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1 Introduction

During this week’s practical we will cover two more manifold learning algorithms, namely
(i) Laplacian Eigenmaps and (ii) Isomaps, and compare their projections to kernel PCA.
We will then perform Spectral Clustering, which involves applying K-means on the pro-
jections of these non-linear embeddings. Finally, we will evaluate the kernel K-Means
algorithm, which clusters and extracts the non-linear embedding simultaneously.

2 ML toolbox

ML toolbox contains a set of methods and examples for easily learning and testing ma-
chine learning methods on your data in MATLAB. It is available in the following link:

https://github.com/epfl-lasa/ML_toolbox

From the course Moodle webpage (or the website), the student should download and
extract the .zip file named TP2-Manifold+Clustering.zip which contains the following
files:

Code Code

TP2 proj methods.m TP2 kernel kmeans.m

TP2 spectral clustering.m setup TP2.m

Before proceeding make sure that ./ML toolbox is at the same directory level as the
TP directory ./TP2-Manifold+Clustering. You must also place setup TP2.m at the
same level. Now, to add these directories to your search path, type the following in the
MATLAB command window:

1 >> setup TP2
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NOTE: To test that all is working properly with ML Toolbox you can try out some
examples of the toolbox; look in the examples sub-directory.

3 Manifold Learning Techniques

In classical dimensionality reduction techniques, such as PCA and CCA, given a training
dataset X ∈ RN×M composed of M datapoints with N -dimensions, we seek to find a
lower-dimensional embedding Y ∈ Rp×M , through a mapping function f(x) : x ∈ RN →
y ∈ Rp where p ≤ N . In non-linear dimensionality reduction techniques, we may lift the
data into a higher dimensional space (i.e. > N) so as to find structure in the dataset. In
order to find a non-linear embedding of the dataset, all of the kernel techniques seen in
class (i.e. kPCA, kCCA and Spectral Clustering) rely on projecting the data-points
onto a set of vectors whose dimension can be p ≤ M . Reduction of the dimensionality
is hence done on the size of the dataset (N ×M) and not necessarily on the size of the
original space in which the datapoints are embedded (RN).

In the previous practical we learned about kernel PCA. In this practical we will
evaluate two other non-linear embedding methods, namely (i) Laplacian Eigenmaps
and (ii) Isomap. All of these techniques are based on a spectral decomposition of a
matrix. This matrix differs depending on the technique of choice. In kernel PCA, it
is the Gram (Kernel) matrix. In Spectral Clustering, it is the graph Laplacian which
we construct from a Similarity matrix. The Similarity matrix can be built from using
kernels as similarity measures, however, is not restricted to them. In fact, other similarity
measures can also be used, as long as they hold specific properties, such as positive
definitiveness, symmetry, among others.

3.1 Laplacian Eigenmaps

Given the dataset X ∈ RN×M , the Laplacian Eigenmaps [1] algorithm proceeds as follows:

1. Build Adjacency Graph: We begin by building an adjacency graph with M nodes,
and a set of edges connecting neighboring points. An edge is placed between the
i-th and j-th nodes if xi is among the k-nearest neighbors of xj. The k nearest
neighbors are selected under the Euclidean distance ||xi − xj||.

2. Compute Similarity matrix: We then compute the Similarity matrix S ∈ RMxM of
the graph, in this case, we use the Gaussian kernel as a measure of similarity:

Sij =

e−
||xi−xj ||2

2σ2 , if edge exists between i-th and j-th nodes

0, elsewhere
(1)

3. Construct the Eigenmaps: Given S, we can construct the diagonal weighting matrix D,
whose entries are column sums of S; i.e. Dii =

∑
j Sji. Once the Laplacian matrix

L = D− S is computed, we solve for the following generalized eigenvalue problem:

Le = λDe(
I−D−1S

)
e = λe

(2)
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We then order the Eigenvectors wrt. 0 = λ0 ≤ λ1 ≤ · · · ≤ λM ; i.e. U = [e0, e1, . . . , eM ]
for ei ∈ RM column-vectors. By selecting the first p eigenvectors, we construct the
datapoints on the p-dimensional manifold Y ∈ Rp×M as Y = [e1, . . . , ep]T

This mapping ensures minimal distortion while preventing arbitrary scaling. One must,
however, take into consideration the hyper-parameters k (to generate the adjacency graph
via the k-nearest neighbors ) and σ (the width of the Gaussian kernel) in order to achieve
the desired embedding.

3.2 Isomap (Isometric Mapping)

The Isomap algorithm [2], short for Isometric Feature Mapping, is a generalization of
Multi-Dimensional Scaling (MDS), which uses geodesic rather than Euclidean distances
to generate the similarity matrix S. The Isomap algorithm proceeds as follows:

1. Build Neighborhood Graph: We begin by building a neighborhood graph with M
nodes, and a set of edges connecting neighboring points. An edge is placed between
the i-th and j-th nodes if xi is among the k-nearest neighbors of xj. The k-nearest
neighbors are selected under the Euclidean distance ||xi − xj||.

2. Compute Similarity matrix: We then compute the similarity matrix S ∈ RMxM of
the graph, by applying the following equation to each pair of points:

Sij =


||xi − xj ||2, if edge exists between i-th and j-th nodes

min
k−NN

||xi − xj ||2, elsewhere

0, not in the same connected component

(3)

In other words, for nodes in connected components, if an edge exists between two nodes
we use the squared Euclidean distance. On the other hand, if there is no edge between
the nodes but they belong to the same connected component in the graph, we compute
the shortest path in the weighted point-graph using the Dijkstra algorithm. This yields
a matrix with the shortest path distances between all pairs of points.

3. Apply MDS to S: Given S, we must then compute the centered similarity matrix S′ of
square Euclidean distances as follows:

S′ij = −1

2

(
Sij −

1

M
Di −

1

M
Dj +

1

M2
Di,j

)
(4)

where Di =
∑

j=1 Sij , Dj =
∑

i=1 Sij and Di,j =
∑

i,j=1 Sij correspond to sum of each
row, sum of each column and sum of all elements of S, respectively. After performing
eigenvalue decomposition on S′ = UΛUT , we select the p eigenvectors with positive real
eigenvalues (as in PCA) and generate the scaled projections as: yji =

√
λie

i
j for i = 1, . . . , p

and j = 1, . . . ,M .
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3.3 Comparison of Non-linear Embedding Techniques

TASK 1: Try Kernel PCA, Laplacian Eigenmaps and Isomap to find the best
representation of 3D Datasets composed of 1000 points each.
In this task, you must try to determine which is the most suitable non-linear projection
method to uncover the ’true’ low-dimensional representation of different 3D datasets.
The datasets in question are depicted in Figure 1 and 2. In order to address this, you
should ask yourself the following questions:

• What is the underlying manifold that we want to uncover?
Hint: both datasets have an underlying 2D manifold.

• Once we know what low-dimensional representation to expect, which method seems
most suitable?

• For each method, what are the necessary hyper-parameters I have to tune and how
can I select them?

Once you have answered these questions, load the datasets by running sub-blocks 1(a)

and 1(b) of the accompanying MATLAB script: TP2 proj methods.m and find a good
projection for each method. As a baseline, we provide PCA in code block (2). The
following code blocks (3-5) contain the necessary code snippets to run kernel PCA
(3), Laplacian Eigenmaps (4) and Isomaps (5). In each code block, we provide a
description of the parameters to modify for each method. For example, in code block (4)

the Laplacian Eigenmap method is defined as follows:

1 %% Compute Laplacian Eigenmap with ML toolbox
2 options = [];
3 options.method name = 'Laplacian';
4 options.nbDimensions = 4; % Number of Eigenvectors to compute.
5 options.neighbors = 10; % Number of k-NN for Adjacency Graph
6 options.sigma = 1; % Sigma for Similarity Matrix
7 [proj LAP X, mappingLAP] = ml projection(X',options);

For each method, the generated projections will be computed automatically and stored
in the proj METHOD X variable. The dimensionality of these projections is defined in
options.nbDimensions. The mappingLAP variable is a data structure containing all the
necessary variables computed for each technique; e.g. eigenvectors, eigenvalues, kernel
matrix, similarity matrix, etc. For all methods covered in this practical, we can generate
different embeddings depending on the eigenvector or eigenvector pairs we choose. To
visualize these different embeddings, we can simply define the pair or set of projections
that we wish to see in a vector as follows:

1 % Plot result of Laplacian Eigenmaps Projection
2 ...
3 if exist('h4','var') && isvalid(h4), delete(h4);end
4 h4 = ml plot data(proj LAP X(:,[1 4]),plot options);
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Figure 1: 3D Swiss Roll Dataset.
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Figure 2: 3D Twin Peaks Dataset.

4 Spectral Clustering

These non-linear embedding methods are not only popular because they can transform
data to its ‘true’ manifold, but also because the eigenvalues of the Similarity, Laplacian
and Kernel matrices can be used to determine the number of K clusters of a dataset.
In fact, when non-linearly separable datasets are involved, we can apply a clustering
algorithm (i.e. K-means) to the embedded space; where the data is assumed to be less
non-linearly separable. This procedure is called Spectral Clustering. In this practical, we
will focus on comparing results of applying the following Spectral Clustering variants, to
non-linearly separable datasets:

1. kPCA + K-means

2. Laplacian Eigenmaps + K-means

3. Isomap + K-means

Following we will introduce some of the metrics used to evaluate the performance of
K-means clustering.

4.1 Evaluation Metrics for K-Means Clustering

Clustering is a process of partitioning a set of data (or objects) in a set of meaningful
sub-classes, called clusters. The K-means algorithm is a widely used clustering technique
that seeks to minimize the average squared distance between points in the same cluster
(Figure 3). In other words, given a dataset X = {x1, . . . ,xM} where xi ∈ RN we can
describe it with K clusters, each represented by a centroid µk ∈ RN , by minimizing the
total squared distance between each point and its closest centroid with the following cost
function,

J(µ1, . . . , µk) =
K∑
k=1

∑
xi∈Ck

||xi − µk||2 (5)

where Ck ∈ {1, . . . , K} is the cluster label. This is an NP-hard problem, however, the
K-means algorithm provides a local search solution for (5) through an iterative procedure
proposed in the 1980’s by Stuart P. Lloyd [3].
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Figure 3: Illustration of k-means clustering. We have a dataset X with N = 2 and M = 9, by
setting K = 3 we would like to estimate the red points corresponding to the µ = {µ1, µ2, µ3}
and the decision boundaries describing the data partition (depicted by the black lines between
clusters).

In practice, one can encounter two types of datasets in clustering:

1. Datasets where the number of clusters K is visually apparent, or datasets which are
already linearly separable, and hence, can be easily partitioned, as shown in Figure
4. In this dataset, clearly K = 4.

2. Datasets where we either cannot visualize the data or simply don’t know the correct
number of clusters, such as the dataset in Figure 5. This dataset is composed of
two classes with overlapping points. However, it is not clear how many K clusters
to use, as clustering does NOT consider the labels. If we apply K-means on this
dataset we can set K to different values, and they will all converge to a reasonable
partition (see Figure 6, 7 and 8).
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Figure 4: Data-points sampled from a K = 4
component GMM. Colored points/ellipses cor-
respond to the parameters of each component.
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Figure 5: The 2D Ripley Dataset, which
is composed of two classes with overlapping
points.

So, how do we determine the best clustering?
For this, we can use a set of metrics which are used to evaluate clustering performance
based on Equation 5. Following we provide the equations of the three clustering metrics
that will be used in this practical:

• RSS: The Residual Sum of Squares is, in fact, the cost function that K-means is trying
to minimize (Equation 5.), hence

RSS =
K∑
k=1

∑
xi∈ck

|xi − µk|2 (6)
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Figure 6: Decision Boundary
of K = 3-Means.

Figure 7: Decision Boundary
of K = 6-Means.

Figure 8: Decision Boundary
of K = 12-Means.

• AIC: The AIC metric is a maximum-likelihood measure that penalizes for model com-
plexity AIC = −2 lnL + 2B where B is the number of parameters and L the likelihood
of the model. Even though the K-means algorithm does not provide a likelihood estimate
of the model it can be formulated as a metric based on RSS as follows:

AICRSS = RSS + 2B (7)

where B = (K ∗N) for K clusters and N dimensions.

• BIC: The BIC metric goes even further and penalizes for number of datapoints as well
with the following equation BIC = −2 lnL+ ln(M)B. As in AICRSS , we can formulate
a BIC value based on the RSS as follows:

BICRSS = RSS + ln(M)B (8)

where B is as before and M is the total number of datapoints.

Choosing the Optimal K

To choose the optimal K for a dataset, one can run K-means by increasing monotonically
the number of clusters and plotting the results. Since the output of K-means is not
deterministic, we should run K-means for repeats times, generally 10, and take the
mean or best of those runs as the result, in this implementation we will take the mean.
For the RSS metric, the ‘elbow’ or ‘plateau’ method can be reliable for certain datasets.
This method finds the optimal K at the elbow of the curve;i.e. when the values stop
decreasing rapidly Figure 9). For the AIC and BIC metrics, the optimal K is found as
the minimum value in the curve (Figure 10).

4.2 Spectral Clustering

The approach for finding the optimal K presented in the previous sub-section can be
misguided if each data cluster is not centered around a origin. Figure 13(c) illustrates
an example in 2D in which the optimal number of cluster (K = 6) does not match our
intuition for two clusters. Spectral clustering provides a more expressive alternative. By
projecting the points into a non-linear embedding and analyzing the eigenvalue spectra
of the Kernel matrix (in Kernel PCA), the Laplacian matrix (in Laplacian Eigenmaps),
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Figure 9: Clustering Evaluation metrics
for the 2D-GMM dataset. Optimal K =
4,repeats=10
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Figure 10: Clustering Evaluation metrics
for the 2D-Ripley dataset. Optimal K =
3, repeats=10.

or the Similarity matrix (in Isometric Mapping), one can model a larger class of data
distributions.

In addition, it turns out that one can deduce the number of clusters present in the
data from the eigenvalues. Thus we avoid the expensive exhaustive search required to find
the optimal K. This expensive search which usually goes by the name of Model Selection
is not completely avoided though, since we still need to choose the hyperparameters of
the kernel in spectral clustering. The next sections includes tools and build intuition for
this selection process.

4.2.1 Using kernel methods to determine the number of clusters

We will study how Kernel PCA can be used to help to determine the number of clusters
present in a dataset. To recall, all kernel methods are based on the computation of the
so-called Gram matrix K ∈ RM×M ,where M is the number of samples in your dataset.
So be careful, if you use a kernel method on large dataset, it might take a very long time
to compute this matrix. The way you can use matrix K to determine the number of
clusters is through inspecting its eigenvalues.

Gram eigenvalues The Gram matrix is symmetric positive semi-definite (PSD), and
as you have seen in class, it can be decomposed into its eigenvalues and eigenvectors,

K = VΛVT (9)

where V ∈ RM×M are the eigenvectors αi and Λ ∈ RM×M is diagonal matrix containing
the eigenvalues λi. In regular PCA the eigenvalues conveyed how much of the variance in
the original signal is preserved in the projected space. Usually one would keep as many
eigenvectors as necessary to explain at least 90% of the variance of the original data.
Hopefully, this will result in a significant dimensionality reduction. What about the
eigenvalues of the Gram matrix? They have exactly the same interpretation as standard
eigenvalues.
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Properties of (Kernel) PCA: If we use a kernel that yields a PSD kernel
matrix, we know that we are in fact performing (linear) PCA on the features
φ(x) ∈ RF . Consequently, all mathematical and statistical properties of PCA
(see, e.g., Jolliffe, 1986; Diamantaras & Kung, 1996) carry over to Kernel PCA,
with the difference that they become statements concerning the feature space RF

rather than the original space RN
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Illustrative example: Open the TP2 spectral clustering.m MATLAB script and
load the circles dataset shown in Figure 11(a), by running code sub-block (1a). Then
perform Kernel PCA with a chosen kernel, hyper-parameters and number of eigenvectors
to retain with code sub-block (2a). The result of the projection (on its first 4 eigenvec-
tors) is illustrated in Figure 11(b). You can then inspect the eigenvalues and eigenvectors
in Figures 11(c) and 11(d), which can be generated running code sub-block (2b).
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Figure 11: Projected Circles Dataset with Kernel (RBF) PCA with σ = 0.5.

If Kernel PCA manages to find the appropriate number of clusters, there should then
be exactly one eigenvector per cluster. To see if you are setting the hyperparameters
correctly you can look at the isoline plots of different eigenvectors to see if the clusters
are getting encoded by an eigenvector. As can be seen in Figure 11, the kernel type
(RBF) and hyper-parameter σ = 0.5 were carefully chosen to yield the expected K = 2.
However, if one does not choose this parameter appropriately, the result of Kernel PCA
will not be satisfactory. To select the appropriate kernel parameter, one can do a grid
search (as in the previous practical). For simplicity we only used the RBF kernel func-
tion, see Figure 12(a). This can be reproduced by running code sub-block (2c). The best
parameter is the one that yields a dominant set of eigenvectors. In the case of the RBF
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kernel, if σ is too big or too small, all the eigenvectors have an equal amount of variance
associated to them. For this specific dataset, we can see that a suitable range for the
width is σ = [0.25− 2]. In this range it is quite clear that a dip always occurs after the
2nd and 3rd eigenvector. However, the steepest dip is when σ = 0.5, which corresponds
to the parameter that was carefully selected by visual analysis of the dataset. From this
information we can gather that possibly K = 2 with σ = 0.5.

0 2 4 6 8
Indices of eigenvectors

0

50

100

150

200

E
ig

en
va

lu
es

0.05
0.1
0.2
0.25
0.5
1
1.5
2
5

(a) Grid Search RBF Kernel (b) K(2)-Means on Original
Datasets

(c) K(2)-Means on Projected
Datasets

Figure 12: (a) Grid Search of RBF Kernel, (b) K(2)-Means on Original Dataset and (c)
K(2)-Means on KPCA Projected (V 1 × V 2) Dataset

By running code sub-block (5a) and (5b), one can perform K-means with the selected
K on the original dataset and on the projected dataset, respectively. This should produce
decision boundaries similar to those depicted in Figure 12(b) and 12(c).

How does this compare to doing model selection? You can run a model selection
procedure with RSS, AIC and BIC on the original dataset and the projected dataset, by
running code sub-block 5c:

1 %% 5c) Perform kmeans Model Selection (RSS, BIC, AIC)
2 cluster options = [];
3 cluster options.method name = 'kmeans';
4 repeats = 10;
5 Ks = 1:10;
6 [mus, stds] = ml clustering optimise(X',Ks,repeats,...);

where X denotes the original dataset, repeats is the number of times each K will be
repeated and Ks is the range of K to evaluate. If one wants to apply this on the projected
dataset simply substitute X for Y. When modified properly, this code block should generate
Figure 13(a) for model selection on X and Figure 13(b) for model selection on Y. Where
Y can be defined in the same code block by choosing a projection:

1 %%% Choose between KPCA - LAP - ISO
2 algo = 'KPCA';
3 % Selected Projected Data
4 if strcmp(algo, 'KPCA')
5 Y = proj KPCA X(:,[1 2])';
6 end
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On the original dataset the optimal number of K clusters is around 6-7, but on the Kernel
PCA projected data it is around 3-4. The optimal clusters for each dataset can be seen
in Figure 13(c) and 13(d). To conclude, neither model selection runs yield the expected
clusters K = 2 which are easily determined through the eigenvalues of Kernel PCA.
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Figure 13: K-Means Model Selection on (a) Original Dataset and (b) Kernel PCA Pro-
jected Dataset with σ = 0.5. According to these model selection procedures (c) Optimal
K = 6 for the original dataset and (d) Optimal K = 3 for the projected dataset.

4.2.2 Using spectral methods to determine the number of clusters

Another alternative to determining the number of clusters, K, is to use the eigenvalues
of the graph Laplacian, given by Laplacian Eigenmaps. When the similarity graph is not
fully connected, the multiplicity of the eigenvalue λ = 0 gives us an estimation of K.

Laplacian eigenvalues The Laplacian Eigenmaps is a non-linear projection technique
which is based on the eigenvalue decomposition of a scaled similarity matrix (or normal-
ized graph Laplacian) L = D − S. If we perform an eigenvalue decomposition of this
matrix

L = UΛUT, (10)

where U ∈ R(M×M) are the eigenvectors and Λ ∈ R(M×M) is a diagonal matrix containing
the eigenvalues, we can then order the eigenvalues by increasing order : λ0 = 0 ≤ λ2 ≤
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... ≤ λM , where M is the number of datapoints. Looking at the multiplicity of eigenvalue
λ0 = 0 or more generally at the eigenvalues which are closest to 0 provides information
about the partitioning of the similarity graph built on the data and so, an indication
about the number of clusters K we could find.

Illustrative example: In the MATLAB script: TP2 spectral clustering.m, you
will find the necessary code snippets to run the Laplacian Eigenmaps for clustering anal-
ysis. We begin by loading the same circles dataset as before (Figure 11(a)) with code
sub-block (1a). Then you proceed to run code sub-block (3a) which will compute the
Laplacian Eigenmaps (with a chosen kernel width, neighborhood for Laplacian Eigenmaps
and number of eigenvectors to retain). A plot of the eigenvalues of the graph Laplacian
and the result of the projection with Laplacian Eigenmaps is shown in Figure 14(a) and
14(b). As in the previous case, the hyper-parameters σ = 1 and k = 7 (for k neighbors)
were carefully selected to yield the desired projection. By looking at the eigenvalue plot
(Figure 14(a)) we can see that the first 3 eigenvectors have eigenvalues very close to 0,
this suggests that K = 3. This is not the ideal clustering we expected, however, given
the projection (Figure 14(b)) it seems like the most plausible one. Hence, the problem
is still the selection of the optimal hyper-parameters; i.e. the appropriate width of the
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Figure 14: Laplacian Eigenmaps Projection Analysis Circles Dataset.
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kernel function σ and also the appropriate number of k neighbors to construct the graph.
This can be addressed by doing a grid search over the width σ and neighborhood k. By
running code sub-blocks (3b) and (3c), we can generate the grid search results shown
in Figure 14(c) and 14(d). In this case, the number of neighbors doesn’t seem to have an
influence. However, we need to have a sufficiently large (≥ 0.3) σ in order to observe a
gap in the curve which enables to determine the number of clusters. If not, all the eigen-
values are close to 0 and it’s hard to get K. Here we can estimate that the multiplicity of
the eigenvalue λ0 = 0 is three and so K = 3. Now, to apply clustering on this projected
dataset, we can modify the Y variable in code sub-block (5b):

1 %% 5b) Perform kmeans clustering on the projected data
2 %%% Choose between KPCA - LAP - ISO
3 % algo = 'KPCA';
4 algo = 'LAP';
5 % algo = 'ISO';
6

7 % Selected Projected Data
8 if strcmp(algo, 'KPCA')
9 Y = proj KPCA X(:,[1:2])';

10 elseif strcmp(algo, 'LAP')
11 Y = proj LAP X(:,[1:2])';
12 ...
13 end

By changing Y = proj LAP X(:,[1 2])’; we are selecting the first two projected dimen-
sions of the Laplacian Eigenmap embeddings. By running the subsequent code, we can
plot the decision boundaries in 2-D, if a 2-D projection was selected, as shown in Figure
15. Otherwise, one can plot the labeled dataset in N -D for an N -Dimensional projection,
as shown in Figure 16.

Figure 15: Circles Dataset Projected on first
2 Eigenvectors of Laplacian and clustered with
K = 3.
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Figure 16: Circles Dataset Projected on first
3 Eigenvectors of Laplacian and clustered with
K = 3.
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Isomap eigenvalues To recall, the Isomap technique feeds a matrix of pair-wise dis-
tances S to the MDS algorithm. This matrix is, in fact, a Gram matrix. MDS then yields
a low-dimensional output through the eigenvalue decomposition of this centered Gram
matrix

S′ = UΛUT , (11)

as before, U ∈ R(M×M) are the eigenvectors and Λ ∈ R(M×M) is a diagonal matrix
containing the eigenvalues. This matrix has the same rank and eigenvalues (up to constant
factor) of the Covariance matrix in PCA (as in Kernel PCA); hence, a large gap between
the top and the remaining eigenvalues, indicates a good approximation of the lower-
dimensional subspace. If your data is already quite disconnected (as is in our illustrative
example), one has to take special considerations when applying this algorithm. When the
neighborhood graph is not completely connected, two things might happen depending on
the Isomap implementations:

1. Only the largest connected component is embedded.

2. Each connected component is embedded separately.

This might seem like a drawback; however, if one is getting K disconnected components
from the neighborhood graph, this is a clear indication that your data has at least K
clusters. The necessary code for running the Isomap algorithm (and plotting the eigen-
values of the Gram matrix) is provided in code block (4) in the accompanying MATLAB
script: TP2 spectral clustering.m. When testing this on the circles dataset, you will
see that only the largest connected component is being projected into a low-dimensional
representation.

4.3 Comparison of Spectral Clustering Variants

External Clustering Metrics Comparing the results of different clustering algorithms
is often difficult when the labels of the expected clusters (classes) are not given. However,
when the labels are available one can use the F -measure to compare different clustering
results. This is the case for the datasets that will be used in the following task.

The F -measure is a well-known classification metric which represents the harmonic mean
between Precision (P = TP

TP+FP
) and Recall (R = TP

TP+FN
). In the context of clustering,

Recall and Precision of the k-th cluster wrt. the j-th class are R(sj, ck) =
|sj∩ck|
|sj | and

P (sj, ck) =
|sj∩ck|
|ck|

, respectively, where S = {s1, . . . , sJ} is the set of classes and C =

{c1, . . . , cK} the set of predicted clusters. sj is the set of data-points in the j-th class,
whereas ck is the set of data-points belonging to the k-th cluster. The F -measure of the
k-th cluster wrt. the j-th class is,

Fj,k =
2P (sj, ck)R(sj, ck)

P (sj, ck) +R(sj, ck)
, (12)

and the F -measure for the overall clustering is then computed as,

F(S, C) =
∑
sj∈S

|sj|
|S|

max
k
{Fj,k}. (13)
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TASK 2: Compare Spectral Clustering Variants
Using the code provided in the MATLAB script: TP2 spectral clustering.m, your
task will be to find the best non-linear projections technique to cluster the following
non-linearly separable datasets:

Broken Swiss Roll : 3D data set of (2) non linearly separable clusters.
Breast-cancer-Wisconsin : Medical dataset taken from the UCI database:

(2) classes / (9) dimensions.
Digits : 8× 8 digit images. (6) classes / (64) dimensions.

Before blindly testing all of the Spectral Clustering variants, you should analyze each
dataset and try to deduce which algorithm would be the best fit for the dataset at hand.
In order to address this task, try answering the following questions:

• How many clusters can you find with Kernel PCA?

• How many clusters can you find with Laplacian Eigenmaps?

• How many clusters can you find with Isomap?

• How can I find the optimal range of hyper-parameters for each method?

• How many clusters are suggested by the Model Selection procedure?

• Which method gives the best result according to the true class labels (i.e. F-measure)?
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Figure 17: Non-linearly separable datasets for TASK 2.

To load each dataset, run code sub-block (1b) for the Broken Swiss Roll dataset (Figure
17(a)), sub-block (1c) for the Breast Cancer Dataset (Figure 17(b)) and sub-block (1d)

for the Digits dataset (Figure 17(c) and 17(d) ).
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5 Kernel K-Means

Interestingly, an approach that tackles clustering of non-linearly separable datasets head
on is Kernel K-means, where, prior to clustering, points xi are mapped to a higher-
dimensional feature space using a nonlinear function φ(xi), then classical K-means clus-
tering with norm-2 is applied in feature space, yielding non-linear boundaries in the
original space. As opposed to Spectral clustering, kernel K-means does clustering and
non-linear embedding simultaneously. Both of these algorithms can be seen as two dif-
ferent approaches that solve the same objective. To recall, Kernel K-Means seeks to
minimize the total squared distance between each point and its closest centroid in feature
space with the following cost function,

J(µ1, . . . , µk) =
K∑
k=1

∑
xl∈Ck

∣∣∣∣∣∣∣∣φ(xi)−
∑

xl∈Ck φ(xl)

Mk

∣∣∣∣∣∣∣∣2 . (14)

where Ck denotes the k-th cluster and Mk the number of points in the k-th cluster.
The proposed solution to (14) is an iterative procedure as K-Means, however, in the
expectation step, the data points are assigned to the closest centroid in feature space
with the following distance:

argmin
k

d(xi, Ck) = argmin
k

(
k(xi,xi)−

2
∑

xj∈Ck k(xi,xj)

Mk

+

∑
xj ,xl∈Ck k(xj,xl)

(Mk)2

)
(15)

With such a distance metric one can cluster non-linearly separable datasets, like the cir-
cles dataset, shown in Figure 18(b).

In the accompanying MATLAB script: TP2 kernel kmeans.m we provide the neces-
sary code to run Kernel K-means on your preferred dataset, plot the non-linear decision
boundaries and the isolines of the eigenvectors of the kernel matrix. In Figure 18(b) and
18(c) we illustrate the resulting decision boundaries of applying Kernel K-Means on the
circles dataset with σ = 0.5 and σ = 1. In the case of σ = 1, one can see that even though
the isolines of the eigenvectors seem to perfectly separate the two clusters (Figure 18(e))
the initial centroids in feature space misguide the partition; resulting in a poor cluster-
ing. However, if you run this code block multiple times, you will see how in some cases
the expected partitioning is achieved. One can see that, the main advantage of Kernel
K-means; i.e. its ability to model non-linear boundaries; is burdened by its sensitivity to
initialization (which is random) and to the kernel’s hyper-parameters (as in Kernel PCA).

An important characteristic of Kernel K-Means is its relationship to Spectral Clus-
tering. It has been shown, that the objective function of a modified kernel K-Means
(i.e. weighted Kernel K-Means) is equivalent to a special case of Spectral Clustering (de-
scribed through normalized-cuts) [4]. In fact, one can solve the Kernel K-Means objective
function through Kernel-PCA, by initially embedding the data-points with the first K
top eigenvectors and then applying K-Means on the low-dimensional embedding. This
is what we have done in the previous task! The main difference is that in the Spectral
Clustering approach, we had the freedom to choose the dimensionality, p, of the embed-
ded space and the clusters, K, independently. In Kernel K-Means this is not the case.
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Figure 18: Kernel K-Means on Circles Dataset with K = 2

Moreover, in Spectral Clustering the embedded space doesn’t necessarily have to be the
first top eigenvectors, as in Kernel K-Means.

TASK 3: Evaluate Kernel K-Means on Different Datasets
In this task we will try to generate complex 2D datasets where Kernel K-Means clearly
outperforms classical K-Means. By running code sub-block 1b of the MATLAB script:
TP2 kernel kmeans.m, you can load the drawing GUI shown in Figure 19. After
drawing your data, you should click on the Store Data button, this will store a data
array in your MATLAB workspace. After running the following sub-blocks the data and
labels will be stored in two different arrays: X ∈ R2×M and y ∈ IM , which can then be
used to visualize and manipulate in MATLAB (Figure 20). Try to generate examples for
both polynomial and RBF kernel.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Store Data Change Label Clear

Figure 19: ML toolbox 2D Drawing GUI.
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