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BROAD DEFINITIONS

Computing is the process of transforming information according to well-defined
rules.

A computer is a physical system that performs computation that is, it takes inputs,
processes them according to rules, and produces outputs.
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PROCEEDINGS When does a physical system

—OF t ?
THE ROYAL compute:
SOCIETY Clare Horsman', Susan Stepney?, Rob C. Wagner®

. . and Viv Kendon’
rspa.royalsocietypublishing.org
investigated by philosophers, physicists and informatics researchers [15]. In this paper, we
address a third, equally important, and specifically physical, question: what is a computer? Given
some notion of a mathematical computation, what does it mean to say that some physical system
is ‘running’ a computation? If we want to use computational notions in physics, then what are
the necessary and sufficient conditions under which we can say that a particular physical system
is carrying out a computation? In short, when does a physical system compute?

produced technology, the question becomes more difficult to answer. Is a protein performing a
compaction computation as it folds [16]? Does a photon (quantum) compute the shortest path
through a leaf in photosynthesis [17]? Is the human mind a computer [18]? A dog catching a
stick [19]? A stone sitting on the floor [20]? One answer is that they all are—that everything that
physically exists is performing computation by virtue of its existence. Unfortunately, by thus
defining the universe and everything in it as a computer, the notion of physical computation
becomes empty. To state that every physical process is a computation is simply to redefine what is
meant by a ‘physical process’—there is, then, no non-trivial content to the assertion. A statement
such as ‘everything is computation’ is either false, or it is trivial; either way, it is not useful in
determining properties of physical systems in practice.



Computing: a nonlinear function

1. Data source

u(n)

3 2. Nic:)nlineta_lr ) 3. Result

[100]

| > flum)] I: > [010]
[001]

Programming: identify flu(n)]
Computation: calculate f[u(n)]

1. Programming strategies
«  Algorithmic / analytical
* Regression to model input -> result

2. Computation strategies
Abstract: Turing / von Neumann machine
Substrate: System is function



Turing concept and von Neumann architecture

© Hussein Nur

Central Processing Unit

Control Unit

Input
Device

Arithmetic/Logic Unit

https://en.wikipedia.org/wiki/Von_Neumann_architecture

Output
Device

1. Single ‘point’ operation, only local action

‘Unlimited’, nonvolatile memory

» Serial operation according to symbolic operations
»Conceptual separation ‘operation’ and memory

Essentially a ‘technical’ fix
1. Operation: in-silico (transistor)
2. Memory: punch cards / magnetic

Combine different materials by spatially separating
operation and memory



Motivation behind binary electronics

“The binary scale seems particularly
- well suited for electronic computation
' because of its simplicity and the fact
that valve equipment can very easily
produce and distinguish two sizes of
pulse.”

Alan Turing

= Nature of algorithm defines ideal system



Neural Networks (1852-1943). anatomical inspiration
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* 1894: “The ability of neurons to grow in an adult and their power to create new
connections can explain learning.” This statement is considered to be the origin of
the synaptic theory of memory.

« Ramon y Cajal awarded Nobel prize in 1906.



Neural Networks: computational basis

BULLETIN OF
MATHEMATICAL BIOPHYSICS
VOLUME 5, 1943

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. MCCULLOCH AND WALTER PITTS

FrROM THE UNIVERSITY OF ILLINOIS, COLLEGE OF MEDICINE,
DEPARTMENT OF PSYCHIATRY AT THE ILLINOIS NEUROPSYCHIATRIC INSTITUTE,
AND THE UNIVERSITY OF CHICAGO

Because of the “all-or-none” character of nervous activity, neural
events and the relations among them can be treated by means of propo-
sitional logic. It is found that the behavior of every net can be described
in these terms, with the addition of more complicated logical means for
nets containing circles; and that for any logical expression satisfying
certain conditions, one can find a net behaving in the fashion it describes.
It is shown that many particular choices among possible neurophysiologi-
cal assumptions are equivalent, in the sense that for every net behav-
ing under one assumption, there exists another net which behaves un-
der the other and gives the same results, although perhaps not in the
same time. Various applications of the calculus are discussed.
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Neural Networks: ‘programming’

The Orgamzation . e general idea is an old one, that any two cells

Of Behauvior or systems of cells that are repeatedly active at
the same time will tend to become 'associated' so
A NEUROPSYCHOLOGICAL THEORY  that activity in one facilitates activity in the other.”

* “When one cell repeatedly assists in firing

D. O. HEBB .
MoGul Usioersity another, the axon of the first cell develops
1949 synaptic knobs (or enlarges them if they already
New York - JOHN WILEY & SONS, Ine. g st) in contact with the soma of the second cell.”

London - CHAPMAN & HALL, Limited
* ‘Fire together: wire together’

* Recipe for ‘continuous’ programming: incrementally modify
topology instead of writing a premeditated program.
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First attempt: Perceptron

Psvekological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?

F. ROSENBLATT
Cornell Aeronautical Laboratory

out(t)

in(t) <

Wikipedia
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Initial enthusiasm P Ry

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN?

F. ROSENBLATT
Cornell Aeronautical Laboratory

The New York Times
13/07/1958:

"The Navy last week
demonstrated the embryo of an
electronic computer named the
Perceptron which, when
completed in about a vyear, is
expected to be the first non-living
mechanism able to "perceive,
recognize and identify its
surroundings  without  human
training or control."
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Problem: linear separation only

INFORMATION AND CONTROL 17, 501-522 (1970}

A Review of “Perceptrons: Single Perceptrons cannot solve the
An Introduction to Computational Geometry” XOR problem or Separate Iinearly-non
by Marvin Minsky and Seymour Papert. se p arable CI asses

The M.I.T. Press, Cambridge, Mass., 1969.
112 pages. Price: Hardcover $12.00; Paperback $4.95.

p— o domestication ° domestication
out(t)

in(t) <

Wikipedia
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The basics: why the perceptron failed the XOR
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Linearly separable

Appeltant et al., Nat. Commun. 2, 468 (2011).

Covers theorem:

“A complex (pattern-)classification
problem, cast in a high-dimensional
space nonlinearly, is more likely to
be linearly separable than in a low-
dimensional space, provided that the
space is not densely populated.”
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Dimensionality and nonlinearity
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[0 0 0 0 0 O

(n) = f[Wx(n) + b}
Collect set y(n) for x(n),n € [1...N], where N is number of examples
« x(n) e R
« y(m) e RPM
e Letsassume:L KM
« Append all x(n) and y(n) to X € RV*L and Y € RV*M

Dimensions in vector space
» scalar product between vectors is zero: orthogonal
« Linear independent vectors are not parallel
« Of a matrix: rank of matrix
* Without nonlinearity: rank of X isrank of Y is L.

» Why nonlinearity is essential: dimensionality expansion

16



WHAT IS A NEURAL NETWORK?

Why The interest in Neural Networks in the first place ? P . .

—tanh  —RelU
——sigmoid - - ~Leaky RelLU

— |nterconnects / Synaptic weights Ramon y Cajal

Nonlinearity and depth allow for more complex information processing.

famto-st
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HOW DOES A NEURAL NETWORK LEARN?

Example : MNIST Dataset

Input images  Labels / Target

0"
@
v
Q o’
'5”
4"
m IIO”

60 000 images with corresponding labels

Hidden Layers

— |nterconnects / Synaptic weights

. supervised learning.

&
EEEEEEEEEEEE
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HOW DOES A NEURAL NETWORK LEARN?

Example : MNIST Dataset

Forward
pass

Input images
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Backpropagation

Prediction  Target
“9” “O”
“0” “4”

11 7 “1 7
“8” “9”
“6” “5”
“3” “4”
“2” "O”
\ '

N
1 2
L= NZ(:Vpred - Ytarget)
i=1

N : number of elements in each vector

&
EEEEEEEEEEEE
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HOW DOES A NEURAL NETWORK LEARN?

Example : MNIST Dataset

Input images Prediction  Labels
Hidden Layers TTatL “0”
11 7 “4”
11 7 “1 7
(13 7 “9”
“6” “5”
13 7 “4”
13 7 llO”

To ensure generalization the NN is tested on unseen data.

NN structure embodies the task we want to perform.

L Parallel Computing = propagation of information through the NN.

EEEEEEEEEEEE



NEURAL NETWORKS : PARALLEL COMPUTING

Program Compilation - Interpreter

Program Source Code

Instruction 1

Instruction 2

Program Execution
i Instruction 3 Line - By - Line
Instruction 4 ' —
| J:]
\ .
¢ ey

( \ \SY
450 UNGSY
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Instruction 1

Instruction 1

0101010110

INTERPRETER

@
e
Qi
{7
S

3BluelBrown: https://www.youtube.com/watch?v=IHZwWFHWa-w&t=1087s

NNs are an inherently connectionist approach to computing.

Ls are universal function approximators, with a NN that is big enough and lots of data you can fit anything.

famto-st
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Analog computing



EARLY ANALOG COMPUTING DEVICES

Analog
Process continuous values using physical quantities (voltages, currents, rotations, etc.)

G

ANTIKYTHERA MECHANISM i

16 o4

4 8 32
: % 16 ¢4
Tracks Sun and Moon, predicts solar and lunar Astrolabe
eclipses, shows the phases of the Moon, follows Slide rule
the calendar (including leap years). Telling time, finding position, position of stars at any
given time.

famto-st

HEBNESCIENCES &
TECHNOLOGIES

23



EARLY DIGITAL COMPUTING DEVICES

Digital

Process discrete values typically binary (Os and 1s).

Abaccus

Early digital computers are
mostly calculators.

Babbage analyzer

famto-st

HEBNESCIENCES &
TECHNOLOGIES

24



ANALOG SUPREMACY?

Analog
Process continuous values using physical quantities (voltages, currents, rotations, etc.)
Analog: Digital (ex 4 bit):
I

Analog Multvplier using

Op-Amyp

Elevate electronics with Neha @youtube All about eleétironric;s. @S/r@t?ubef 7

L Roughly 100 transistors Roughly 2000 transistors for 8-bit only

famto-st
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ANALOG SUPREMACY?

How do you multiply 2 numbers in a simpler way using electronics?

famto-st
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ANALOG SUPREMACY?

Analog
Process continuous values using physical quantities (voltages, currents, rotations, etc.)

Much simpler way of multiplying 2 numbers (we

Analog: don’t especially care to encode them specifically
In voltages):
Analog Multiplier using Ohm’s Law:
Op~Amp I
+_} 1. Choose a resistor
2. Apply a voltage
V. <R 3 Measure currentis | = VIR = V*G
- 4. Variable resistor and power supply!
| Syl
I
@Wikipedia

Elevate electronics with Neha @youtube

Roughly 100 transistors

famto-st i
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ANALOG SUPREMACY?

Problem : Predicting the tides

Timing as well as magnitude variation

ﬁitasium youtube

famto-st
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ANALOG SUPREMACY?

Problem : Predicting the tides

Laplace found that tides are driven by a
few specific astronomical frequencies

famto-st

HEBNESCIENCES &
TECHNOLOGIES

29



ANALOG SUPREMACY?

Problem : Predicting the tides

Laplace found that tides are driven by a
few specific astronomical frequencies:

S .'1.93/day ' '
WAV W
o ‘9.00/day .

- 1.90/day .

Leritasium youtube

femto-st
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ANALOG SUPREMACY?

Problem : Predicting the tides

First: record the tide using a
tide gauge.

ﬁitasium youtube

6 Ft

4Ft +

2Ft T

0 Ft

2Ft +

4Ft +

-6 Ft

Noon

6 PM

Midnight

6 AM

Noon

6 PM

Midnight

6 AM

Noon

famto-st
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But, why digital was successful: physical limit to precision

Switching an electronic signal line:

o Charging wire: E = CV?
o C/m=1.5pF/cm —

o Mean square thermal noise: Vy = /4k, TBR

Q/ﬁ A R
o kp, =138x10723 J/K, B=1 GHz, R=1 MQ, /%" qaf
T=300 K K
» Vy=4 mV
Noise in digital signal: Noise in analog signal:
o Digital sequence: o Signal comprises noise less amplitude
o DnyDy_q1:-DyDg o Noise is additive or multiplicative
o Noise will corrupt each of the digits with o Always of scale unity for an normalized signal
equal probability strength
o DNDy—1++*D1Dg Va
» Noise exceeding digitization threshold is o \ PN

~ Ny
unacceptable Vo \ j
Y

32



Physical limit to precision: Energy / Power

1
= =
S 9

= -
> [N

§.10710

'_I

o

&
Energy (] @25° C)

[ [
S 9
N =
o (o]

Thermodynamic limits: Linked to devices:
« Low pass circuit: SNR = /E/kT « Limit for signal @1 GHz: P = 0.3 uyW
e KkT(@RT) = 4-10721] . Detection: NEP ~ 0.45—2’2,@1 GHz ~ 10 nW
- For 8 bit: E = 255 - kT ~ 0.3 1] » For 1 GHz: PEN - 255 ~ 3 uW
» ONLY x10

. L (1).651
= -4
% 0568 i 4
> -,
5 0.032 012-8 =
O a g 104 3 3 3
= ool — Efror protsability 016 5 = T SO ~ Digital - 90 nm - 2006
2 0.0045 | [— Probabilistic & : — Digital - 28 nm - 2012| |
) 0.003F —|— Analog 0-20 102 7 A e Analog '
i —— Digital Computer —— Neuromorphic

0.001 ' AN10 24 1 S

044 117232 10 32 100 221 1 102 104 106 108
Signal energy (KT) Precision

Boahen, Computing in Science & Engineering 2017.

o Approach SNR limit within an order of magnitude
o For low precision analog is clearly superior
o Digital NN hardware: approaching few-bit precision(!!!???)
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Analog NNs: amplify, unitary or damp noise?

34



Noisy neurons inside networks

Additive noise: Multiplicative noise:

J g

% X ~ y
=4 —> > Uncorrelated noise: Correlated noise:
Cis) &5

= x] |—= ey
T a9
=>( 2 J—s()=>
5 —~Eo-
'i>':>@:> =>(8 =)=

bias

NYY
1

Signal to noise ratio SNR=

Semenova, et al., Chaos 29, 103128 (2019). Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).

35



Single neuron: linear AND nonlinear

Additive noise:

g
:>r:>®-:>

Uncorrelated noise:

G5
—> R —=>
Fen
=% J——os L) =>
e
u:>:>@:>

Semenova, et al., Chaos 29, 103128 (2019).

Multiplicative noise:

&
:>:>®:>

Correlated noise:

Noise

— (D=6
'=>-::> =
= ()=

SNR

75

50

25

I I I I
. -
add. noise. ...~
-~
-
-
’
. g _
-
-~
-
,
-
. -
| mult. noise - _
-
______ ’ - - S v _—_—_—_—_-_______—__
- = ==
- - . .
2= mixed noise
-
-

- | | I |
0 0.2 0.4 0.6 0.8

mean output
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What influences noise propagation?

Noise propagation and accumulation is greatly influenced
by the squared mean

! waf;)z (4)

2 W) — (
H ( ) Inln—i—l ij

and the mean of the square

1

. Wn —
W =177

Y (W) (5)

L,j

of connection matrix W”. A hidden layer’s noise-induced
variance is determined by, both, noise in the current as well
as by noise coming from previous layers. The impact of cor-
related noise in the current layer scales according to

I -1 (W"), (6)

while the impact of uncorrelated noise and the noise from the
previous layer scales according to

I-n(W"), (7)

Variance Var(x! ;) is the average noise impact from the pre-

vious layer n — 1 and comprises contributions from correlated
noise N¢, uncorrelated noise NV and noise N, from the layer

preceding the previous one
Var(gfx,f) — NI‘IC + N.TLIJ + erljl'ev
Ny =12 *(W")(2D + 2D5, 1% (E(Yn-1))
N, = In—11(W")(2Dy + 2Dy (1 + 2Dy, Jn(E(Yn-1)) (6)

‘ wn)
NDIE'V — 12 2 wn (1 _|_ 2DU . ?7( )X
n n—1H ( ) M In_1M2(wn)

(14 2D (FE,_,)).

N, includes both, correlated and uncorrelated multiplicative
noise, and operator F as the influence of f(-). Egs. (6) include
squares of means %(-) and the means of squares 7(-) of matrix
W". Depending on the particular type, noise propagation there-
fore is caused more by the effect of p?(-) and If_l, or of n(+)
and I,_q, plus the input signal’s mean. Through these, a DNN’s }

f

Noise operator for cascaded layers n :

Sn=f(E(

:f_l(%g—ﬂ)) Sn-1

37



Noise accumulation

a(x —0.5)
f(x) =0.5
J1+ a?(x —0.5)2
§ x10* layer 1 § %10 layer 2 p x10% layer 6 p %10 layer 12
8 S . .
g3 i ' 3 A
S 5 ftelnaiteadeniiing
==
0
S
T g
S5
>
0 0
0 0.5 1 0 0.5 1 1 1

o Noise accumulates only for a > 2
o For a < 2 output noise on level of individual neurons

o For strong nonlinearity: first order approximation fails
Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).
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Noise accumulation

a(x —0.5)
f(x) =05
J1+a?(x —0.5)2
15 T T s \ T I 025
0.2 r
0.15
=
N
0.1
diagonal
0.05 | o
o=4
—@— o=5
I 1 I 1 0 1 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 0.25

Sn-l
Sn=F(E(F ' 0hon)) Snea
This is a geometric progression: decreasing for f71(-) < 1

o Noise accumulates generally bound
o Can be frozen forf~1() <1

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).
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And what with fully trained DNN?

Network A
(a) |

Network C

18

12 ¢

0 0.5 1 . 0.5
mean output mean output mean output

o Trained networks: weight AND state statistics required
o Approximation state statistics: g(x) = exp(c x* + c3x3 + cyx% + ¢1%)
o Works very well through all layers

Semenova, Larger, Brunner, Neural Networks 146, 151 (2022).
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Optical computing



Classical (linear) optical computing

o Lens: focusing @
< f >

o More precisely: Fourier transform
o E(x,y,f)==L["sing ["E0,¢)e'*rkxkydpdg

l(kzz)
o E(x,y,f) = = T prElde

cosf

Object plane 9

f

N & N
7 N 7

P. Ambs, “Optical Computing: a 60-year adventure”, Advances in Optical technologies (2010).

Fourier (Spatial-frequency) plane

Fourier filtering

42



Classical (linear) optical computing

Input scenes s(x,y)

Reference R(u,v)

Correlation C(x,y)

o Long history, well established field

o Passive, fully parallel

o Ultra-high space/bandwidth
product (PetaBit/s/cm”2)

o But: only linear

o Bulk optics: computer with a
microscope objective?

P. Ambs, “Optical Computing: a 60-year adventure”, Advances in Optical technologies (2010).
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Experimental performance of a binary phase-only optical correlator using
visual and infrared imagery

S.P. Kozaitis

Florida Institute of Technology, Department of Electrical and Computer Engineering
150 W. University Bivd., Melbourne, FL 32901-6988

S. Halby and W. Foor

Rome Air Development Center, Photonics Laboratory
Griffiss AFB, NY 13441

Fig. 5 Experimental correlation results of image in Fig. 4a and
filter of Fig. 1

Fig.1 Sample of image in database

Fig 4

Fig. 6 Experimental correlation results of image in Fig. 4b and
filter of Fig. 1



Principle and long-known motivation

PRINCIPLES OF OPTICAL COMPUTING

A.W. Lohmann

Edited by S. Martellucci
and A. N. Chester

University of Erlangen

© VAN
ELECTRONS OR PHOTONS ?

EXOTIC
()th; ZX MATTER
S. Martellucci, A. N. Chester (1990). . J
VA
LOGIC
+ + o+ - +
INTERACTIONS
TRANSPORT
communicaTion] ¥t |t + F +oF

Fig. 1. Electrons or photons? The advantages (+) and handicaps (-)
of electrons and photons and the role of exotic matter for
enabling photons to perform logic.

45

TODAY

TOMORROW

JAAN

i

p—

|

DAY AFTER
TOMORBOW

()

T

|
|
-

N

Fig. 2. From today's all-electronic computer towards an all-optical
computer via an intermediate hybrid system.



Electrical connections: wires

Switching an electronic signal line:
o E=CV?

o Scaling: C « el
ln(%+\/§>
o Voltage: limited to 0.1 due to thermodynamics of semiconductors
o Charging wire: E = CV? =~ 600-10 ~1° J
1.5 pF/cm 2 pF/cm

— only log. Ratio (oh my god)

o Problem: neural networks ARE wires

Magen, et al., Proceedings of the 2004 international workshop on System level interconnect prediction.
Miller, Journal of Lightwave Technology 35, 346 (2017).
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Optical communication

Output
1
5.
o
=y
N
Energy: switching of a capacity Energy: propagation losses need to be restored
1 OUtDUt N
Ex CxA Transmission =T o e~V
1 1 b Lo = 2w, L ~ 2Nw
A = w? (No + ENiNO> +C i & T

L~ Nw

A= 2N+1N2
w( > )

This results in a cross-over point: at which lengths optical communication becomes more
efficient? The determining factors are y [ﬂ and electro <-> optical conversion.
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Electro-optical and opto-electronic conversion

Femtofarad optoelectronic integration

demonstrating energy-saving signal conversion

and nonlinear functions

Kengo Nozaki®'?*, Shinji Matsuo'3, Takuro Fujii'?, Koji Takeda'?, Akihiko Shinya'?,

Eiichi Kuramochi®'? and Masaya Notomi ©"2*

b
i 100ifi PhC cavity + ITO (ref. 7y
£ _W/'\"—’\’\ Ge EAM (ref. 3
5 i ® @&pF . o (et 4
q SPP + EOP (ref. %)
© 10f
5 3 E ®siGe EAM (ref. @)
8 =
2 2 a InGaAsP EAM (ref. 1)
g &) spPring @
g | S 1t + EOP (ref. '8
AJ < Siring (ref. ¢
. T T " S Si + EOP (ref. 2')
1,545 1,546 1,547 1548 B ]
Wavelength (nm) o3 i
© 100a E s work Il Resonator based
(4 |
@ Waveguide based
10a L e e ) e ) Emm AL
100a 11 101 100 f 1p

Device capacitance (F)

Fig. 1] PhC-nanocavity EOM. a, Scanning electron microscope (SEM) image of the EOM. b, Transmission spectra for different d.c. bias voltages. The black

[}
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Electrical connections: hitting a wall

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 35, NO. 3, FEBRUARY 1, 2017

Attojoule Optoelectronics for Low-Energy
Information Processing and Communications

David A. B. Miller, Fellow, IEEE, Fellow, OSA
TABLE I
ENERGIES FOR COMMUNICATIONS AND COMPUTATIONS

Operation Energy per bit References and notes
Wireless data 10-30 pJ [31]
Internet: access 40-80 nJ [8]; (a), (b)
Internet: routing 20 n] [9]: (¢)
Internet: optical WDM links 3nl] [32]: (d)
Reading DRAM SpJ [5]: (e)
Communicating off chip 1-20 pJ [5]. [15]. [16]
Data link multiplexing and timing circuits ~2pl [24]
Communicating across chip 600 fJ [S]: ()
Floating point operation 100 1J [5]: (g)
Energy in DRAM cell 10 £] [33]; (h)

Switching CMOS gate
| electron at 1 V, or 1 photon @1 eV

~50 aJ-3 fJ [4], [6]. [34]. [35]: (i)
0.16 aJ (160 zJ)

Miller, Journal of Lightwave Technology 35, 346 (2017).

49



Unconventional optical
computing



Two schools of ‘philosophy’

ARTICLES nawre
PUBLISHED ONLINE: 18 APRIL 2016 | DOI: 10.1038/NPHOTON.2016.64 phOtOﬂlC S

Efficient and low-noise single-photon-level
frequency conversion interfaces using
silicon nanophotonics

Qing Li'2*, Marcelo Davanco' and Kartik Srinivasan'

top down vs. bottom up

OFENT A Unified Framework for Reservoir
Computing and Extreme Learning
Machines based on a Single

e a T|me -delayed Neuron

Published: 08 October

S. Ortin*, M. C. Soriano?, L. Pesquera®, D. Brunner?, D. San-Martin3, I. Fischer?,
: C.R. Mirasso1 &J. M. Gu1:iérrez1
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Hopfield networks

Proc. Natl. Acad. Sci. USA
Vol. 79, pp. 2554-2558, April 1982
Biophysics

Neural networks and physical systems with emergent collective
computational abilities

(associative memory/parallel processing/categorization/content-addressable memory/fail-soft devices)

J. J. HOPFIELD
Division of Chemistry and Biology, California Institute of Technology, Pasadena, California 91125; and Bell Laboratories, Murray Hill, New Jersey 07974

'_;5 P
g i_.L._. — The information storage algorithm
95 i Suppose we wish to store the set of states V°, s = 1---n. We
g2  f/—.—Present Model use the storage prescription (15, 16)
s { ----Linear Modeling
=2 ; ;
S Ty, = D, @Vi— 1)EVi - 1) 2]
- ) 1
2 -0l/ 0 ’
= .
Membrane Potential (Volts) or "Input" ° VS are memory entnes
FiG. 1. Firing rate vers b: ltage for a typical . . 1
(solid line), droppingtoofo:?arz?:;n ner;;t?‘:;opot%it?;]:aigl:gtt?:afiﬁg o Stable If V'S IS V'S '> CorreCU ng
fo:;d polsfitive potentials. The broken lines show approximations used in l ]
modeling.
memaory

 Connections T;; analytically defined
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Hopfield, why its so nice for physicists

Studies of the collective behaviors of the model

The model has stable limit points. Consider the special case T
= T};, and define

1
E=—2 22 TV, . [7]
i#]
AE due to AV, is given by
AE = —AV, > T,V . [8]
i

Thus, the algorithm for altering V, causes E to be a monotoni-

least (local) E is reached. This case is isomorphic with an Ising
model. T; provides the role of the exchange coupling, and there

is also an external local tield at each site. When T; is symmetric
but has a random character (the spin glass) there are known to
be many (locally) stable states (29).

= -
BTy

}
SR

T

’
Tt T

=1 5—1_3-'\ 4

.

B R,
. TEs ) Sty
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Hopfield: why its nice |l

98 OPTICS LETTERS / Vol. 10, No. 2 / February 1985

Optical information processing based on an associative-memory
model of neural nets with thresholding and feedback

Demetri Psaltis and Nabil Farhat*

Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125
Tablel. Optical CAM Performance
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And finally: multilayer networks

Optical network for real-time face recognition

Hsin-Yu Sidney Li, Yong Qiao, and Demetri Psaltis

An optical network is described that is capable of recognizing at standard video rates the identity of face: TV CAMERA
for which it has been trained. The faces are presented under a wide variety of conditions to the system - VCR
and the classification performance is measured. The system is trained by gradually adapting photorefrac :
tive holograms.

Key words: Optical pattern recognition, neural networks, photorefractives.

1 mmror
NN 7 4-F SYSTEM FOR
Voo REFERENCE BEAM
\N STEERING
=) - 4 \\ i— —————————————
u‘.‘. \~\ :
TRANSFORM BN a LCTV . ]
TRANSF H
T SPATIAL" 9) PRCRYSTAL (L4) ! i ]
FILTER A CCD CAMERA " H
VN H E
x I N R e I / Y H
o @ OPTICAL OPTICAL/ELECTRONIC LED
P1 (19 P
o FIRST LAYER SECOND LAYER —
OUTPUT
UNIT
INPUT HIDDEN
LAYER
DETECTOR LAYER
ARR'AY Fig.5. Schematic diagram of overall system.

Fig. 1. Optical setup of the face-recognition system; PR, photorefractive.
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Implementation

Fig. 3. Edge-enhanced image and original face.

Fig. 7. Photographs showing part of the training session.
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Another great starting concept: Reservoir computing / Extreme learning machines

B o "-’“‘3};’,}1 A: fully adjusted network
_;eO; :0,;/" '“o"u;— o Optimal performance (maybe)
S I“ \a g [q "7 o Exploding/vanishing gradients
| HEEE 5 None-converging beyond stability
B: only output weights
o Random input/internal weights
o Training is simple matrix inversion
Jaeger, Science 304, 78 (2004).
Echo state networks Liquid state machines
o Nonlinear maps with discrete time o Excitable (spiking) neurons
o Origin in field of control system o Origin in Computational neuro science

o ELM: no recurrent connections
Jaeger and Haas, Science 304, 5667 (2004). Buonomano, Maass, Nature reviews in Neuroscience 10, 113 (2009).
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Experiment type A: network state attainable

> Arecchi et al., Phys. Rev. A 45, 4225 (1992).

< '
*
0\ o O

‘0

’0

Input: Network state: Output:
un+1) x(n+1) = yn+1) =
fIWx(n) + Wu(n + 1) + b] Woulx(n + 1)

Training data: set of inputs u(n) for which y(n) is known
Collect x(n) fornel[1, ..., T]

L -fold cross-validation: randomly label input data by [ €[1, ..., L]
Selectone [, €[1, ..., L]

« M, concatenated x(n) for [ # [,

« TT: concatenated matrix of y(n) for [ # I,

e  Obtain Wout = (M, ML + 2D~ (M, TT)

 y(n), measure error for [,

hownhPE

Why is this not great?
«  Repeat for all I, o Training offline o Training offline
5. Measure error for unseen data o ‘Short experiment o Technological relevance?
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Experiment type B: network state not attainable

S
@)
‘ % : 4
N ® ®
0.‘
Input: Network state: Output:
un+1) x(n -.|-'1) — y(n+1) =
fIWx(n) + Wu(n + 1) + b] Woulx(n + 1)

=

Training data: set of inputs u(n) for which y(n) is known
2. Define starting W out
« Collecty(n) fornell,...,T]
 Measure error
3. Learn
e Modify weut
« Collecty(n) fornell,...,T]
Measure error
. Evaluate modification and repeat _ o
4. Measure error for unseen examples o In-situ (vs. in silico)

o ‘Autonomous’ system

o Training online

& 3
¢

N/

y(n)

Why is this not great?
o Training online

o Blind to network state
o Comparison tricky

59



A good (well behaved) reservoir

Diversity (dimensionality) Reproducibility (consistency)
— R
o <
> —
= =
n T n T

Bad: linear dependent Bad: big or exploding variation

A

~
.

N7
=

x(n)

Dambre et al., Sci. Rep. 2, 514 (2012). Uchida et al., PRL 93, 244102 (2004).
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Autonomous computing with a
laser



SCALING DIMENSION ENERGY EFFICIENCY / AUTONOMY

« Large Area Multimode Vertical-Cavity Surface-Emitting Lasers (LA-VCSELs) are quantum well
semiconductor lasers. They differ from conventional VCSELSs by their large (> 6 microns) diameter.

Single mode Multimode

. These are highly multimode, highly non-linear devices.
. The VCSEL dynamics change with optical injection.

. Different injection conditions yield very different mode profiles.
I . Can be modulated at high bandwidths (20 GHz)

famto-st
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CONCEPT ILLUSTRATION

Free running

Off resonant injection Resonant
I injection

famto-st
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"Concept
RNN
Input T e \ Output
(A : I -==
O | | O
: : :—> I : _t> o
I in : T 774 : : :
o W O
N :x(t) II \__,I
u o T T , y
\
< ; ; . I
Working principle
(
|
|
|
|
|
\
\L Porte, et al., J. Phys. Photonics 3, 024017 (2021). .
femto-st 64
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SCALING DIMENSION: LEARNING

Nature Deep learning

g 4 dJ dAl? gz
_dW[E] N dAR 4712 Jw il

2 [2
g2 4 _ 4] dAP dz®

% dbi2 dAR2 dzRl dbl2
g 4 dJ dAPl dz2 Al gz
dw2 — dAR dZ2 dAN 4z gwi
gl 47 dJ dAP 4z dAll 4zN

AW~ qAR qzP gAll qzm gpll
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COMPATIBLE TRAINING STRATEGIES

LA VCSEL

rq)

Given the constrains we have . Black box optimization

Evolutionary Strategies / reinforcement learning : adaptation of distribution (mean, std.
dev.) based on a sampled population.

Measured Gradient estimation: physically measuring the gradient with perturbations and
performing gradient descent

1.Hansen, Nikolaus. "The CMA evolution strategy: A tutorial." arXiv preprint arXiv:1604.00772 (2016).
I 2.Spall, James C. "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation." IEEE transactions on automatic control 37.3 (1992): 332-341.

femto-st
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GRADIENT-BASED STRATEGIES

SPSA (Simultaneous Perturbation Stochastic approximation):

Low hanging fruit Gradient Descent:

* Initialize weights : W

* Initialize weights : W
* ¢ = small value € = small value
kweights  fori = 1:epochs

fori = 1:epochs

S = kyeignts randomly selected among W A = rand{—1,1} of size(W)

fork =1:s OL L(W+exA)—L(W—-—€xA) A
=~ *
dL " L(W(k)+e€)—L(W(k) —¢€) ow 2€
aw 1~ 2¢ oL
W=W—a*a—
oL w
W=W-—ax*—
ow

erturbs each weights one by one Perturbs all weights according to one direction

LP
Spall, James C. "Multivariate stochastic approximation using a simultaneous perturbation gradient approximation." IEEE transactions on automatic control 37.3 (1992): 332-341.
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SIMPLEST EVOLUTIONARY STRATEGY

While (termination criteria not met) do:

» Generate a population P from a normal distribution

« Select the best point from the population.

« Set the new mean of the distribution to this best point

» Generate a new population P centered around the new
mean

famto-st
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CMA-ES AND PEPG

« CMA: Adapts the shape of a multivariate
gaussian distribution, by estimating and
mutating the covariance matrix, and mean
according to some elites in the population.

 PEPG: Estimates the gradient of the Loss
function with respect to the parameters of the
distribution, and updates the parameters of this
distribution.

L https://en.wikipedia.org/wiki/CMA-ES

Algorithm 4 Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

1:

—_ -

TeLe XN TaRs N

Initialize population size A,number of elites i, mean vector m, covariance matrix C,
step size o
Evaluate the initial population based on m and C
while stopping criteria not met do
Generate 1 new offspring by sampling from N(m,o>C)
Evaluate the fithess of each offspring
Select the top u elite offspring based on fithess
Update m towards the mean of the selected elite
Update C to reflect the distribution of the selected elite
Adapt the step size o based on the success of the search
end while
return Best solution found

Algorithm 5 Simple Policy Gradient optimization

1: Initialize 6 = (u, o), set constant learning rate «
2: K « maximum number of iterations
3:fork=12,.... K do

4: Generate 1 samples x; ~ Ng(x)

5: Compute f(x;) for each x;

6 Estimate gradient: V,J(u) « fZ, | ‘zr'“f( ,)

7 Estimate gradient: V,J(o) « 1 31 i‘rq o fx)
8: Update parameters: p « u + anHJ(,u)

9: Update parameters: o « o +aV,J(o)

10: end for

11: return Optimized parameters vector ¢ = (u, o), and optimal Loss value L(#)

famto-st
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CMA-ES AND PEPG

Toy optimization problem : Rastrigin function

100

https://en.wikipedia.org/wiki/CMA-ES

famto-st
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CMA-ES AND PEPG

-1 08 -06 -04 -02 0

0.2
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TRAINING THE WEIGHTS SPSA

98

Accuracy [%]
o o o o o
Co = M2 o 0

Qo
o

102 10°

Number of parameter:

0.65

MSE
o
»

&

0.5
109

10°
Number of input parameters

Manuscript in preparation
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100 1

95+

Accuracy [%]
(o}
o

85T

EPEPG
[pigital linear
[ spPsA
VCSEL OFF
R PEPG

80
0 1 2 3 4 5 6 7

MNIST class

5625 Neurons

Linear limit: ~93% - computational
benefit only above that.

Linear experiment shows how
difficult in-situ learning is.

SPSA: not sufficient to surpass
linear limit.

PEPG clearly goes beyond.

First fully analogue neural network
surpassing linear limit.

Manuscript in preparation

famto-st

HEBNESCIENCES &
TECHNOLOGIES

73



SCALING DIMENSION: COMPLEXITY OF OUR ‘NEURAL’ NETWORK

Contact with
other cells Axon

p ‘;\\ -
s Cell body
./ i
/[ :
‘ Dendrites
\ / (Contacted by
L other neurons)

Neuron
(Sizes and Shapes Vary)

Neuroglia
Supporting Cell

"Lab 1 Neurohistology - Neurons". vanat.cvm.umn.edu.

« Spiking activity
 Dendrites are nonlinear

« That makes Nonlinearity change
from O(N) -> O(N?)
«  Will break back-propagation of
errors algorithm

By Dchordpdx - Own work, CC BY 4.0,

« Neurons not the only ‘elements’

« 2" type: Glia cells, potentially more than neurons

 Astrocites

*  Wrap around up to 1000...2000000 synapses and
modulate their response
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http://vanat.cvm.umn.edu/neurLab1/neuron.html

Layer of
Luvge
rirmidal

w cells

Layer of
e

Henry Vandyke Carter - Henry Gray (1918) Anatomy of the Human Body

T e
Ly il

ff;'-gj‘,}f:ﬁ,} G

:‘l_,' =
il U

Ouder band of Bail-

... larger, or band of

Genmnari

T rid | Vertical fibers.

Tnternal band of
Baillarger

* Neocortex comprises of 6 layers
« Layers can host various types of neurons

« Some simplified canonical topologies:

« Layer 2: locally connects to other layers of
Neocortex

« Layer 3: connects up and down and
receives most of the external input
(sensory stimuli)

* Layer 4: connect other areas out and
inside of and neocortex

« Layer 5: connects outside of cortex, i.e.
motor control

« Layer 6: connects to thalamus



Primer for beyond today: algorithm and functionality

« Learning without back prop

» Back propagation requires storing activations and
derivatives

 How about NL weights? Can’t handle it

« Learning without forgetting

« Train output to identify ‘3’ — now train the same to
identify ‘4’ -> it will forget the ‘3’

Tokens of a GPT vs. human learning

« Transformers required an astonishing amount of
tokens to learn, most likely orders of magnitudes
more than humans

Compositionality and systematicity

Non-digital: NN hardware school??

+++++++

ARTICLE

https://doi.org/10.1038/541467-021-22768-y OPEN

Cinmnmanrmtim maatanlacti~ibir Th khinAaviaAAd nf\..val
* Back-propagation

want: y @A o A~ e

-~
-
Wi 1
.
*
:
3 -
-

76



Summary

*Long term field and undertaking (for me)
* New birds-eye view is required: systems, not components
. @Imost) as many fundamental questions as there are questions
» Concepts and systems need to converge o
» Most importantly: how to learn conceptually more efficient / less complex

* Are epochs, #/o parameters and MAC/J really the right
dimension?

« Good news
 Fascinating research and
ossibilities _
* Personal point of view:
we are only scratching the surface

* Most importantly: NNs are here to stay — unlike quantum comp. with
already demonstrated clear computational relevance.
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Manuscript in preparation
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WHAT’S THE PROBLEM FOR MODEL BASED:

P=100, D=10

P=1000, D=100

VON NEUMANN AGAIN

P=5000, D=500

model-free, infout local
model-free
linear model-based

model-based DL200

D: population size
P: parameters neuromorphic system
K=1000 examples / batch

T T
107 1010
Data Loads

T T
107 1010
Data Loads

T T
107 1010
Data Loads

Training digital twin (model-based
DL200) NOT INCLUDED

1 —— model-based mlp200  —— model-based - Ir - no train

1. From model-free to model-based: 10°

12 ]
10 1 — model-based - Ir ——- model-free, input/output local
101! 4 —=- model-free
1010 §

increased memory cost (at least)

2. If we assume realistic drift, then training

will happen frequently

Training will most likely consume all

benefits we get from photonics (or

parameters P

unconventional) hardware

famto-st
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LONG TERM STABILITY

MSE
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Optical vs. electronic NN communication

Cross-over point

= At which number of neurons N optical communication becomes more efficient?

1 . .
= Factors: losses y [;] and electro <-> optical conversion EEO.

= Electronic: E o w?(N + %NZ)

= Optical: E o e¥¥+ EEO

Of fundamental importance:

= Optical losses are not a natural constant ->
engineering problem! (no absolut lower limit)

= EO conversion is a ‘point’ problem -> not
dependent on N

Energy
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SCIENTIFIC MOTIVATION: OPTICAL NEURAL NETWORKS STATE-OF-THE-ART

_ o _ _ Reservoir computing on silicon chips [3]

Matrix-vector multiplier with coherent photonics [1] = \_m o —

:: - : \/ ‘ u il \\van.m\uhu”nhuﬂ‘mm ‘IMNIHMh\hx‘\\wl,u\. I “

. = Frequency (THz)

4 B ol : N
+ KEERIDEE 3k
+— KEEER o E | §

L) oy e %) = 3

> 3: 2

"ol o o o) [‘"1 | 3
=

Microcomb-based vector generation and multiplexing On-chip MAC unit Demultiplexing, DSP

Optical vector-matrix multiplier with optical feedback [4]
My

;Trrusana e
SCREEN, .~
[1] Y. Shen et al., Nature Photonics 93, 441-446 (2017)

[2] Feldmann, J. et al. Nature 589, 52-58 (2021)

1 . . .
[3] Vandoorne, K. et al. Nat Commun 5, 3541 (2014) . : ,D::g;:;-r:m“ [4] Psaltis, Demetri et al Optics letters 10 2 ,98-100 (1985)
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COMMON TRAINING METHODS

Training Mechanism Advantages Disadvantages
Reservoir Computing - easy to implement - does not exploit the full potential of the hardware
BP with backward pass in a digital twin * - allows to train the full system - needs a precise model or digital twin, big overhead

- partial knowledge of the model is needed
- gradients have a random direction, reduced
Augmented Direct Feedback Alignment 2 - allows to train the full system performance

Forward-Forward training 3 - allows to train deep models layerwise - needs a precise model or digital twin

- energy function of the system needs to match certain
Equilibrium propagation # - performs backprop based on system dynamics criteria

Having a potentially resource heavy model is counterproductive, setup is not autonomous.

1.Wright, L. G., et al.. (2022). Deep physical neural networks trained with backpropagation. Nature, 601(7894), 549-555.

2.Nakajima et al. (2022). Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nature Communications, 13(1), 7847.
3.Hinton, G. (2022). The forward-forward algorithm: Some preliminary investigations. arXiv preprint arXiv:2212.13345.

4.Scellier, B., & Bengio, Y. (2017). Equilibrium propagation: Bridging the gap between energy-based models and backpropagation. Frontiers in computational neuroscience, 11, 24.
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OFFLINE TRAINING

System Performance

NN 100 training Wout + 60%

NN 100 training Wout +/- 87%

NN 100 training Wout and Win 97%
VCSEL offline Wout training full res 88%
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