et al.. (2022). Deep physical neural networks trained with backpropagation. Nature, 601(7894), 549-555.

2.Nakajima et al. (2022). Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nature Communications, 13(1), 7847.

3.Hinton, G. (2022). The forward-forward algorithm: Some preliminary investigations. arXiv preprint arXiv:2212.13345.

4.Scellier, B., & Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in computational neuroscience, 11, 24.
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OFFLINE TRAINING

System Performance

NN 100 training Wout + 60%

NN 100 training Wout +/- 87%

NN 100 training Wout and Win 97%

VCSEL offline Wout training full res 88%

Enrico Fermi Colloquium Lens | Florence, Italy | January 18th 2024 


