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1 Exercise 1. Contour lines in Kernel PCA

a.1: The projections on the i− th eigenvector in feature space is given by:

⟨vi, ϕ(x)⟩ =
M∑
j=1

αi
jk(x

j , x) (1)

With a kernel defined by

k(x, x′) = exp(−∥x− x′∥
2σ2

) , σ ∈ R (2)

and M = 1 data point, the Gram matrix is:

K = k(x1, x1) (3)

kPCA requires data to be centered in feature space. This leads to the following transformation
(see Exercise 2):

K̃ij = Kij −
1

M

M∑
k=1

Kik −
1

M

M∑
k=1

Kkj +
1

M2

M∑
k,l=1

Kkl (4)

Thus the (single) eigenvector of the Gram matrix (solution of the Dual eigenvalue problem
K̃α = Mλα) is α1

1 = 1, and we can write the projection on the first (and single) eigenvector in
feature space, with M = 1 since we have only one point:

⟨vi, ϕ(x)⟩ =
M∑
j=1

αi
jk(x

j , x) = α1
1k(x

1, x) (5)

The projection in the original data input space is best seen by plotting the contour lines (also
called isolines or level curves), see Figure 1. These form circles centered on the datapoint, whose
radius grows radially as it moves away from our single datapoint. The width of the curve is
proportional to the value of the projection. The farther away one is from our single datapoint, the
smaller the value on the projection on the first eigenvector.

Hence, a rbf kernel with a single point allows to group datapoints that are aligned on a circle. It
sorts of provide a polar coordinate transformation. The origin of the transformation is here located
on our single datapoint.

a.2 With two datapoints, the Gram matrix is:

K =

[
1 k(x1, x2)

k(x2, x1) 1

]
(6)

After centering we get the following centered Gram matrix (assuming k(x1, x2) = k(x2, x1)):

K̃ =
1

2
·
[
1− k(x1, x2) k(x1, x2)− 1
k(x1, x2)− 1 1− k(x1, x2)

]
(7)

which has the eigenvectors α1 = 1√
2
[1, 1]T and α2 = 1√

(2)
[1,−1]T . This yields the projections:
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Figure 1: The contour plot of the projection with one data point.

⟨v1, ϕ(x)⟩ = α1
1k(x

1, x) + α1
2k(x

2, x) =
1√
2
k(x1, x) +

1√
2
k(x2, x) (8)

and

⟨v2, ϕ(x)⟩ = α2
1k(x

1, x) + α2
2k(x

2, x) =
1√
2
k(x1, x)− 1√

2
k(x2, x) (9)

The first projection is a sum of two radially decreasing functions (RBF functions, i.e. un-normalised
Gaussian fct) around the two data points. As they move away from the two datapoints, the additive
term leads them to merge and form elliptic contours around the two datapoints, see Figure 2, left.
We see that, once we are far away from the datapoints, the datapoints start acting as a single
datapoints and we are back to the case seen previously.

The second projection, which substracts the influence of the two RBF functions located on each
datapoint, is shown in the right figure of Figure 2. We see that here the two elliptic form squash
against each other and hence form an implicit partition of the space.

This illustrate two means of exploiting RBF projection. The first type helps finding features
that group datapoints, whereas the seconde type helps separating datapoints.

2



Solutions k-PCA Machine Learning II MASTER 2025

Figure 2: Left: projection onto the first eigenvector with two data points. Here, the contributions
from the RBF functions centered on each datapoint is additive and leads them to slowly merge into
elliptic contours that grow the datapoints. Right: Projection onto the second eigenvector with two
data points. Here, the contributions of the two to the sum have opposed signs.

a.3 Finally with three points we get the Gram matrix:

K =

 1 k(x1, x2) k(x1, x3)
k(x2, x1) 1 k(x2, x3)
k(x3, x1) k(x3, x2) 1

 (10)

If we assume that points are equidistant, and k(xi, xj) = const = k ∀i, j : i ̸= j, after centering it
becomes:

K̃ =
1

3
·

 2− 2k k − 1 k − 1
k − 1 2− 2k k − 1
k − 1 k − 1 2− 2k

 (11)

If k(x1, x2) = 0.5 we get the eigenvectors α1 = 1√
3
[1 1 1]T , α2 = 1√

2
[0 1 − 1]T and α3 =√

2
3 [1 − 1/2 − 1/2]T .

The projection along the first eigenvector is additive and yields the three RBF to slowly merge
as one moves away from the datapoints, and hence tends to group datapoints, see Figure 3. In the
case where the kernel width is too small, the three points are not grouped well together anymore ,
see Figure 4.

The second projection brings us back to the case seen for two datapoints with substractive
influence, see solution to a.2. It leads to a partition of the dataspace according to solely two
datapoints, ignoring the first datapoint. This is an example of sparse projection, where part of the
data has been discarded to determine the projection. Sparsity is interesting, as this means that the
algorithm managed to extract features common to solely a subgroup of datapoints.

The third projection shows how the symmetric shapes, seen in the 1-datapoint and 2-datapoints
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Figure 3: Projections with three equidistant data points. Kernel width σ = 0.01.

cases, start breaking, as soon as the influence of the datapoints on the projection is no longer equally
balanced.

If we change the kernel width, we still get the [111]T first eigenvector, which groups the 3 points.
The other two vectors can result in other type of grouping across the pair of points (you can test
this in matlab or with the mldemos software). We non-equidistant points, we find similar type of
decompositions with a grouping of all points and then a pairwise grouping of points. However, the
isolines become more complex and less symmetric as the entries on the dual eigenvectors are no
longer necessarily equal, yet, see Figure 5.

b.1 With a polynomial kernel, k(x′, x) =< x, x′ >p is the projection of x onto x′.
With a single datapoint (M = 1), we get:

⟨vi, ϕ(x)⟩ =
M∑
j=1

αi
jk(x

j , x) = k(x1, x) (12)

First, note that, since the data is centered, the single datapoint has coordinates x1 = (0, 0) and
k(x1, x) =< x1, x >= 0, ∀x. The isolines are then degenerate. If we, however, assume that the
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Figure 4: Projections with three equidistant data points. Kernel width σ = 0.0001.

data are not centered, then, the contour lines correspond to all the points with equal projection
onto the vector x1, see Figure 6. These are, thus, lines orthogonal to the vector pointing from the
origin of the system to our single data point, see Figure 7. Changing the order of the polynomial
kernel with only one data point does not curve the contour lines - as the points that have the
same value will still lie on the lines orthogonal to the data point. It only changes the value of the
projection. The higher the order, the faster the value decreases as one goes away from the datapoint.

As mentioned above, kernel PCA assumes that the data are centered. Centering means that the
origin of the system is moved to the center of the datapoints. The fact that the contour lines in
polynomial kernel are orthogonal to the vector between the datapoint and the origin gives you an
intuition as to why it is useful to center the data (when having more than one datapoint). Centering
the data creates naturally a symmetry in the projection around the mean of the distribution of
datapoints when using polynomial kernel.

b.2

5



Solutions k-PCA Machine Learning II MASTER 2025

Figure 5: Projections with three non-equidistant data points.

Figure 6: The figure illustrates that points with the same projection on a vector lie on lines orthog-
onal to the vector. Here, x2 and x3 both lie on a line orthogonal to x1 and as seen their projection
on x1 is the same.

Figure 7: Contour lines of single projection with one data point and polynomial kernel of order 1,
2 and 6.
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With M = 2 and p = 2 we get a Gram matrix proportional to

K =

[
1 −1
−1 1

]
(13)

The dual eigenvectors are [−1, 1] and [−1,−1]. The projection onto the first eigenvector is then:

⟨v1, ϕ(x)⟩ = α1
1k(x

1, x) + α1
2k(x

2, x) =
1√
2
k(x1, x)− 1√

2
k(x2, x) (14)

In the general case, we would get a hyperbola for the first projection and an ellipse for the second
(see solutions discussed in the kernel lecture). If the vector points are orthogonal to one another,
then, the dual eigenvectors are α1 = [10]T and α2 = [01]T . For the first and second projections, the
isolines are lines orthogonal to each vector x2+x1. In the second projection, the lines are orthogonal
to the vector x2−x1. The value of the projection will change depending on the order of polynomial.
With even order, the values of the projections are symmetric around the origin, whereas with odd
order (i.e. p = 1, 3, 5, ...), the contour lines are positive on one side and negative on the other side,
see Figure 10.

Figure 8: Contour lines of second projection with two data points and polynomial kernel of order 2
(left: 1st projection; right: 2nd projection).

b.3
Increasing the number of datapoints with polynomial of order 2 yields interesting structures.

If we again consider the case where the three points are equidistant we get the eigenvectors α1 =
1√
3
[1 1 1]T , α2 = 1√

2
[0 1 −1]T and α3 =

√
2
3 [1 −1/2 −1/2]T . The isolines on the first eigenvector are

ellipses with center at the origin and one axe passing through one of the 3 points. The value on the
isolines is a function of the distance across the datapoints. The isolines on the second eigenvector
are two hyperbolic functions deflected by the two datapoints with zero in-between x1 and x2. In
the second projection, The isolines on the third eigenvector are also hyperbolic functions deflected
with one point acting against the pair of the two other points. The curves remain unchanged as
we increase the order of the polynomial for even order. For odd order (i.e. p=3,5,7, etc), we get
a different behavior. The first projection is a series of hyperbolic functions, while the second and
third projections start to form curves, see Figure 10.
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Figure 9: Contour lines of the 3 projections with 3 equidistant datapoints and a polynomial kernel
of order 2).

2 Exercise 2: Kernel PCA - data centering

Kernel PCA, like PCA, assumes that the data X = {xi}Mi=1 are centered, i.e. ⟨X⟩ = 0.

2.1

Assuming that the data are not centered prior to computing the Gram matrix K, how can you
modify K to make sure that the projections in the feature space have zero mean?

Recall that each element of K computes the inner product across two data points, i.e.

Kij = ⟨ϕ(xi), ϕ(xj)⟩

2.2

True or false: If K is a positive definite kernel matric, then all of its entries are positive.
1: Observe first that when computing in the original space, the inner product can be rewritten
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Figure 10: Contour lines of the three projection with three data points and polynomial kernel of
order (from left to right) p=2, 3 and 4.

as:

〈
xi − ⟨X⟩,xj − ⟨X⟩

〉
=

〈
xi − 1

M

M∑
k=1

xk,xj − 1

M

M∑
k=1

xk

〉

= ⟨xi,xj⟩ − 1

M

M∑
k=1

⟨xi,xk⟩ − 1

M

M∑
k=1

⟨xk,xj⟩+ 1

M2

M∑
k,l=1

⟨xk,xl⟩

Replacing xi by its projection ϕ(xi) and using the kernel expression Kij = ⟨ϕ(xi), ϕ(xj)⟩, we get a
new expression for the centered kernel matrix:

K̃ij = Kij −
1

M

M∑
k=1

Kik −
1

M

M∑
k=1

Kkj +
1

M2

M∑
k,l=1

Kkl

2: No, positive definiteness requires only that all of the eigenvalues of K be positive. Eigenvalues

are computed by solving |K−λI| = 0, so by example (K =

[
2 −1
−1 2

]
) we see that a positive definite

matrix may have negative elements.

3 Exercise 3: Matrix Decompositions

A: i) To find the eigenvalues, characteristic equation det|A− λI| = 0 must be solved

The eigenvalues are λ1 = 6, λ2 = 1.

To find the eigenvectors ej , one computes for each eigenvalues λj , j = 1, 2: (A− λI) ej = 0.

We find: e1 =
1√
53

[
2
7

]
, and e2 =

1√
2

[
1
1

]
.

The matrix here are normalized, but any combination combination of two vectors which are parallel
to e1 and e2 respectively is can be chosen.
Note: In the case that of a symmetric matrix A and normalized eigenvectors, we have V −1 = V T

(orthonormal matrix). For the general case, we only have all linearly independent eigenvectors for
a full rank of the initial matrix A, i.e. rank(V ) = rank(A).
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ii) The eigenvalues in
Matlab:

A = [=1 2 ;
=7 8 ] ;

[V, D] = eig (A) ;

or python:

import numpy as np
A = np . array ( [ [ =1 , 2 ] ,

[=7 , 8 ] ] )
D, V = np . l i n a l g . e i g (A)

Note: There are many similarities in numpy and matlab. Generally speaking, it is adviced to
use numpy.arrays() for matrix representation and most matlab function are found in the numpy
and scipy libraries. Several guides can be found online, e.g https://docs.scipy.org/doc/numpy/

user/numpy-for-matlab-users.html.

B: This exercise gives an inside of a geometric interpretation of matrices and the eigenvalue
decomposition.
i) The multiplication of a vector with the inverse of a matrix V −1 is the representation of this vector
in the reference frame spanned by column vectors ej of the original matrix V .
In the exercise, the vector is parallel to the second eigenvector e2, hence can be fully represented

by e2 : x′ = V −1x =
[
0

√
2
]T

ii) The multiplication of a vector with a diagonal matrix Λ is equivalent to stretching along
the axis with diagonal elements λj . In the exercise, the eigenvalue corresponding to the second

eigenvector is equal to 1, i.e. no change for the vector: x′′ = Λx′ = λ2∥x∥ =
[
0

√
2
]T

iii) The multiplication of a vector with a matrix A is the projection back from the space spanned

by the column vectors ej of A to the original space: x′′′ = V x′′ = e2∥x∥ =
[
1 1

]T
.

4 Exercise 4: Probabilistic PCA - derivation (optional)

Probabilistic PCA assumes that the N dimensional observed dataset X = {xi}Mi=1 was generated
by an underlying process modeled as:

xi = W⊤zi + µ+N (0, Iσ2
ϵ )

where Z are a set of Q < N -dimensional latent variables, µ is an offset, and σ2
ϵ is the variance of

the zero mean Gaussian noise.
Show that the log likelihood estimate of the projection matrix W is:

log(L(B, µ))) = −M

2
{N log(2π) + log |B|+ tr(B−1C)}

where

C =
1

M

M∑
i=1

(xi − µ)(xi − µ)⊤

10



Solutions k-PCA Machine Learning II MASTER 2025

is the covariance matrix of X and
B = W⊤W + σ2

ϵ I

The conditional pdf p(x|z) is given by:

p(x|z) = N (W⊤z+ µ, σ2
ϵ I)

marginalizing over the latent variables, assuming p(z) = N (0, I), we get:

pz(x) = N (µ,W⊤W + σ2
ϵ I)

The likelihood:

L(B, µ) =
M∏
i=1

pz(x
i|B, µ)

then:

log

(
M∏
i=1

pz(x
i|B, µ)

)
=

M∑
i=1

log
(
pz(x

i|B, µ)
)

Replacing pz by the definition of the multidimensional Gaussian distribution:

log(L(B, µ))) =

M∑
i=1

(
log

(
1√

(2π)N |B|

)
− 1

2

(
(xi − µ)⊤B−1(xi − µ)

))

= −M log(
√
(2π)N |B|)− 1

2

M∑
i=1

(
(xi − µ)⊤B−1(xi − µ)

)
= −M

2
{N log(2π) + log(|B|)} − 1

2

M∑
i=1

(
(xi − µ)⊤B−1(xi − µ)

)
recalling that x⊤B−1x = tr

(
B−1(xx⊤)

)
and tr(Σ) + tr(Θ) = tr(Σ + Θ)

log(L(B, µ))) = −M

2
{N log(2π) + log(|B|)} − 1

2

M∑
i=1

tr
(
B−1(xi − µ)(xi − µ)⊤

)
= −M

2
{N log(2π) + log(|B|) + tr

(
1

M

M∑
i=1

B−1(xi − µ)(xi − µ)⊤

)
}

= −M

2
{N log(2π) + log(|B|) + tr

(
B−1 1

M

M∑
i=1

(xi − µ)(xi − µ)⊤

)
}

log(L(B, µ))) = −M

2
{N log(2π) + log |B|+ tr(B−1C)}
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