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MACHINE LEARNING II

ADVANCED MACHINE LEARNING

Nonlinear Regression – Part I

Interactive lecture

SVR with polynomial kernel

Relevance Vector Regression

Ridge Regression 



2

MACHINE LEARNING – 2012MACHINE LEARNING II

-Support Vector Regression
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-Support Vector Regression: Recap

Transform the problem into non-linear regression

using the kernel trick:
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Transform the problem into non-linear regression

using the kernel trick:
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-Support Vector Regression: Recap
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Transform the problem into non-linear regression

using the kernel trick:
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What type of function  can you model with the homogeneous polynomial kernel?f
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What is the minimum p (order of the polynomial) you need to 

achieve a good fit for the group of points below?

A. 1

B. 2

C. 3

D. >3

SVR: polynomial kernel – choice of order
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What is the minimum number of support vectors ?

A. 1

B. 2

C. 3

D. I do not know

SVR: polynomial kernel – # of SV-s
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Which is the minimum order of a homogeneous polynomial kernel you

would need to achieve good regression on the set of 3 points below ?  
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Which of these datasets can you fit with 

homogeneous polynomial of order 2?

A. All

B. None

C. Dataset 1

D. Dataset 2

E. Dataset 3

(1) (2)

(3)

SVR: polynomial kernel – type of curve
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Which of these datasets can you fit with 

homogeneous polynomial of order 2?

YES

YES

NO

(1) (2)

(3)

SVR: polynomial kernel – type of curve
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SVR: Inhomoneous polynomial kernel
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Effect of c:

Fit with p=3 and c=0.1

SVR: inhom. polynomial kernel - hyperparameters

Fit with p=3 and c=0
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Fit with p=7 and c=30

Equivalent fit with RBF

-SVR – RBF versus Polynomial Kernels
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Effect of C in -SVR for RBF kernel 
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Does the effect remain with Polynomial kernel?
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Effect of C in -SVR for RBF kernel 
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The larger C, the larger  and hence, the steeper the slope.

C=1 C=10

C=100
C=1000

For the polynomial kernel, picking a large C can be necessary to obtain a good fit.

Effect of C in -SVR for RBF kernel 
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Quick recap of SVR
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Relevance Vector Regression
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Few Assumptions
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Dirac Delta function

Making Predictions with RVR

Assumes that the parameters are at 

their most probable value when one 

samples.
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Prediction step: Simplification
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MAP Estimate: Simplification
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Discussion on RVR
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(a) (b)

Points on line y=2x are trained with two RVR models

What is the issue with solution a and why do we get this result?
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The no. of relevance vectors in (a) and (b) are 72 and 5 respectively. 

The estimation of s is poor in (a), it is likely that the gradient 

descent algorithm has not converged due to smaller training time 

(or fewer number of iterations)

(a) (b)
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1. Hyper parameters are obtained in closed form.

2. Gradient Descent is used to solve for hyper parameters when 

using MAP estimation.

3. Estimates can be stuck at local minima when using MAP 

estimation.

4. It takes longer to train a RVR model than to test it.

Which of the following statements are correct for RVR?
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Comparison -SVR, -SVR, RVR: Polynomial kernel

Would the use of -SVR or RVR help decrease 

the number of support vectors with polynomial kernel?
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Comparison -SVR, -SVR, RVR: Polynomial kernel

Solution with -SVR, 

All points become SV-s as we need

a large C to obtain the right slope.

Solution with RVR, 

Reduces even further number 

of SV-s required for a good fit.

Solution with -SVR,

Automatically find the right slope while

retaining few SV-s. 
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Solution with -SVR, 

17 support vectors / 240 datapoints

Solution with RVR, 

7 support vectors / 240 datapoints

Solution with -SVR, 

28 support vectors / 230 datapoints

Comparison -SVR, -SVR, RVR: Polynomial kernel
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Ridge regression is the starting point to 

Gaussian Process Regression, see next week’s lecture
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Linear Regression
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Is ridge regression always giving a unique optimal solution?

A. Yes

B. No

C. I do not know

Ridge Regression: optimality

( )

( ) ( ) ( )

( )

( )

1

Gram Matrix in

T

feature sp

*

ce

 
1

1

a

Solution in linear case:

always invertible for 0.

Solution in nonlinear case:

,

      .
,   ,  =

      .
, ,

,

T

M

XX I

k X x K X X

w X

k x x

y I k X x

k x x






−

−

=



 
   
   

= +   
    
   

 

+ y

y It is unique if  is fixed but 

optimality depends on .



37

MACHINE LEARNING – 2012MACHINE LEARNING II

What affects most computational growth?

A. Number of datapoints

B. Dimension of the datapoints

C. I do not know

Ridge Regression: computational costs
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Ridge Regression: Kernel

Which kernel?

Large kernel width

Small kernel width
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Ridge Regression: kernel

Which kernel?

P=2

P=5
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