
Advanced Machine Learning
Practical 3: Classification
(SVM, RVM & AdaBoost)

Professor: Aude Billard
Assistants: Mikhail Koptev and Mert Kayaalp

E-mails: aude.billard@epfl.ch,
mikhail.koptev@epfl.ch, mert.kayaalp@epfl.ch

Spring Semester 2021

1 Introduction

During this week’s practical we will focus on understanding and comparing the perfor-
mance of the different non-linear classification methods seen in class. We will begin by
studying the influence of hyper-parameters on kernel methods, such as SVM and its
variants (C-SVM and ν-SVM, RVM) on 2D Datasets. Then, we will try an instance of
a Boosting method, specifically AdaBoost, and compare its performance to the kernel
methods.

2 ML toolbox

ML toolbox contains a set of methods and examples for easily learning and testing ma-
chine learning methods on your data in MATLAB. It is available in the following link:

https://github.com/epfl-lasa/ML_toolbox

From the course Moodle webpage (or the website), the student should download and
extract the .zip file named TP3-Classification.zip which contains the following files:

Code Datasets setup TP3.m

Code/TP3 svm.m Datasets/rvm-ripley-dataset.mat

Code/TP3 rvm.m Datasets/very-nonlinear-data.mat

Code/TP3 adaboost.m

Before proceeding make sure that ./ML toolbox is at the same directory level as the TP
directory ./TP3-Classification and setup TP3.m as follows:

My AML Practicals Folder

ML toolbox

TP3 Classification

setup TP3.m

1

https://github.com/epfl-lasa/ML_toolbox

Now, to add these directories to your search path, type the following in the MATLAB
command window:

1 >> setup TP3.m

NOTE: To test that all is working properly with ML Toolbox you can try out some
examples of the toolbox; look in the examples sub-directory.

3 Non-linear Classification Techniques

In classification problems, we typically have a dataset D = {(x1, y1), . . . , (x
M , yM)} where

xi ∈ RN is the i-th N -dimensional data point (or feature vector) from M samples and
yi ∈ {−1, 1} is the categorical outcome (or class label) corresponding to each data point.
The goal is then to learn a mapping function y = f(x) : RN → Z, such that, given a
new sample (or query point) x′ ∈ RN we can predict its label; i.e. y′ = f(x′) ∈ {−1, 1}
for the binary classification case. If a dataset is linearly separable, then f(x) can be a
simple linear function, this, however, is rarely the case for real-world datasets. Hence,
one must apply non-linear classification techniques in order to find the non-linear decision
boundaries in the dataset.

In this practical, we will cover two types of techniques: (i) kernel methods and (ii)
Boosting. For the former, we will study Support Vector Machines (SVM) and Relevance
Vector Machines (RVM). These methods encode the decision boundary as a hyper-plane
in feature space φ(x) : RF . They follow the same logic as previously seen kernel methods:

1. Lift data to high-dimensional feature space φ(x) : RF , where it might be separable.

2. Apply linear operations in that space.

To learn f(x) with SVM/RVM, we must find the optimal hyper-parameters1 which will
optimize the objective function (and consequently the parameters of the class decision
function). Choosing the best hyper-parameters for your dataset is not a trivial task,
we will analyze their effect on the classifier and how to choose an admissible range of
parameters. For the Boosting technique, we will focus on the well-known Adaboost
algorithm. This method, constructs a strong classifier as a linear combination of weak
classifiers. The weak classifiers (WC) are chosen iteratively among a large set of randomly
created WC and combined by updating weights of data-points not well classified by the
previous combination of WC. We will compare the performance of SVM vs Adaboost
(with decision stumps as the WC) on multiple datasets.

A standard way of finding optimal hyper-parameters is by doing a grid search with
cross-validation over a range of parameters, i.e. systematically evaluating each possible
combination of hyper-parameters within a given range. We will do this for different
datasets and discuss the difference in performance, model complexity and sensitivity to
hyper-parameters.

1C: penalty for C-SVM, ν: bounds for ν-SVM and kernel type hyper-parameters for all methods.

2

Classification Metrics

Many metrics have been proposed to evaluate the performance of a classifier. Most
of which, come from a combination of values from the confusion matrix (or error
matrix)2. In this matrix, the rows represents the real classes of the data and the columns
the estimated classes. The diagonal represents the well classified examples while the rest
indicates confusions. In the case of a binary classifier (i.e. y ∈ {−1, 1}), the following
quantities have to be computed:

• True positives (TP): number of test samples with a positive estimated label for which
the actual label is also positive (good classification)

• True negatives (TN): number of test samples with a negative estimated label for which
the actual label is also negative (good classification)

• False positives (FP): number of test samples with a positive estimated label for which
the actual label is negative (classification errors)

• False negatives (FN): number of test samples with a negative estimated label for which
the actual label is positive (classification errors)

Table 1: Confusion matrix
Estimated labels

Positive Negative

Positive
True positives

(TP)
False negatives

(FN)
Real labels

Negative
False positives

(FP)
True negatives

(TN)

In this practical, we will use the following metrics to evaluate our classification algorithms:

1. Accuracy: The classification accuracy represents the percentage of correctly classi-
fied data points, as follows:

ACC =
TP + TN

P +N
(1)

2. F -measure: The F -measure is a well-known classification metric which represents
the harmonic mean between Precision (P = TP

TP+FP
) and Recall (R = TP

TP+FN
)

F =
2PR

P +R
(2)

It conveys the balance between exactness (i.e. precision) and completeness (i.e.
recall) of the learned classifier.

2See this wikipedia entry for more metrics: https://en.wikipedia.org/wiki/Confusion_matrix

3

https://en.wikipedia.org/wiki/Confusion_matrix

Grid Search with Cross-Validation

To tune the optimal hyper-parameters in methods such as SVM and RVM, we can do an
exhaustive search over a grid of the parameter space. This is typically done by learning
the decision function for each combination of hyper-parameters and computing a metric
of performance. However, testing the learned decision function on the data used to train
it is a big mistake, due to over-fitting. This is where Cross-Validation (CV) comes in:

“Cross-validation refers to the practice of confirming an experimental finding by repeating
the experiment using an independent assay technique” (Wikipedia).

In machine learning, CV consists in holding out part of the data to validate the perfor-
mance of the model on un-seen samples. The two main CV approaches are k-fold and
Leave One Out (LOO). In this practical we will use the former. In k-fold CV the training
set is split into k smaller sets and the following procedure is repeated k times:

1. Train a model using k − 1 folds as training data.

2. Validate the model by computing a classification metric on the remaining data.

For grid search, the previous steps are repeated k times for each combination of hyper-
parameters in the parameter grid. The overall classification performance can then be
analyzed through the statistics (e.g. mean, std. deviation, etc) of the metrics computed
from the k validation sets.

4 Support Vector Machines (SVM)

SVM is one of the most powerful non-linear classification methods to date, as it is able to
find a separating hyper-plane for non-seperable data on a high-dimensional feature space
using the kernel trick. Yet, in order for it to perform as expected, we need to find the ‘best’
hyper-parameters given the dataset at hand. In this section we will compare its variants
(C-SVM, ν-SVM) and get an underlying intuition of the effects of its hyper-parameters
and how to choose them.

4.1 C-SVM

Given a data set D = {(x1, y1), . . . , (x
M , yM)} of M samples, for xi ∈ RN , in which the

class label yi ∈ {−1,+1} is either positive or negative, C-SVM seeks to minimize the
following optimization problem:

min
w∈H,ξ∈RM

(
1

2
||w||2 +

C

M

M∑
i=1

ξi

)
s.t. yi

(
〈w,Φ(xi)〉+ b

)
≥ 1− ξi, ∀i = 1, . . .M

(3)

where ξi ≥ 0 are the slack variables, b ∈ R is the bias, C ∈ R is a penalty factor
used to trade-off between maximizing the margin and minimizing classification errors;
Φ : RN → RF is mapping function of the input data into some higher-dimensional
Hilbert space H and w ∈ H is orthogonal to the separating hyper-plane in that space.

4

As seen in class, w ∈ H can be expressed as a linear combination of the training (feature)
vectors:

w =
M∑
i=1

αiyiΦ(xi) (4)

where αi > 0 for support vectors. The constraint in (3) can then be represented as:
yi (k(x,xi) + b) ≥ 1 − ξi, where k(.) is a positive definite kernel, representing the dot
product k(x,xi) = 〈Φ(x),Φ(xi)〉 of the data-points in H. The SVM decision function
y(x)→ {−1,+1} then takes the following form:

y(x) = sgn

(
M∑
i=1

αiyi k(x,xi) + b

)
, (5)

whose parameters are estimated by maximizing the Lagrangian dual of (3) wrt. α,

maximize
αi≥0

M∑
i=1

αi −
1

2

M∑
i=1

M∑
j=1

αiαjyiyjk(xi,xj)

s.t. 0 ≥ αi ≥ C ∀i,
M∑
i=1

αiyi = 0.

(6)

where k(x,xi) is the kernel function, which will be the Radial Basis function for this
tutorial. The parameters for this decision function are learned by solving the Lagrangian
dual of the optimization problem (3) in feature space. As this was seen in class, it will
not be covered here. There are extensions such to be able to handle multi-class problems,
but in this tutorial we will be focusing on the binary case.

Kernels: SVM has the flexibility to handle many types of kernels, we have three options
implemented in ML toolbox:

• Homogeneous Polynomial: k(x,xi) = (〈x,x〉)p,
where p > 0 and corresponds to the polynomial degree.

• Inhomogeneous Polynomial: k(x,xi) = (〈x,x + d〉)p,
where p > 0 and corresponds to the polynomial degree and d ≥ 0, generally d = 1.

• Radial Basis Function (Gaussian): k(x,xi) = exp
{
− 1

2σ2 ||x− xi||2
}

,
where σ is the width or scale of the Gaussian kernel centered at xi

Hyper-parameters: Depending on the kernel, one has several open hyper-parameters
to choose. For example, when using the RBF kernel, we would need to find an optimal
value for both C and σ. Intuitively, C is a parameter that trades-off the misclassification
of training examples against the simplicity of the decision function. The lower the C, the
smoother the decision boundary (with risk of some misclassifications). Conversely, the
higher the C, the more support vectors are selected far from the margin yielding a more
fitted decision boundary to the data-points. Intuitively, σ is the radius of influence of the
selected support vectors, if σ is very low, it will be able to encapsulate only those points
in the feature space which are very close, on the other hand if σ is very big, the support
vector will influence points further away from them.

5

Illustrative example: To see the effects of the hyper-parameters on C-SVM with
RBF Kernel, open the accompanying MATLAB script: TP3 svm.m and run the first
code sub-block 1a to load the circles dataset shown in Figure 1(a). In code sub-block
2(a) you can set the desired hyper-parameter values as follows:

1 %% 2a) EXAMPLE SVM OPTIONS FOR C-SVM with RBF Kernel%
2 clear options
3 options.svm type = 0; % 0: C-SVM, 1: nu-SVM
4 options.kernel type = 0; % 0: RBF, 1: Polynomial (0 is the default)
5 options.C = 1; % Cost (C \in [1,1000]) in C-SVM
6 options.sigma = 1; % radial basis function: ...

The next code sub-block 2(b) gives an example of setting the hyper-parameters for a
polynomial kernel. After choosing these parameters you can run the train-svm code
presented in the following sub-block:

1 %% Train SVM Classifier
2 [predicted labels, model] = svm classifier(X, labels, options, []);
3

4 % Plot SVM decision boundary
5 ml plot svm boundary(X, labels, model, options, 'draw');

To visualize a 3D surface mesh for the decision function change ‘draw’ to ‘surf’. This
will generate the plot in Figure 1(b). Try this yourself and generate the results in Figure
1(c)1(d)1(e)1(f). You will see that for many combinations of C and σ a satisfactory
classification is achieved (i.e. ACC = [0.99, 1]).

So, how do we find the optimal parameter choices? Manually seeking the optimal
combination of these values is quite a tedious task. For this reason, we use grid search
on the open parameters. We must choose admissible ranges for these, in the case of
RBF it would be for C and σ. Additionally, in order to get statistically relevant results
one has to cross-validate with different test/train ratio. A standard way of doing this
is applying k-fold Cross Validation for each of the parameter combinations and keeping
some statistics such as mean and std. deviation of the accuracy for the k runs of that
specific combination of parameters, a typical number of fold is k = 10;

Grid Search with 10-fold Cross Validation For the circle dataset we can run C-
SVM (RBF kernel) with 10-fold CV over the following range of parameters C range =
[1 : 500] and σ range = [0.25 : 3], in the same MATLAB script you can specify the steps
to partition the range within these limits in code sub-block 2(c). This should generate
the plots in Figure 2.

1 %% 2c) Set options for SVM Grid Search and Execute
2 clear options
3 options.svm type = 0; % SVM Type (0:C-SVM, 1:nu-SVM)
4 options.limits C = [1, 500]; % Limits of penalty C
5 options.limits w = [0.25, 3]; % Limits of kernel width \sigma
6 options.steps = 10; % Step of parameter grid
7 options.K = 10; % K-fold CV parameter
8 options.log grid = 1; % log-sampled grid, set 0 for linear
9 ...

6

-5 0 5
x1

-4

-3

-2

-1

0

1

2

3

x
2

Concentric Circles Dataset

Class 1
Class -1

(a) Concentric Circle Classifica-
tion Problem (500 datapoints)

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

C = 1, σ = 1, SV = 64, Acc = 0.99

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(b) C=1, σ=1, SV=64

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

C = 100, σ = 1, SV = 30, Acc = 0.99

-4

-2

0

2

4

6

8
Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(c) C=100, σ=1, SV=30,

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

C = 1000, σ = 1, SV = 25, Acc = 1.00

-10

-5

0

5

10

15

20

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(d) C=1000, σ=1, SV=25

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

C = 100, σ = 0.5, SV = 85, Acc = 1.00

-6

-4

-2

0

2

4

6

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(e) C=100, σ=0.5, SV=85

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

C = 100, σ = 2, SV = 26, Acc = 0.99

-6

-4

-2

0

2

4

6

8

10

12

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(f) C=100, σ=2, SV=26

Figure 1: Decision Boundaries with different hyper-parameter values for the circle dataset.
Support Vector: data-points with white edges.

The heatmaps in Figure 2 represent the mean ACC and F -measure on both training
and testing sets. To choose the optimal parameters, we normally ignore the metric on
the training test and focus on the performance of the hyper-parameters in the testing
set. However, when a classifier is showing very poor performance on the testing set,
it is useful to analyze the performance on the training set. If the performance on the
training set is poor, perhaps the parameter ranges are off, or you are not using the ap-
propriate kernel or your dataset is simply not separable with this method. Notice the
option options.log grid = 1; by setting it to 1, this will generate a logged-grid over
the parameter ranges you selected. Using a logged-grid is common in machine learning
and might be able to explore better the parameter range. By setting options.log grid

= 0; this will generate a linear grid within the range of parameters. Try both to see if
there’s a difference in the optimal parameter regions.

Given the grid search results, how do we choose the optimal parameters? One
way of choosing the optimal hyper-parameter combination is to blindly select the iteration
which yields the maximum Test ACC or F -measure. This is already implemented for
you in code sub-block 2(c), the optimal values (according to the mean test ACC) are
stored in C opt and sigma opt. For this specific run we achieved a Max. Test ACC of
97% with C = 31.58, σ = 3. We can run code sub-block 2(d) to learn an C-SVM with
these optimal parameters and plot the decision boundary, as in Figure 3(a).

7

Train Accuracy (Mean)

0.25 0.33 0.43 0.57 0.75 0.99 1.31 1.73 2.28 3.00

σ

 1.00

 1.99

 3.98

 7.94

 15.83

 31.58

 63.00

125.66

250.66

500.00

C

0.97

0.975

0.98

0.985

0.99

0.995
Train F-measure (Mean)

0.25 0.33 0.43 0.57 0.75 0.99 1.31 1.73 2.28 3.00

σ

 1.00

 1.99

 3.98

 7.94

 15.83

 31.58

 63.00

125.66

250.66

500.00

C

0.97

0.975

0.98

0.985

0.99

0.995

Test Accuracy (Mean)

0.25 0.33 0.43 0.57 0.75 0.99 1.31 1.73 2.28 3.00

σ

 1.00

 1.99

 3.98

 7.94

 15.83

 31.58

 63.00

125.66

250.66

500.00

C

0.945

0.95

0.955

0.96

0.965

0.97
Test F-measure (Mean)

0.25 0.33 0.43 0.57 0.75 0.99 1.31 1.73 2.28 3.00

σ

 1.00

 1.99

 3.98

 7.94

 15.83

 31.58

 63.00

125.66

250.66

500.00

C

0.945

0.95

0.955

0.96

0.965

0.97

Figure 2: Heatmaps from Grid search on C and σ with 10-fold Cross Validation. (top row)
Mean Train Accuracy and F−measure and (right) Mean Test Accuracy and F−measure

As can be seen, the classifier does recover the circular shape of the real boundary from
the dataset. However, this is not the only optimal value. If we take a look back at the
heatmap for Test Mean ACC (Figure 2). The max ACC was chosen from the white
area on the right-bottom region of the heatmap. We can see that there is another big
region with really high accuracy at the bottom-center of the heatmap where both C and
σ values are smaller. Intuitively, if σ is smaller, we should have more support vectors,
so, let’s choose the mid-point of this area which gives us C = 4, σ = 1, this yields the
decision boundary seen in Figure 3(b), it yields the same accuracy, but as we can see,
it is a bit more over-fitted to the overlapping points in the boundary. Luckily, in this
run we obtained the ‘best’ model from taking the maximum of the grid search results.
Sometimes, this is not the case, and one should analyze the heatmaps.

NOTE: It’s fine if you can’t reproduce exactly the same heatmaps. In fact, due to the
random selection of points for the k-folds one will tend to get slightly different results.

Why should we seek for the least number of support vectors? The number of
support vectors needed to recover the decision boundary for our classifier is in fact the
measure of model complexity for SVMs.

8

-3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

C = 32.00, σ = 3, SV = 47, Acc = 0.97

-2

0

2

4

6

8

10
Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(a) C=32, σ=3, SV=47,ACC=0.97

-3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

C = 4.00, σ = 1, SV = 56, Acc = 0.97

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5
Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(b) C=4, σ=1, SV=56,ACC=0.97

Figure 3: C-SVM decision boundary with optimal values from Grid Search with CV.

TASK 1: Find optimal C-SVM parameters for different datasets

• Follow the same evaluation for C-SVM on the different datasets (Figure 4) available
in the MATLAB script TP3 svm.m by running code sub-blocks 1(b)-(d).

• Try out different kernels and evaluate their performance or feasibility depending on
the dataset.

• Find the admissible range of parameters for each dataset and for each method.

• Do grid search with CV on the selected parameter ranges.

(a) Checkerboard Dataset
Samples M = 400

(b) Very non-linear dataset
Samples M = 863

(c) Ripley Dataset
Samples M = 100

Figure 4: Datasets for non-linear classification.

9

4.2 ν-SVM

As can be seen, for a fixed value of σ, the C parameter plays a very important role in
the number of support vectors obtained from solving the C-SVM optimization problem
(3). To have more control over this interaction, the ν-SVM formulation was proposed. In
ν-SVM, rather than setting a fixed value as a penalty (C) for mis-classifications, we use
a new variable ρ which controls for the lower bound on ||w|| and set the hyper-parameter
ν ∈ (0, 1) which modulates the effect of ρ on the new objective function:

min
w∈H,ξ∈RM ,ρ∈R

(
1

2
||w||2 − νρ+

1

M

M∑
i=1

ξi

)
s.t. yi(〈wT ,xi〉+ b) ≥ ρ− ξi
ξi ≥ 0, ρ ≥ 0, ∀i = 1, . . .M

(7)

ν represents an upper bound on the fraction of margin error (i.e. number of data-points
misclassified in the margin) and a lower bound for the ratio of support vector wrt. to total
number of data-points ν ≤ #SV

M
. Adding these new variables only affects the objective

function (Equation 7), the decision function stays the same as for C-SVM (Eq. 5).

Illustrative example: To see the effects of the ν on ν-SVM with RBF Kernel, open
the accompanying MATLAB script: TP3 svm.m and run the first code sub-block 1a

to load the circles dataset shown in Figure 1(a). In code sub-block 3(a) you can set the
desired hyper-parameter values as follows:

1 %% 3a) EXAMPLE SVM OPTIONS FOR nu-SVM with RBF Kernel%
2 clear options
3 options.svm type = 1; % 0: C-SVM, 1: nu-SVM
4 options.nu = 0.05; % nu \in (0,1) ...
5 options.sigma = 1; % radial basis function: ...

The next code sub-block 3(b) gives an example of setting the hyper-parameters for a
polynomial kernel. After choosing these parameters you can run the train-svm code
presented in the following sub-block:

1 %% Train SVM Classifier
2 [predicted labels, model] = svm classifier(X, labels, options, []);
3

4 % Plot SVM decision boundary
5 ml plot svm boundary(X, labels, model, options, 'draw');

This will generate the plot in Figure 5(a). Try this yourself and generate the results
in Figure 5(b) and 5(c) for the different values of ν with fixed σ = 1. As can be seen,
the larger the ν, the more support vectors. To find the optimal combination of ν and
the kernel hyper-parameter, in this case σ, we must apply grid search on a range of
hyper-parameters.

As can be seen in Figure 6, there are certain combinations which yield very poor per-
formance. For this reason, all the values above 0.9 are shaded as white. By selecting the
combination of σ = 2.014 and ν = 0.32, we can achieve a maximum mean ACC = 0.966.
The decision boundaries of these optimal parameters are presented in Figure 7(a). Be-
cause of the high value of ν, the optimization algorithm was able to capture an almost

10

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

ν = 0.05, σ = 1, SV = 52, Acc = 0.958

-10

0

10

20

30

40

50

60

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(a) ν=0.05, σ=1, SV=52

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

ν = 0.10, σ = 1, SV = 60, Acc = 0.960

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(b) ν=0.1, σ=1, SV=60

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

ν = 0.25, σ = 1, SV = 135, Acc = 0.970

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(c) ν=0.25, σ=1, SV=135

Figure 5: Decision Boundaries with different hyper-parameter values for ν-SVM on the
circle dataset. Support Vector: data-points with white edges.

Test Accuracy (Mean)

0.50 0.61 0.74 0.91 1.11 1.35 1.65 2.01 2.46 3.00

σ

0.01

0.02

0.02

0.04

0.06

0.09

0.14

0.21

0.32

0.50

ν

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Test F-measure (Mean)

0.50 0.61 0.74 0.91 1.11 1.35 1.65 2.01 2.46 3.00

σ

0.01

0.02

0.02

0.04

0.06

0.09

0.14

0.21

0.32

0.50
ν

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 6: Heatmaps from Grid search on ν and σ with 10-fold Cross Validation. (left)
Mean Test Accuracy and (right)Mean Test F −measure

ideal margin, however, the number of support vectors is quite high. If we look deep into
the heatmap, we can see that we can achieve the same accuracy with a lower value of
ν = 0.09 and σ = 1.23, which yields the decision boundary in Figure 7(b). The class
decision boundary is not a perfect circle anymore, however, it generates a tighter margin
with much fewer support vectors.

TASK 2: Find optimal ν-SVM parameters for different datasets

• Follow the same evaluation for ν-SVM on the different datasets (Figure 4) available
in the MATLAB script TP3 svm.m by running code sub-blocks 1(b)-(d).

• Try out different kernels and evaluate their performance or feasibility depending on
the dataset.

• Find the admissible range of parameters for each dataset and for each method.

• Do grid search with CV on the selected parameter ranges.

11

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

ν = 0.32, σ = 2.01465, SV = 164, Acc = 0.966

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(a) ν=0.32, σ=2.014, SV=164,ACC=0.97

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

ν = 0.09, σ = 1.23, SV = 52, Acc = 0.966

-3

-2

-1

0

1

2

3
Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(b) ν=0.09, σ=1.23, SV=52,ACC=0.97

Figure 7: ν-SVM decision boundary with optimal values from Grid Search with CV.

4.3 Relevance Vector Machines (RVM)

Another non-linear classification algorithm, that can be seen as a variant of SVM with
the goal of optimizing for the least number of support vectors as possible, is the Rel-
evance Vector Machine (RVM). The RVM applies the Bayesian ‘Automatic Relevance
Determination’ (ARD) methodology to linear kernel models, which have a very similar
formulation to the SVM, hence, it is considered as a sparse SVM. When predictive models
are linear in parameters, ARD can be used to infer a flexible, non-linear, predictive model
which is both accurate and uses a very small number of relevant basis functions (in our
case support vectors) from a large initial set. The predictive linear model for RVM has
the following form:

y(x) =
M∑
i=1

αi k(x,xi) = αTΨ(x) (8)

where Ψ(x) = [Ψ0(x), . . . ,ΨM(x),]T is a linear combination of basis functions Ψ(x) =
k(x,xi), α is a sparse vector of weights and y(x) is the binary classification decision
function y(x) → {1, 0}. The problem in RVM is now to find a sparse solution for α,
where αi is non-zero when the datapoint is a relevant ’support’ vector and zero otherwise.
Finding such a sparse solution is not trivial. ARD is a method tailor-made to discover
the relevance of parameters for a predictive model by imposing a prior on the parameter
whose relevance needs to be determined. When attempting to calculate α we take a
Bayesian approach and assume that all output labels yi are i.i.d samples from a true
model y(xi) (Equation 8) subject to some Gaussian noise with zero-mean:

yi(x) = y(xi) + ε

= αTΨ(xi) + ε
(9)

12

where ε ∝ N (0, σ2
ε). We can then estimate the probability of a label yi given x with a

Gaussian distribution with mean on y(xi) and variance σ2
ε , this is equivalent to:

p(yi|x) = N (yi|y(xi), σ2
ε)

= (2πσ2
ε)
− 1

2 exp

{
− 1

2σ2
ε

(yi − y(xi)2
}

= (2πσ2
ε)
− 1

2 exp

{
− 1

2σ2
ε

(yi − αTΨ(xi))2
} (10)

Thanks to the independence assumption we can then estimate the likelihood of the com-
plete dataset with the following form:

p(y|x, σ2
ε) = (2πσ2

ε)
−M

2 exp

{
− 1

2σ2
ε

||y − αTΨ(x)||2
}

(11)

We could then approximate α and σ2
ε through MLE (Maximum Likelihood Estimation),

however, this would not yield a sparse vector α, instead it would give us an over-fitting
model, setting each point as a relevant basis function. To promote sparsity on the solution,
we define an explicit prior probability distribution over α, namely a zero-mean Gaussian:

p(α|a) =
M∏
i=0

N (αi|0, a−1i) (12)

where a = [a0, . . . , aM] is a vector of parameters ai, each corresponding to an independent
weight αi indicating it’s strength (or relevance). For the binary classification problem,
rather than predicting a discriminative membership of a class y → {1, 0}, in RVM we
predict the posterior probability P (y|x) of one class y ∈ {1, 0} given input x by gener-
alizing the linear model from Equation 8 with the logistic sigmoid function σ(y) of the
form:

σ(y) =
1

1 + exp{−y}
(13)

The Bernoulli distribution is used for P (y|x) and the likelihood then becomes:

P (y|α) =
M∏
i=1

σ{y(xi)}yi [1− σ{y(xi)}]1−yi (14)

Now, following Bayesian inference, to learn the unknown parameters α, a we start with
the decomposed posterior3 over unknowns given the data:

p(α, a, |y) = p(α|y, a)p(a|y) (15)

where unfortunately the posterior distribution over the weights p(α|y, a) and the hyper-
parameter posterior p(a|y) are not analytically solvable. It can however be approximated

3Refer to the Tipping’s paper on RVM to understand how this and subsequent terms were derived.
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research 1, 211–244.

13

by using Laplace’s method4. Estimating for α then becomes a problem of maximizing
the weight posterior distribution p(α|y, a), and since p(α|y, a) ∝ P (y|α)p(α|a) (which
are Equations 14 and 12 corresponding to the likelihood and prior of the weights α) this
is equivalent to maximizing the following equation over α:

log{P (y|α)p(α|a)} =
M∑
i=1

[yi log σ{y(xi)}+ (1− yi) log(1− σ{y(xi)})]− 1

2
αTAα (16)

where A = diag(a0, . . . , aM). This is optimized in an iterative procedure, a is updated in
each step following some derivations from Tipping. Once we have learned our parameters,
Equation 14 is then used to estimate probabilities for each class, in the binary case when
p(y|x) = 0.5 this corresponds to the decision boundary, values p(y|x) > 0.5 correspond
to the positive class and consequently p(y|x) < 0.5 to the negative class. Contrary to
SVM, the basis functions for the linear model Ψi(x) are not restricted to positive-definite
kernels. Nevertheless, in this tutorial we will consider only the RBF kernel for the RVM.

Illustrative Example: To see the effects of σ on RVM with RBF kernel, open the
accompanying MATLAB script: TP3 rvm.m and run the first code sub-block 1(a) to
load the circles dataset used in the previous examples. In code sub-block 2(a) you can
set the desired hyper-parameter values as follows:

1 %% 4a) Try RVM on Data
2 %Set RVM OPTIONS%
3 clear rvm options
4 rvm options.useBias = true;
5 rvm options.kernel = 'gauss';
6 rvm options.width = 0.25;
7 rvm options.maxIts = 100;
8

9 % Train RVM Classifier
10 [predict labels, model] = rvm classifier(X, labels , rvm options, []);

The variable maxIts sets the maximum number of iterations for the iterative optimization
algorithm used to estimate the parameters of the RVM model. In Figure 8(a) and 8(b)
we can see the decision boundaries generated by learning RVMs with different values of
σ. As in the previous methods, we can use grid search with cross-validation to find the
optimal parameter. By running code sub-block 2(b) we can do this grid search for RVM
with RBF kernel by setting the range of sigma as follows:

1 %% 4b) Do Grid Search on RVM
2 clear options
3 % Set Options for RVM Grid Search
4 options.limits w = [0.5, 5]; % Limits of kernel width \sigma
5 options.steps = 10; % Step of parameter grid
6 options.K = 5; % K-fold CV parameter
7 ...

Note that in this case, we are using k = 5 as the optimization for RVM takes longer
for each iteration, by increasing k = 10 you may get similar results, perhaps with less

4Refer to Tipping paper for Laplace’s Approximation.

14

variance on the performance. For this dataset, grid search with cross-validation results
in the plots in Figure 9, where we can visualize both mean and std. deviation for the k
folds. From these curves we can infer that the optimal σ is 2.32, which gives a very close
result to that of Figure 8(b).

RVM σ = 0.5, RV = 14, Acc = 0.994

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

-0.5

0

0.5

1

1.5

Decision values (p(x))

Class 1

Class 0

p=0.5

p=0.75

p=0.25

(a) σ=0.5, RV=14, ACC=0.994

RVM σ = 2.5, RV = 18, Acc = 0.978

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

-0.5

0

0.5

1

1.5

Decision values (p(x))

Class 1

Class 0

p=0.5

p=0.75

p=0.25

(b) σ=2.5, RV=18, ACC=0.978

Figure 8: RVM with different values of σ for the RBF Kernel.

0.50 0.65 0.83 1.08 1.39 1.80 2.32 3.00 3.87 5.00

σ

0.75

0.8

0.85

0.9

0.95

1

1.05

A
c
c
u

ra
c
y

RVM 5-fold CV

Test

Train

0.50 0.65 0.83 1.08 1.39 1.80 2.32 3.00 3.87 5.00

σ

0.75

0.8

0.85

0.9

0.95

1

1.05

F
-M

e
a

s
u

re

RVM 5-fold CV

Test

Train

Figure 9: Plots from Grid search on σ with 5-fold Cross Validation on Circles dataset.
(left) Mean/Std.dev. Test and Train Accuracy and (right) Mean/Std.dev. Test and Train
F −measure

15

TASK 3: Find optimal RVM parameters for different datasets

• Follow the same evaluation as for C-SVM and ν-SVM on the different datasets
(Figure 4) available in the MATLAB script TP3 rvm.m by running code sub-
blocks 1(b)-(d).

• Only the RBF Kernel is available in ML toolbox, find the admissible range of σ.

• Do grid search with CV on the selected parameter ranges.

HINT: The estimation of the RVM parameters tends to give numerical errors when the
Kernel matrix becomes ill-conditioned. This may happen for the RBF kernel when σ is
set too high or too low. If this is the case, the following message will show up in the
MATLAB command window and nothing will be estimated:

1 ** (PosteriorMode) warning: ill-conditioned Hessian (1.87281e-16)
2 ** Giving up!
3 ** This error was probably caused by an ill-conditioned kernel matrix.
4 ** Try adjusting (reducing) the length scale (width) parameter of ...

the kernel

If you don’t take this into consideration and continue with doing grid search on a ill-fitted
range, the performance metrics (i.e. ACC and F -measure) for these σ values will give
zero values.

16

4.4 AdaBoost

The AdaBoost algorithm iteratively builds a strong classifier, C(x)→ {−1,+1}, through
a weighted linear combination of simple, also known as weak classifiers φ(x)→ {−1,+1}.
The original formulation of AdaBoost considers binary classification problems. There are
extensions such as to be able to handle multi-class problems, but in this tutorial we will
be focusing on the binary case. Given a data set (x1, y1), . . . , (x

M , yM) of M samples in
which the class label yi ∈ {−1,+1} is either positive or negative and a set of T weak
classifiers φ1(x), . . . , φT (x), we seek to learn the strong classifier C(x), Equation 17,

C(x) = sign

(
T∑
t=1

αt φt(x)

)
, αi ∈ R (17)

In theory you can use any classifier for φt(xi), but usually it should be very simple and
cheap to compute. In this practical we will consider decision stumps as our weak
classifier, Equation 18:

φt(x; θ) =

{
+1 if xθ1 > θ2

−1 otherwise
(18)

A decision stump is a function which separates the classes along a dimension. It has two
parameters θ = {θ1, θ2}. The first parameter indicates in which dimension the decision
boundary will be placed and the second parameter decides where along this dimension
does the split occur. The Adaboost algorithm begins at iteration t = 1 with an equally
distributed set of weights for all training samples; Dt=1(i) = 1/M for i = 1, . . . ,M . Then,
the following steps are iteratively performed for t = 1, ..., T weak classifiers [1]:

1. The t-th weak classifier φt(x; θt, Dt) tries to find the best threshold in one of the data
dimensions to separate the data into two classes -1 and 1, which gives a classification
error of:

εt =

M∑
i=1

δ[φ(xi;θt,Dt)6=yi] (19)

2. The influence of this weak classifier on the total result, αt, is computed through the
following weighting function:

αt =
1

2
ln
(1− εt

εt

)
(20)

3. Training sample weights Dt+1 are update such that wrongly classified samples will have
more weight,

Dt+1(i) =
Dt exp(−αtyiφ(xi; θt, Dt))∑M
i=1Dt exp(−αtyiφ(xi; θt, Dt))

(21)

Illustrative Example: To understand the mechanism of building a strong non-linear
classifier from a set of weak linear classifiers, we will work on the circles dataset used
in the previous examples. Open the accompanying MATLAB script: TP3 adaboost.m
and run the first code sub-block 1(a) to load the circles dataset. In code sub-block 2(a)

you can set the desired number of weak classifiers T as follows:

17

1 %% 2a) Ada-boost
2 N weak = 1;
3 [classestimate,model,D]= adaboost classifier(X,labels,N weak,[]);
4 f = @(X)adaboost classifier(X,[],[],model);

This is the sole hyper-parameter one must tune for Adaboost. By setting it to different
values; i.e. T = [1, 3, 5, 10, 30] we can see that different decision boundaries are achieved.
In Figure 10(a)-10(d) the result of AdaBoost when only one weak classifier is used; we
clearly see the decision stump.

-4 -2 0 2 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

AdaBoost 1 weak classifier

(a)

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

C(x) with 1 φ(x)

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)

-4 -2 0 2 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

AdaBoost 3 weak classifier

(c)

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

C(x) with 3 φ(x)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d)

Figure 10: AdaBoost applied to the circle data set. Width of circles on the Left column
are proportional to the classification error and the crosses depict the points which have
been misclassified. In the Right column, the value is of the strong classifier function C(x)
before the sign operator is applied.

The figures on the right illustrate the non-signed output of Equation 17 and the figure
on the left is the result after taking the sign. Points which are misclassified have a cross
on them, but in addition you will see that the width of the data points have changed
(Left column). The width of a data point is proportional to the weight given by the
AdaBoost algorithm. When T = 3, the number of weak classifiers goes from one to three.
One can see how the second and third decision stumps were trained on the new weighted

18

-4 -2 0 2 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

AdaBoost 5 weak classifier

(a)

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

C(x) with 5 φ(x)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

(b)

-4 -2 0 2 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

AdaBoost 10 weak classifier

(c)

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

C(x) with 10 φ(x)

-0.5

0

0.5

1

(d)

-4 -2 0 2 4

x1

-4

-3

-2

-1

0

1

2

3

4

x
2

AdaBoost 30 weak classifier

(e)

-4 -2 0 2 4

x1

-4

-2

0

2

4

x
2

C(x) with 30 φ(x)

-1

0

1

2

3

(f)

Figure 11: AdaBoost applied to the circle data set. Width of circles on the Left column
are proportional to the classification error and the crosses depict the points which have
been misclassified. In the Right column, the value is of the strong classifier function C(x)
before the sign operator is applied.

dataset from the previous iteration. By increasing the number of weak classifiers, we
can see that a nearly perfect classification is achieved, see Figure 11(a)-11(f).

19

10 20 30 40 50 60 70 80 90 100

Decision Stumps

0.5

0.6

0.7

0.8

0.9

1

A
cc
u
ra
cy

10-fold CV

Test

Train

10 20 30 40 50 60 70 80 90 100

Decision Stumps

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

F
-M

ea
su
re

10-fold CV

Test

Train

Figure 12: AdaBoost, 10-fold CV over an increasing number of weak classifiers; for the
circle data set. The accuracy for both the train (green) and test (red) data sets are
shown.

Of course, finding the optimal number of weak classifiers like this is a tedious task. Hence,
we can apply the good ol’ grid search with cross-validation to find the optimal T . In order
to do so, we can run code sub-block 2(b) which should generate the plots in Figure 12.
You can see that the test error after 20 decision stumps has settled at around a 96.6%
accuracy.

TASK 4: Find the optimal number of weak classifiers for each dataset and
compare performance with other methods

• Follow the same evaluation procedure as for SVM on the different datasets available
(Figure 4) in the MATLAB script TP3 adaboost.m.

• Compare the performance of Adaboost to the previously seen SVM variants and
RVM, in terms of: accuracy/F-measure, training efficiency and model complexity.
Which algorithm is best suited for each dataset?

• How do all these methods compare when we have datasets with overlapping, noisy,
or unbalanced classes? Try generating your own datasets with the drawing GUI in
ML toolbox. In each corresponding MATLAB script: TP3 svm.m, TP3 rvm.m
and TP3 adaboost.m, the following code-sublock 1(e) is provided so that you
can draw your own datasets and convert them to a binary classification task:

1 %% 1e) Draw Data with ML toolbox GUI
2 clear all; close all; clc;
3 ml draw data
4 [N,M] = size(X);
5 X = X';
6 labels = ml 2binary(labels)';

Then we can apply each method on the dataset as shown in Figure 13.

20

-50 0 50

x1

-50

0

50

x
2

Drawn Dataset

Class1

Class2

(a) Drawn Dataset

-40 -30 -20 -10 0 10 20

-30

-20

-10

0

10

20

30

C = 1000.00, σ = 5, SV = 46, Acc = 0.976

-15

-10

-5

0

5

10

15

20

25Decision Values f(x)

f(x)=0

f(x)= +1

f(x)=-1

Class 1

Class -1

(b) C-SVM Decision Boundary

(c) RVM Decision Boundary

-40 -30 -20 -10 0 10 20

x1

-30

-20

-10

0

10

20

30

x
2

AdaBoost 60 weak classifier

(d) Adaboost Decision Boundary

Figure 13: Dataset with overlapping classes and the decision boundaries obtained by the
different algorithms.

References

[1] Robert E. Schapire. Explaining adaboost.

21

	Introduction
	ML_toolbox
	Non-linear Classification Techniques
	Support Vector Machines (SVM)
	C-SVM
	-SVM
	Relevance Vector Machines (RVM)
	AdaBoost

