e e e T e e e e e e e

20 'Kernel Principal Component Analysis

Bernhard Schélkopf, Alexander J. Smola, Klaus-Robert Miiller
GMD FIRST

Rudower Chaussee 5, 12489 Berlin, Germany
bs,smola,klaus@first.gmd.de

http://first.gmd.de/~bs,smola.klaus

The idea of implicitly mapping the data into a high-dimensional feature space has
been a very fruitful one in the context of SV machines. Indeed, it is this feature
which distinguishes them from the Generalized Portrait algorithm which has been
known for a long time (Vapnik and Lerner, 1963; Vapnik and Chervonenkis, 1974),
and which makes them applicable to complex real-world problems which are not
linearly separable. Thus, it was natural to ask the question whether the same idea
‘could prove fruitful in other domains of learning.

The present chapter proposes a new method for performing a nonlinear form of
Principal Component Analysis. By the use of Mercer kernels, one can efficiently
compute principal components in high-dimensional feature spaces, related to in-
put space by some nonlinear map; for instance the space of all possible 5-pixel
products in 16x16 images. We give the derivation of the method and present first
experimental results on polynomial feature extraction for pattern recognition.1

20.1 Introduction

Principal Component Analysis (PCA) is a powerful technique for extracting
structure from possibly high-dimensional data sets. It is readily performed by
solving an eigenvalue problem, or by using iterative algorithms which estimate
principal components. For reviews of the existing literature, see Jolliffe (1986);
Diamantaras and Kung (1996); some of the classical papers are due to Pearson

1. This chapter is an extended version of a chapter from (Scholkopf, 1997), and an article
published in Neural Computation, Vol. 10, Issue 5, pp. 1299 — 1319, 1998, The MIT Press
(Scholkopf et al., 1998e) (First version: (Scholkopf et al., 1996b)).

328 Kernel Principal Component Analysis

(1901); Hotelling (1933); Karhunen (1946). PCA is an orthogonal transformation
of the coordinate system in which we describe our data. The new coordinate values
by which we represent the data are called principal components. It is often the case
that a small number of principal components is sufficient to account for most of the
structure in the data. These are sometimes called factors or latent variables of the
data.

The present work studies PCA in the case where we are not interested in principal
components in input space, but rather in principal components of variables, or
features, which are nonlinearly related to the input variables. Among these are for
instance variables obtained by taking arbitrary higher-order correlations between
input variables. In the case of image analysis, this amounts to finding principal
components in the space of products of input pixels.

To this end, we are computing dot products in feature space by means of
kernel functions in input space (cf. chapter 1). Given any algorithm which can be
expressed solely in terms of dot products, i.e. without explicit usage of the variables
themselves, this kernel method enables us to construct different nonlinear versions
of it. Even though this general fact was known (Burges, private communication),
the machine learning community has made little use of it, the exception being
Vapnik’s Support Vector machines. In this chapter, we give an example of applying
this method in the domain of unsupervised learning, to obtain a nonlinear form of
PCA.

In the next section, we will first review the standard PCA algorithm. In order to
be able to generalize it to the nonlinear case, we formulate it in a way which uses
exclusively dot products. Using kernel representations of dot products (chapter 1),
section 20.3 presents a kernel-based algorithm for nonlinear PCA and explains some
of the differences to previous generalizations of PCA. First experimental results on
kernel-based feature extraction for pattern recognition are given in section 20.4.
We conclude with a discussion (section 20.5). Some technical material that is not
essential for the main thread of the argument has been relegated to the Appendix.

20.2 Principal Component Analysis in Feature Spaces

Given a set of centered observations x;, € RV, k= 1,..., M, 2211 xg = 0, PCA

Covariance diagonalizes the covariance matrix2
Matrix LM
i T
C= > xx (20.1)
=1 :

2. More precisely, the covariance matrix is defined as the expectation of xx ' ; for conve-
nience, we shall use the same term to refer to the estimate (20.1) of the covariance matrix
from a finite sample.

20.2 Principal Component Analysis in Feature Spaces \ 329

Feature Space

To do this, one has to solve the eigenvalue equation
v =Cv (20.2)

for eigenvalues A > 0 and eigenvectors v € RV\{0}. As

=0 MZ% o, (203)

all solutions v with A # 0 must lie in the span of x;...xs, hence (20.2) in that
case is equivalent to

AMxpv)=(xx-Cv) forallk=1,..., M. (20.4)

In the remainder of this section, we describe the same computation in another dot
product space F, which is related to the input space by a possibly nonlinear map

:RVN - F, x—X (20.5)

Note that the feature space F could have an arbitrarily large, possibly infinite,
dimensionality. Here and in the following, upper case characters are used for
elements of F, while lower case characters denote elements of RV .

Again, we assume that we are dealing with centered data, ZkM=1 O(xz) =0 —
we shall return to this point later. In F', the covariance matrix takes the form

M
e Z B(x;)". (20.6)

Note that if F is infinite-dimensional, we think of ®(x;)®(x;)" as a linear operator
on F', mapping

X B(x,)(®(x;) - X). ' (20.7)

We now have to find eigenvalues A > 0 and eigenvectors V € F\{0} satisfying

AV =CV. (20.8)

Again, all solutions V with A # 0 lie in the span of ®(x1),...,®(xs). For us,. this
has two useful consequences: first, we may instead consider the set of equations

AN®(xx) - V) = (®(xx)-CV) forall k =1,..., M, (20.9)
and second, there exist coeflicients «; (i = 1,..., M) such that

M
V= Zaiq)(xi). (20.10)

Combining (20.9) and (20.10), we get

2y il @(xe) - 2(xi) MZ% ki) 3 B(x;)(@(x) B(x)) | (20.11)

330

Eigenvalue
Problem in F

Kernel Principal Component Analysis

forall k =1,..., M. Defining an M x M matrix K by

Kij = (®(x:) - @(x;)), (20.12)
this reads

MMKa = K’a, (20.13)
where a denotes the column vector with entries ay,...,ay. To find solutions of
(20.13), we solve the eigenvalue problem

MM =Ka (20.14)

for nonzero eigenvalues. In the Appendix, we show that this gives us all solutions
of (20.13) which are of interest for us.

Let Ay < A2 < ... < Ay denote the eigenvalues of K (i.e. the solutions
M of (20.14)), and a?,...,a™ the corresponding complete set of eigenvectors,
with A, being the first nonzero eigenvalue (assuming that ® is not identically 0).
We normalize a?,...,a™ by requiring that the corresponding vectors in F be
normalized, i.e.

(VE. V&) =1forall k=p,..., M. (20.15)

By virtue of (20.10) and (20.14), this translates into a normalization condition for
ab, ..., oM.

M M
1= Z afaf(@(xi) -®(x;)) = Z afafKij

2,9=1 2,70=1
= (af - Kao*) = M(aF - aF) (20.16)

For the purpose of principal component extraction, we need to compute projections
onto the eigenvectors V¥ in F (k =p,..., M). Let x be a test point, with an image
®(x) in F, then

M
(VF-®(x)) =) af(®(x:) - B(x)) (20.17)

may be called its nonlinear principal components corresponding to ®.

In summary, the following steps were necessary to compute the principal compo-
nents: first, compute the matrix K, second, compute its eigenvectors and normalize
them in F; third, compute projections of a test point onto the eigenvectors.3

For the sake of simplicity, we have above made the assumption that the obser-
vations are centered. This is easy to achieve in input space, but more difficult in

3. Note that in our derivation we could have used the known result (e.g. Kirby and
Sirovich, 1990) that PCA can be carried out on the dot product matrix (x; - Xj)ij instead
of (20.1), however, for the sake of clarity and extendability (in the Appendix, we shall
consider the question how to center the data in F), we gave a detailed derivation.

20.3 Kernel Principal Component Analysis 331

F, as we cannot explicitly compute the mean of the mapped observations in F.
There is, however, a way to do it, and this leads to slightly modified equations for
kernel-based PCA (see Appendix).

To conclude this section, note that ® can be an arbitrary nonlinear map into
the possibly high-dimensional space F, for instance, the space of all d-th order
monomials in the entries of an input vector. In that case, we need to compute dot
products of input vectors mapped by ®, with a possibly prohibitive computational
cost. The solution to this problem, however, is to use kernel functions (1.20) — we
ezclusively need to compute dot products between mapped patterns (in (20.12) and
(20.17)); we never need the mapped patterns explicitly. Therefore, we can use the
kernels described in chapter 1. The particular kernel used then implicitly determines
the space F of all possible features. The proposed algorithm, on the other hand, is
a mechanism for selecting features in F'.

20.3 Kernel Principal Component Analysis

Feature
Extraction

The Algorithm. To perform kernel-based PCA (figure 20.1), henceforth referred
to as kernel PCA, the following steps have to be carried out: first, we compute
the matrix K;; = (k(x;. X;))i;. Next, we solve (20.14) by diagonalizing K, and
normalize the eigenvector expansion coefficients a™ by requiring A, (™ a™) = 1. To
extract the principal components (corresponding to the kernel k) of a test point x,
we then compute projections onto the eigenvectors by (cf. Eq. (20.17), figure 20.2),

M
(V" ®(x)) = Za?k(xi,x). (20.18)

If we use a kernel satisfying Mercer’s conditions (Proposition 1.1), we know that this
procedure exactly corresponds to standard PCA in some high-dimensional feature
space, except that we do not need to perform expensive computations in that space.

Properties of Kernel-PCA. For Mercer kernels, we know that we are in fact
doing a standard PCA in F. Consequently, all mathematical and statistical proper-
ties of PCA (cf. Jolliffe (1986); Diamantaras and Kung (1996)) carry over to kernel
PCA, with the modifications that they become statements about a set of points
®(x;),i =1,..., M, in F rather than in RY. In F, we can thus assert that PCA is
the orthogonal basis transformation with the following properties (assuming that
the eigenvectors are sorted in descending order of the eigenvalue size):

® the first ¢ (¢ € {1,...,M}) principal components, i.e. projections on eigen-
vectors, carry more variance than any other.g orthogonal directions

= the mean-squared approximation error in representing the observations by
the first ¢ principal components is minimal?

4. To see this, in the simple case where the data z;i...., z¢ are centered, we consider an

332

Kernel Principal Component Analysis

linear PCA . kxy) = (xy)

Figure 20.1 The basic idea of kernel PCA. In some high-dimensional feature space
F (bottom right), we are performing linear PCA, just as a PCA in'input space (top).
Since F' is nonlinearly related to input space (via &), the contour lines of constant
projections onto the principal eigenvector (drawn as an arrow) become nonlinear
in input space. Note that we cannot draw a preimage of the eigenvector in input
space, as it may not even exist. Crucial to kernel PCA is the fact that there is no
need to perform the map into F: all necessary computations are carried out by the
use of a kernel function k in input space (here: R?).

® the principal components are uncorrelated

= the first ¢ principal components have maximal mutual information with
respect to the inputs (this holds under Gaussianity assumptions, and thus
depends on the particular kernel chosen and on the data)

orthogonal basis transformation 7, and use the notation P, for the projector on the first
q canonical basis vectors {e1,...,e,}. Then the mean squared reconstruction error using
g vectors is

i Lz = WTP,Wzi|* = § 3 |Wazs — P,Wai||* = XY (Wzi-e))?
i i i j>q
= (XY@ Wie)l=1T T (Wie;-z:)(z: - Wey) = Y. (WTe; - CWey).
i J>g i J>q i>q
It can easily be seen that the values of this quadratic form (which gives the variances in
the directions W " e;) are minimal if the W Te; are chosen as its (orthogonal) eigenvectors
with smallest eigenvalues.

20.3 Kernel Principal Component Analysis 333

Invariance of
Polynomial
Kernels

5 feature value
(V-O(x)) = Z o; k(x;,X)

/ weights (eigenvector
0y 03 Oy coefficients)
k
4
|

comparison: k(x;,X)

o
k
)
7

-t
2 e X

sample x;, X,, Xs,...

1 input vector x

Figure 20.2 Feature extractor constructed by kernel PCA (cf. (20.18)). In the
first layer, the input vector is compared to the sample via a kernel function, chosen
a priori (e.g. polynomial, Gaussian, or sigmoid). The outputs are then linearly
combined using weights which are found by solving an eigenvector problem. As
shown in the text, the depicted network’s function can be thought of as the
projection onto an eigenvector of a covariance matrix in a high-dimensional feature
space. As a function on input space, it is nonlinear.

To translate these properties of PCA in F into statements about the data in input
space, they need to be investigated for specific choices of a kernels.

We conclude this section with a characterization of kernel PCA with polynomial
kernels. In section 1.3, it was explained how using polynomial kernels (x-y)d
corresponds to mapping into a feature space whose dimensions are spanned by all
possible d-th order monomials in input coordinates. The different dimensions are
scaled with the square root of the number of ordered products of the respective d
pixels (e.g. v/2 in (1.22)). These scaling factors precisely ensure invariance of kernel
PCA under the group of all orthogonal transformations (rotations and mirroring
operations). This is a desirable property: it ensures that the features extracted do
not depend on which orthonormal coordinate system we use for representing our
input data.

Theorem 20.1 (Invariance of Polynomial Kernels)

Up to a scaling factor, kernel PCA with k(x,y) = (x-y)? is the only PCA in a space
of all monomials of degree d which is invariant under orthogonal transformations
of input space.

This means that even if we could compute all monomials of degree p for the data
at hand and perform PCA on the monomials, with the additional requirement of
not implying any preferred directions, we would obtain multiples of the results
generated by kernel PCA.

334

Reduced Set

Kernel Principal Component Analysis

Cum grano salis, the theorem applies to all methods which are based on Mercer
kernels. In the context of SV machines, it states that the estimated function is the
same if the SV optimization is performed on data which is described in a rotated
coordinate system.

The proof is given in the appendix.

Computational Complexity. A fifth order polynomial kernel on a 256-dimensio-
nal input space yields a 10'°-dimensional feature space. For two reasons, kernel PCA
can deal with this huge dimensionality. First, as pointed out in Sect. 20.2 we do not
need to look for eigenvectors in the full space F', but just in the subspace spanned
by the images of our observations x;, in F. Second, we do not need to compute dot
products explicitly between vectors in F' (which can be impossible in practice, even
if the vectors live in a lower-dimensional subspace), as we are using kernel functions.
Kernel PCA thus is computationally comparable to a linear PCA on £ observations
with an £ x £ dot product matrix. If k is easy to compute, as for polynomial kernels,
e.g., the computational complexity is hardly changed by the fact that we need to
evaluate kernel functions rather than just dot products. Furthermore, in the case
where we need to use a large number £ of observations, we may want to work with
an algorithm for computing only the largest eigenvalues, as for instance the power
method with deflation (for a discussion, see Diamantaras and Kung (1996)). In
addition, we can consider using an estimate of the matrix K, computed from a
subset of M < ¢ examples, while still extracting principal components from all £
examples (this approach was chosen in some of our experiments described below).
The situation can be different for principal component extraction. There, we have
to evaluate the kernel function M times for each extracted principal component
(20.18), rather than just evaluating one dot product as for a linear PCA. Of course,
if the dimensionality of F is 10, this is still vastly faster than linear principal
component extraction in F'. Still, in some cases, e.g. if we were to extract principal
components as a preprocessing step for classification, we might want to speed up
things. This can be carried out by the reduced set technique (Burges, 1996; Burges
and Schélkopf, 1997) used in the context of Support Vector machines. In the present
setting, we approximate each eigenvector

4
V=) 0;®(x;) (20.19)
=1
(Eq. (20.10)) by another vector
V= Z 3;®(2;), (20.20)
j=1

where m < £ is chosen a priori according to the desired speedup, and z; € RN s J=
Lo ey Tl

20.3 Kernel Principal Component Analysis 335

This is done by minimizing the squared difference
p=IV-V]|2 (20.21)

This can be carried out without explicitly dealing with the possibly high-
dimensional space F'. Since

m £ m .

p=VI2+ > BiBik(zi ;) — 237 " @iBik(xi,2;), (20.22)
i,j=1 i=1 j=1

the gradient of p with respect to the 3; and the z; is readily expressed in terms of
the kernel function, thus p can be minimized by standard gradient methods. For
the task of handwritten character recognition, this technique led to a speedup by
a factor of 50 at almost no loss in accuracy (Burges and Schélkopf, 1997).
Finally, we add that although kernel principal component extraction is compu-
tationally more expensive than its linear counterpart, this additional investment
can pay back afterwards. In experiments on classification based on the extracted
principal components, we found when we trained on nonlinear features, it was suf-
ficient to use a linear Support Vector machine to construct the decision boundary.
Linear Support Vector machines, however, are much faster in classification speed
than nonlinear ones. This is due to the fact that for k(x,y) = (x-y), the Sup-
port Vector decision function (1.32) can be expressed with a single weight vector
w = Ele yioix; as f(x) = sgn((x - w) +b). Thus the final stage of classification
can be done extremely fast; the speed of the principal component extraction phase,
on the other hand, and thus the accuracy-speed trade-off of the whole classifier, can
be controlled by the number of components which we extract, or by the number m
(cf. Eq. (20.20)). ‘

Interpretability and Variable Selection. In PCA, it is sometimes desirable to
be able to select specific axes which span the subspace into which one projects in
doing principal component extraction. This way, it may for instance be possible
to choose variables which are more accessible to interpretation. In the nonlinear
case, there is an additional problem: some elements of F' do not have preimages
in input space. To make this plausible, note that the linear span of the training
examples mapped into feature space can have dimensionality up to M (the number
of examples). If this exceeds the dimensionality of input space, it is rather unlikely
that each vector of the form (20.10) has a preimage (cf. Scholkopf et al., 1998¢).
To get interpretability, we thus need to find directions in input space (i.e. input
variables) whose images under ¢ span the PCA subspace in F. This can be done
with an approach akin to the one described above: we could parametrize our set
of desired input variables and run the minimization of (20.22) only over those
parameters. The parameters can be e.g. group parameters which determine the
amount of translation, say, starting from a set of images.

Dimensionality Reduction, Feature Extraction, and Reconstruction.

Unlike linear PCA, the proposed method allows the extraction of a number of
principal components which can exceed the input dimensionality. Suppose that the

336

Generalizations
of PCA

Kernel Principal Component Analysis

number of observations M exceeds the input dimensionality N. Linear PCA, even
when it is based on the M x M dot product matrix, can find at most N nonzero
eigenvalues — they are identical to the nonzero eigenvalues of the N x N covariance
matrix. In contrast, kernel PCA can find up to M nonzero eigenvalues — a fact
that illustrates that it is impossible to perform kernel PCA directly on an N x N
covariance matrix. Even more features could be extracted by using several kernels.
Being just a basis transformation. standard PCA allows the reconstruction of
the original patterns x;,7 = 1,....¢, from a complete set of extracted principal
components (X;-v;),j = 1,...,¢, by expansion in the eigenvector basis. Even from
an incomplete set of components, good reconstruction is often possible. In kernel
PCA, this is more difficult: we can reconstruct the image of a pattern in F' from
its nonlinear components; however, if we only have an approximate reconstruction,
there is no guarantee that we can find an exact preimage of the reconstruction in
input space. In that case, we would have to resort to an approximation method (cf.
(20.22)). First results obtained by using this approach are reported in (Schélkopf
et al., 1998c). Alternatively, we could use a suitable regression method for estimating
the reconstruction mapping from the kernel-based principal components to the
inputs.

Comparison to Other Methods for Nonlinear PCA. Starting from some of
the properties characterizing PCA (see above), it is possible to develop a number of
possible generalizations of linear PCA to the nonlinear case. Alternatively, one may
choose an iterative algorithm which adaptively estimates principal components, and
make some of its parts nonlinear to extract nonlinear features. Rather than giving
a full review of this field here, we briefly describe four approaches, and refer the
reader to Diamantaras and Kung (1996) for more details.

Hebbian Networks. Initiated by the pioneering work of Oja (1982), a number of
unsupervised neural-network type algorithms computing principal components
have been proposed (e.g. Sanger, 1989). Compared to the standard approach of
diagonalizing the covariance matrix, they have advantages for instance in cases
where the data are nonstationary. Nonlinear variants of these algorithms are
obtained by adding nonlinear activation functions. The algorithms then extract
features that the authors have referred to as nonlinear principal components.
These approaches, however, do not have the geometrical interpretation of kernel
PCA as a standard PCA in a feature space nonlinearly related to input space,
and it is thus more difficult to understand what exactly they are extracting.
For a discussion of some approaches, see Karhunen and Joutsensalo (1995).

Autoassociative Multi-Layer Perceptrons. Consider a linear perceptron with
one hidden layer, which is smaller than the input. If we train it to reproduce
the input values as outputs (i.e. use it in autoassociative mode), then the
hidden unit activations form a lower-dimensional representation of the data.
closely related to PCA (see for instance Diamantaras and Kung (1996)). To
generalize to a nonlinear setting, one uses nonlinear activation functions and

20.3 Kernel Principal Component Analysis 337

additional layers.> While this of course can be considered a form of nonlinear
PCA, it should be stressed that the resulting network training consists in solv-
ing a hard nonlinear optimization problem, with the possibility to get trapped
in local minima, and thus with a dependence of the outcome on the starting
point of the training. Moreover, in neural network implementations there is

" often a risk of getting overfitting. Another drawback of neural approaches to
nonlinear PCA is that the number of components to be extracted has to be
specified in advance. As an aside, note that hyperbolic tangent kernels can
be used to extract neural network type nonlinear features using kernel PCA
(figure 20.7). The principal components of a test point x in that case take the
form (figure 20.2) >~ a”tanh(x(x;,x) + ©).

Principal Curves. An approach with a clear geometric interpretation in input
space is the method of principal curves (Hastie and Stuetzle, 1989), which
iteratively estimates a curve (or surface) capturing the structure of the data.
The data are projected onto (i.e. mapped to the closest point on) a curve, and
the algorithm tries to find a curve with the property that each point on the
curve is the average of all data points projecting onto it. It can be shown
that the only straight lines satisfying the latter are principal components,
so principal curves are indeed a generalization of the latter. To compute
principal curves, a nonlinear optimization problem has to be solved. The
dimensionality of the surface, and thus the number of features to extract,
is specified in advance. Some authors (e.g. Ritter et al., 1990) have discussed
parallels between the Principal Curve algorithm and self-organizing feature
maps (Kohonen, 1982) for dimensionality reduction.

Kernel PCA. Kernel PCA is a nonlinear generalization of PCA in the sense
that (a) it is performing PCA in feature spaces of arbitrarily large (possibly
infinite) dimensionality, and (b) if we use the kernel k(x,y) = (x-y), we recover
the original PCA algorithm. Compared to the above approaches, kernel PCA
has the main advantage that no nonlinear optimization is involved — it is
essentially linear algebra, as simple as standard PCA. In addition, we need
not specify the number of components that we want to extract in advance.
Compared to neural approaches, kernel PCA could be disadvantageous if we
need to process a very large number of observations, as this results in a large
matrix K. Compared to principal curves, kernel PCA is so far harder to
interpret in input space; however, at least for polynomial kernels, it has a
very clear interpretation in terms of higher-order features.

5. Simply using nonlinear activation functions in the hidden layer would not suffice:
already the linear activation functions lead to the best approximation of the data (given
the number of hidden nodes), so for the nonlinearities to have an effect on the components,
the architecture needs to be changed (see e.g. Diamantaras and Kung (1996)).

338 Kernel Principal Component Analysis

Eigenvalue=0.709 Eigenvalue=0.621 Eigenvalue=0.570 Eigenvalue=0.552
g _ g X g Q g N

1
0.5(f

0
-3 0 1% 0 104 0 - 0 1
Eigenvalue=0.291 Eigenvalue=0.345 Eigenvalue=0.395 Eigenvalue=0418

e
05— 05
0

==

= 0 702 0 1 -1 1 =1 0 1
Eigenvalue=0.000 Eigenvalue=0.034 Eigenvalue=0.026 Eigenvalu 02
N — \

——

1t _." 1R

0.5 2. 05 0.5
0 0 (0
-05———=0. 0.5 - L 0. =
°§1 0 10!-51 0 =1 0 1 - 0 1

Figure 20.3 Two-dimensional toy example, with data generated in the following
way: z-values have uniform distribution in [-1,1], y-values are generated from
yi = 2% + v, were v is normal noise with standard deviation 0.2. From left to right,
the polynomial degree in the kernel (1.21) increases from 1 to 4; from top to bottom,
the first 3 eigenvectors are shown, in order of decreasing eigenvalue size. The figures
contain lines of constant principal component value (contour lines); in the linear
case, these are orthogonal to the eigenvectors. We did not draw the eigenvectors,
as in the general case, they live in a higher-dimensional feature space.

20.4 Feature Extraction Experiments

In this section, we present a set of experiments where we used kernel PCA (in the
form taking ihto account centering in F', as described in the Appendix) to extract
principal components. First, we shall take a look at a simple toy example; following
that, we describe real-world experiments where we assess the utility of the extracted
principal components by classification tasks.

Toy Examples. To provide some insight into how PCA in F behaves in input
space, we show a set of experiments with an artificial 2-D data set, using polynomial
kernels (cf. (1.21)) of degree 1 through 4 (see figure 20.3). Linear PCA (on-the left)
only leads to 2 nonzero eigenvalues, as the input dimensionality is 2. In contrast.
nonlinear PCA allows the extraction of further components. In the figure, note
that nonlinear PCA produces contour lines of constant feature value which reflect
the structure in the data better than in linear PCA. In all cases, the first principal

20.4 Feature Extraction Ezperiments 339

component varies monotonically along the parabola which underlies the data. In the
nonlinear cases, also the second and the third components show behaviour which
is similar for different polynomial degrees. The third component, which comes with
small eigenvalues (rescaled to sum to 1), seems to pick up the variance caused by
the noise, as can be nicely seen in the case of degree 2. Dropping this component
would thus amount to noise reduction.

In figure 20.3, it can be observed that for larger polynomial degrees, the principal
component extraction functions become increasingly flat around the origin. Thus,
different data points not too far from the origin would only differ slightly in the
value of their principal components. To understand this, consider the following
example: suppose we have two data points

X1:<;>,X2=<§>, ‘ (20.23)

and a kernel k(x,y) := (x-y)2. Then the differences between the entries of x; and
X2 get scaled up by the kernel, namely k(x1,%1) = 1, but k(x2,x3) = 16. We can
compensate for this by rescaling the individual entries of each vector x; by

(xi)r > sign (%)) - (i) 2. (20.24)

Indeed, figure 20.4, taken from Scholkopf et al. (1997a), shows that when the
data are preprocessed according to (20.24) (where higher degrees are treated
correspondingly), the first principal component extractors do hardly depend on
the degree anymore, as long as it is larger than 1. If necessary, we can thus use
(20.24) to preprocess our data. Note, however, that the above scaling problem is
irrelevant for the character and object databases to be considered below: there,
most entries of the patterns are 1.

Further toy examples, using radial basis function kernels (1.31) and neural network
type sigmoid kernels (1.30), are shown in figures 20.5 — 20.8. Matlab code for
carrying out kernel PCA can be obtained from http://svm.first.gmd.de.

SN

11 0 1 =4 0 1

Figure 20.4 PCA with kernel (1.21), degrees d = 1,...,5. 100 points ((z:)1, (zi)2)
were generated from (z;)2 = (z;)} + v (where v is Gaussian noise with standard
deviation 0.2); all (z;); were rescaled according to (z:); — sgn((z:);) - |(z:);]/%.
Displayed are contour lines of constant value of the first principal component.
Nonlinear kernels (d > 1) extract features which nicely increase along the direction
of main variance in the data;: linear PCA (d = 1) does its best in that respect, too,
but it is limited to straight directions.

Eigenvalue=0.251

Eigenvalue=0.037

Kernel Principal Component Analysis

Eigenvalue=0.233

Eigenvalue=0.033

Eigenvalue=0.052

Eigenvalue=0.031

Eigenvalue=0.044

Eigenvalue=0.025

Eigenvalue=0.014 Eigenvalue=0.007 Eigenvalue=0.006

Eigenvalue=0.005 Eigenvalue=0.003

Eigenvalue=0.002

Figure 20.5 Two-dimensional toy example with three data clusters (Gaussians
with standard deviation 0.1, depicted region: [—1,1] x [-0.5,1]): first 16 nonlinear
principal components extracted with k(x,y) = exp (—||x — y[?/0.1). Note that the
first 2 principal component (top left), with the largest eigenvalues, nicely separate
the three clusters. The components 3 — 5 split up the clusters into halves. Similarly,
the components 6 — 8 split them again, in a way orthogonal to the above splits.
The higher components are more difficult to describe. They look for finer structure
in the data set, identifying higher-order moments.

Object Recognition. In this set of experiments, we used the MPI chair database
with 89 training views of 25 different chair models (figure 20.9, Blanz et al. (1996):
Scholkopf (1997)). We computed the matrix K from all 2225 training examples.
and used polynomial kernel PCA to extract nonlinear principal components from
the training and test set. To assess the utility of the components, we trained a
soft margin hyperplane classifier on the classification task. This is a special case
of Support Vector machines, using the standard dot product as a kernel function.
Table 20.1 summarizes our findings: in all cases, nonlinear components as extracted
by polynomial kernels (Eq. (1.21) with d > 1) led to classification accuracies
superior to standard PCA. Specifically, the nonlinear components afforded top test
performances between 2% and 4% error; in the linear case we obtained 17%.

20.4 Feature Extraction Ezperiments 341

Figure 20.6 A plot of the data

representation given by the first
: two principal components of fig-
o ure 20.5. The clusters of fig-
' ure 20.5 end up roughly on sep-
arated lines (the left, right, and
2k top region corresponds to the
clusters left, top, and right, re-
spectively). Note that already the
first component (the horizontal

e R axis) separates the clusters —
~4r ‘ ’ ’ b this cannot be done using linear
—é —:S -2 0 2 4 6 PC*A-'

Test Error Rate for degree
of components 1 2 3 4 5 6 7
64 || 23.0 | 21.0 | 176 | 16.8 | 16.5 | 16.7 | 16.6
128 || 17.6 9.9 7.9 73 6.2 6.0 5.8
256 || 16.8 6.0 4.4 3.8 3.4 3:2 33
512 n.a. 44 3.6 3.9 2.8 2.8 2.6
1024 n.a. 4.1 3.0 2.8 2.6 2.6 2.4
2048 || n.a. 4.1 2.9 2.6 2.5 24 2.2

Table 20.1 Test error rates on the MPI chair database for linear Support Vector
machines trained on nonlinear principal components extracted by PCA with poly-
nomial kernel (1.21), for degrees 1 through 7. In the case of degree 1, we are doing
standard PCA, with the number of nonzero eigenvalues being at most the dimen-
sionality of the space, 256; thus, we can extract at most 256 principal components.
The performance for the nonlinear cases (degree > 1) is significantly better than
for the linear case, illustrating the utility of the extracted nonlinear components for
classification.

Character Recognition. To validate the above results on a widely used pattern
recognition benchmark database, we repeated the same experiments on the US
postal service database of handwritten digits (figure 20.10, e.g. Simard et al. (1993);
LeCun et al. (1989)). This database contains 9298 examples of dimensionality 256;
2007 of them make up the test set. For computational reasons, we decided to
use a subset of 3000 training examples for the matrix K. Table 20.2 illustrates
two advantages of using nonlinear kernels: first, performance of a linear classifier
trained on nonlinear principal components is better than for the same number
of linear components; second, the performance for nonlinear components can be
further improved by using more components than possible in the linear case. The

342

USPS Benchmark

Kernel Principal Component Analysis

=

(=

.\ Joom e

h\

Figure 20.7 Two-dimensional toy example with three data clusters (Gaussians
with standard deviation 0.1, depicted region: [—1,1] x [-0.5,1]): first 6 nonlinear
principal components extracted with k(x.y) = tanh(2(x-y)—1) (the gain and
threshold values were chosen according to the values used in SV machines, cf.
Scholkopf et al. (1995)). Note that the first 2 principal components are sufficient
to separate the three clusters, and the third and fourth component simultaneously
split all clusters into halves.

latter is related to the fact that of course there are many more higher-order features
than there are pixels in an image. Regarding the first point, note that extracting a
certain number of features in a 10'°-dimensional space constitutes a much higher
reduction of dimensionality than extracting the same number of features in 256-
dimensional input space.

For all numbers of features, the optimal degree of kernels to use is around 4, which
is compatible with Support Vector machine results on the same data set (Schol-
kopf et al., 1995). Moreover, with only one exception, the nonlinear features are
superior to their linear counterparts. The resulting error rate for the best of our
classifiers (4.0%) is competitive with convolutional 5-layer neural networks (5.0%
were reported by LeCun et al. (1989)) and nonlinear Support Vector classifiers
(4.0%, Scholkopf et al. (1995)); it is much better than linear classifiers operating
directly on the image data (a linear Support Vector machine achieves 8.9%; Schol-
kopf et al. (1995)). Our results were obtained without using any prior knowledge
about symmetries of the problem at hand, explaining why the performance is
inferior to Virtual Support Vector classifiers (3.2%, Scholkopf et al. (1996a)), and
Tangent Distance Nearest Neighbour classifiers (2.6%, Simard et al. (1993)). We
believe that adding e.g. local translation invariance, be it by generating “virtual”
translated examples (cf. Scholkopf et al., 1996a) or by choosing a suitable kernel
incorporating locality (e.g. as the ones in (Scholkopf et al., 1998d), which led to an
error rate of 3.0%), could further improve the results.

20.4 Feature Eztraction Ezperiments 343

T s
8 o

Figure 20.8 A smooth transition from linear PCA to nonlinear PCA is obtained
by using hyperbolic tangent kernels k(x,y) = tanh (x(x-y)+1) with varying gain
x: from top to bottom, x = 0.1,1,5,10 (data as in the previous figures). For x = 0.1,
the first two features look like linear PCA features. For large x, the nonlinear region
of the tanh function becomes effective. In that case, kernel PCA can exploit this
nonlinearity to allocate the highest feature gradients to regions where there are
data points, as can be seen nicely in the case x = 10.

Figure '20.9 Left: rendered view of
a 3-D model from the MPI chair
database; right: 16 x 16 downsampled
image, as used in the experiments.

344

Kernel Principal Component Analysis

Figure 20.10 The first 8 patterns from the US Postal Service database of hand-
written digits, with class labels.

Test Error Rate for degree
of components i 2 3 4 5 6 7
32| 96| 88| 81| 85| 91| 93| 108
64 || 88| 73| 68| 67| 67| 72| 75
128 || 86| 58| 59| 6.1 | 58| 6.0 | 6.8
256 || 8.7 | 55| 53| 52| 52| 54| 54
512 || n.a. | 49| 46| 44| 51| 46| 49
1024 || na. | 49| 43| 44| 46| 48 | 4.6
2048 || n.a. 49 | 42| 41 4.0 | 43 4.4

Table 20.2 Test error rates on the USPS handwritten digit database for linear
Support Vector machines trained on nonlinear principal components extracted by
PCA with kernel (1.21), for degrees 1 through 7. In the case of degree 1, we are
doing standard PCA, with the number of nonzero eigenvalues being at most the
dimensionality of the space, 256. Clearly, nonlinear principal components afford test
error rates which are superior to the linear case (degree 1).

20.5 Discussion

Feature Extraction for Classification. This chapter was devoted to the pre-
sentation of ‘a new technique for nonlinear PCA. To develop this technique, we
made use of the Mercer kernel method so far only used in supervised learning. Ker-
nel PCA constitutes a mere first step towards exploiting this technique for a large
class of algorithms.

In experiments comparing the utility of kernel PCA features for pattern recognition
using a linear classifier, we found two advantages of nonlinear kernels: first, non-
linear principal components afforded better recognition rates than corresponding
numbers of linear principal components; and second, the performance for nonlin-
ear components can be further improved by using more components than possible
in the linear case. We have not yet compared kernel PCA to other techniques for
nonlinear feature extraction and dimensionality reduction. We can, however, com-
pare results to other feature extraction methods which have been used in the past
by researchers working on the USPS classification problem (cf. section 20.4). Our
system of kernel PCA feature extraction plus linear support vector machine for in-

20.5 Discussion

345

stance performed better than LeNetl (LeCun et al., 1989). Even though the latter
result has been obtained a number of years ago, it should be stressed that LeNetl
provides an architecture which contains a great deal of prior information about
the handwritten character classification problem. It uses shared weights to improve
transformation invariance, and a hierarchy of feature detectors resembling parts of
the human visual system. These feature detectors were for instance used by Bottou
and Vapnik (1992) as a preprocessing stage in their experiments in local learning.
Note that, in addition, our features were extracted without taking into account that
we want to do classification. Clearly, in supervised learning, where we are given a
set of labelled observations (x1,¥1), ..., (X¢, y¢), it would seem advisable to make
use of the labels not only during the training of the final classifier, but already in
the stage of feature extraction.

To conclude this paragraph on feature extraction for classification, we note that a
similar approach could be taken in the case of regression estimation, to generalize
PCA regression (e.g. Jolliffe, 1986) to the nonlinear case.

Feature Space and the Curse of Dimensionality. We are doing PCA in
10*°-dimensional feature spaces, yet getting results in finite time which are com-
parable to state-of-the-art techniques. In fact, of course, we are not working in
the full feature space, but just in a comparably small linear subspace of it, whose
dimension equals at most the number of observations. The method automatically
chooses this subspace and provides a means of taking advantage of the lower dimen-
sionality — an approach which consisted in explicitly mapping into feature space
and then performing PCA would have severe difficulties at this point: even if PCA
was done based on an M x M dot product matrix (A/ being the sample size) whose
diagonalization is tractable, it would still be necessary to evaluate dot products in
a 10'%-dimensional feature space to compute the entries of the matrix in the first
place. Kernel-based methods avoid this problem — they do not explicitly compute
all dimensions of F' (loosely speaking, all possible features), but only work in a
relevant subspace of F.

Note, moreover, that we did not get overfitting problems when training the linear
SV classifier on the extracted features. The basic idea behind this two-step approach
is very similar in spirit to nonlinear SV machines: one maps into a very complex
space to be able to approximate a large class of possible decision functions, and
then uses a low VC-dimension classifier in that space to control generalization.

Regularization. As kernel PCA belongs to the domain of unsupervised learning,
VC-theory methods are not directly applicable to discuss its regularization and
generalization properties. It is, however, possible to draw some simple analogies
to the standard SV reasoning. The feature extractors (20.18) are linear functions
in the feature space F' whose regularization properties. as in the SV case, can be
characterized by the length of their weight vector. When applied to the training
data, the k-th feature extractor generates a set of outputs with variance . Dividing
each weight vector a® by v/Ar, we obtain a set of nonlinear feature extractors with
unit variance output and the property that out of all such extractors which can be

346

Kernel Principal Component Analysis

written in the form (20.18), the first k kernel PCA extractors are those with the
shortest weight vectors (subject to the condition that they are orthogonal in F).
Therefore, kernel PCA can be considered as a method for extracting potentially
interesting functions (with unit variance on the data) that have low capacity. The
complexity measure used here is identical to the one used in Gaussian processes
(Williams, 1998), i.e. it could be interpreted as a Bayesian prior on the space of
functions by setting p(f) x exp(—3||Pf||*) where P is the regularization operator
corresponding to k (see Smola and Scholkopf (1998b) for details). In this view, the
first extractor (cf. (20.18)) f(x) = Zf\il a;k(x;,x) is given by

1 ’

f = argmax exp <———||Pf||2> . (20.25)
Var(f)=1 2 ’

where Var(f) denotes the (estimate of the) variance of f(x) for x drawn from the

underlying distribution.

Conclusion. Compared to other techniques for nonlinear feature extraction, ker-
nel PCA has the advantages that it does not require nonlinear optimization, but
only the solution of an eigenvalue problem, and by the possibility to use differ-
ent kernels, it comprises a fairly general class of nonlinearities that can be used.
Clearly, the last point has yet to be evaluated in practice, however, for the support
vector machine, the utility of different kernels has already been established. Differ-
ent kernels (polynomial, sigmoid, Gaussian) led to fine classification performances
(Scholkopf et al., 1995). The general question of how to select the ideal kernel for
a given task (i.e. the appropriate feature space), however, is an open problem.

We conclude this chapter with a twofold outlook. The scene has been set for using
the kernel method to construct a wide variety of rather general and still feasible
nonlinear variants of classical algorithms. It is beyond the scope of the present
work to explore all the possibilities, including many distance-based algorithms,
in detail. In (Scholkopf et al., 1996b), we have proposed and begun to work out
several possibilities, for instance kernel-based independent component analysis and
nonlinear forms of k-means clustering. The latter has meanwhile been further
developed and implemented by Graepel and Obermayer (1998). Other domains
where researchers have recently started to investigate the use of Mercer kernels
include Gaussian Processes (Williams, 1998).

Linear PCA is being used in numerous technical and scientific applications, includ-
ing noise reduction, density estimation, image indexing and retrieval systems, and
the analysis of natural image statistics. Kernel PCA can be applied to all domains
where traditional PCA has so far been used for feature extraction, and where a
nonlinear extension would make sense.

Acknowledgements
AS and BS were supported by grants from the Studienstiftung des deutschen Volkes,

and thank V. Vapnik for introducing them to kernel representations of dot products
during joint work on support vector machines. AS was supported by a grant of the

20.5 Discussion

347

DFG (JA 379/71). This work profited from discussions with V. Blanz, L. Bottou,
C. Burges, H. Biilthoff, P. Haffner, Y. Le Cun, S. Mika, N. Murata, P. Simard,
S. Solla, V. Vapnik, and T. Vetter. We are grateful to V. Blanz, C. Burges, and
S. Solla for reading a preliminary version of the manuscript, and to L. Bottou,
C. Burges, and C. Cortes for parts of the SV training code.

Appendix

The Eigenvalue Problem in the Space of Expansion Coefficients

Being symmetric, K has an orthonormal basis of eigenvectors (8'); with corre-
sponding eigenvalues ;, thus for all i, we have K B = i3 (i=1,...,M). To
understand the relation between Eq. (20.13) and Eq. (20.14), we proceed as fol-
lows: first suppose \, o satisfy (20.13). We may expand « in K's eigenvector basis
as a = Zfil a;B’. Eq. (20.13) then reads

MAY apB =" aid, (20.26)
or, equivalently, for all ¢ = 1,... M, M Aa;p; = a;p?. This in turn means that for
alli=1,..., M,

MXA=p; or a;=0 or p;=0. (20.27)

Note that the above are not exclusive or-s. We next assume that \, o satisfy (20.14),
to carry out a similar derivation. In that case, we find that Eq. (20.14) is equivalent
to

MAY a8 =Y auf, (20.28)
ie.foralli=1,... M,
MX=pu; or a; =0. (20.29)

Comparing (20.27) and (20.29), we see that all solutions of the latter satisfy the
former. However, they do not give its full set of solutions: given a solution of
(20.14), we may always add multiples of eigenvectors of K with eigenvalue 0 and
still satisfy (20.13), with the same eigenvalue.b This means that there exist solutions
of Eq. (20.13) which belong to different eigenvalues yet are not orthogonal in the
space of the . It does, however, not mean that the eigenvectors of C' in F are not
orthogonal. Indeed, note that if « is an eigenvector of K with eigenvalue 0, then
the corresponding vector 2. @i®(x;) is orthogonal to all vectors in the span of the
®(x;) in F, since (®(x;) - Do ®(x;)) = (Ka); = 0 for all j, which means that

6. This observation could be used to change the vectors a of the solution, e.g. to make
them maximally sparse, without changing the solution.

348

Kernel Principal Component Analysis

S, a;®(x;) = 0. Thus, the above difference between the solutions of (20.13) and
(20.14) is irrelevant, since we are interested in vectors in F rather than vectors in
the space of the expansion coefficients of (20.10). We thus only need to diagonalize
K to find all relevant solutions of (20.13).

Centering in High-Dimensional Space

Given any ® and any set of observations X1, ...,Xys, the points
. 1. cef
B(xi) = B(xi) — 57 }_:1 B(x;) (20.30)

are centered. Thus, the assumptions of section 20.2 now hold, and we go on to
define covariance matrix and K;; = (®(x;) - ®(x;)) in F. We arrive at our already
familiar eigenvalue problem

o = Ka, (20.31)

with & being the expansion Coefﬁcien’cs of an eigenvector (in F') in terms of the
points (20.30), V = Zz 1 6 ®(x;). As we do not have the centered data (20.30),
we cannot compute K directly: however, we can express it in terms of its non-
centered counterpart K. In the following, we shall use K;; = (<I>(i) - ®(x;)), and

the notations 1;; = 1 for all 4, j, (1ar)s; := 1/M, to compute Ky = (B(x:) - ®(x;)):

M M
K= < (%:) = 7 }: B (xm)) - (B(x;) = 77 Z@(xn))) (20.32)
1
Ky — == i mj — inin wm mn
Y l\fmzzllmK ITM ZK Ln +]L/2 m;ll

= (K - 1yK — Kl + 1MK1M)1~J--

We thus can compute K from K, and then solve the eigenvalue problem (20.31).
As in (20.16), the solutions &" are normalized by normalizing the corresponding
vectors V¥ in F, which translates into Ax(&"* - &) = 1. For feature extraction, we
compute projections of centered ®-images of test patterns t onto the eigenvectors
of the covariance matrix of the centered points,

M
(VE-B(t)) =) aF(B(x) - D(t)). (20.33)
t=1
Consider a set of test points ty,...,t L, and define two L x M matrices by K}** =

(2(t:)-@(x;)) and Kis*t = ((®(t:) = 3 Loy Blxm)) - (B(x5) = 3 Thly @(xn»).
As in (20.32), we express K in terms of K**** and arrive at

Ktest = Ktest — 10, K — K" + 13, K1y, (20.34)

where 19, is the L x M matrix with all entries equal to 1/M.

20.5 Discussion

349

Proof of Theorem 20.1

The proof requires some basic notions from group theory. Denote O(N) the or-
thogonal group on R, i.e. the group of N x N matrices with OTO = 1; with the
additional requirement det O = 1, we obtain the special orthogonal group SO(N).
A representation p of SO(N) is a map that preserves the group structure, i.e.
T(0103) = T(01)T(05) for all 01,0, € SO(N).

Proof (=) Due to the definition of k(x,y) := (x - y)?, it follows immediately
that k(Ox,0y) = (x- OTOy)? = (x - y)¢ for any O € O(N).

(=) Define P(d, N) to be the (feature) space given by the evaluation of all

possible monomials of order p on RY, furnished with a Euclidean dot product.”
Then the map into feature space, ® : RY — P(d,N),x — ®(x), induces a
representation p of SO(N) on P(d, N) via ®(Ox) = p(O)®(x). This is a consequence
of (Vilenkin, 1968, chapter IX.2). We have :
(2(x) - ®(y)) = (x- y)? = (0x- Oy)? = (p(0)®(x) - p(0)®(y)). (20.35)
What is more, p is an orthogonal representation, i.e. p(0)Tp(0) = 1 for all
O € SO(N). This follows from (®(x) - ®(y)) = (p(0)®(x) - p(O)®(y)) and
span ®(RY) = P(d, N).

We now prove that any positive diagonal matrix D acting on P(d, N), satisfying
the invariance condition

(D3®(x) - D¥a(y)) = (D?p(0)&(x) - D* p(0)(y)) (20.36)

for all O € SO(N), is necessarily a multiple of the unit matrix. If that were not true,
then kp(x,y) := (D2®(x) - D3d(y)) = kp(Ox,0y) would be a different kernel
invariant under SO(N). Again, as span ®(RY) = P(d, N), we may rewrite (20.36)
as

D = p(0)"Dp(0), i.e. Dp(0) = p(O)D. (20.37)
In componentwise notation (in P(d, N)), this reads
Dip(0)ij = D;p(0)s;. (20.38)

Therefore, we can show that D; = D; for all i,j by showing that there exist
sufficiently many nonzero p(0);;. To this end, consider a rotation O mapping
x; :=(1,0,...,0) into x5 := J—lﬁ—(l, -+, 1). Clearly, ®(x;) = (1,0,...,0) € P(d, N),
whereas ®(x3) = ®(0x,;) = p(0)®(x;) contains only nonzero entries. Hence also

7. It is straightforward to see that the polynomial kernel corresponds to a dot product in
the space of all monomials: simply compute (x-y)? = Z]’Z a1 Tin e By Yy e - oYy =
(Ca(x) - Ca(y)), where Cy maps x to the vector Ca(x) whose entries are all possible d-
th degree ordered products of the entries of x (Schélkopf, 1997). Identifying the entries
which just differ by the ordering of the coordinates, we obtain pre-factors of the form
1/p1!p2?..p,\,!xflmgz ..z, with 37, p; = p (Smola et al., 1998a).

350 Kernel Principal Component Analysis

the first row of p(O) contains only nonzero entries. By (20.38), we conclude that
D; = D; for all i, and therefore D = Al.

This completes the argument concerning the invariance of the polynomial kernel.
The transfer to the invariance of kernel PCA, i.e. to the invariance of kernel PCA
feature extraction for all test and training sets, is straightforward. =

Note that the above statement does not hold if we allow D to be an arbitrary matrix
of full rank. In particular, due to Schur’s lemma (Hamermesh, 1962) one can show
that the number of different subspaces that can be scaled separately equals the
number of irreducible representations contained in p.

Kernels

The remainder of the chapter provides some further material on kernels, partly
reprinted from (Scholkopf et al., 1996b).

Kernels Corresponding to Bilinear Forms in Another Space. Mercer’s the-
orem of functional analysis gives conditions under which we can construct the
mapping ® from the eigenfunction decomposition of k (cf. (1.25)) such that
k(x,y) = (2(x) - 2(¥))-

In fact, k does not have to be the kernel of a positive definite operator: even if a
finite number of eigenvalues); in (1.25) is negative, the expansion (1.25) is still
valid. In that case, k corresponds to a Lorentz scalar product in a space with
indefinite signature. We can then no longer interpret our method as PCA in some
feature space; however, it could still be viewed as a nonlinear factor analysis.8 For
instance, we have used the thin plate spline kernel k(x,y) = ||x — y||?In|x — y],
which is not positive definite (it is conditionally positive definite of order 2, cf. e.g.
Smola et al. (1998c)).

Kernels Constructed from Mappings. We stated above that once we have a
suitable kernel, we need not worry anymore about exactly which map ® the kernel
corresponds to. For the purpose of constructing kernels, however, it can well be
useful to compute the kernels from mappings into some dot product space F,
® : RV — F. Ideally, we would like to choose @ such that we can obtain an
expression for (®(x) - ®(y)) which can be computed efficiently. Presently, we shall
consider mappings into function spaces,

X = fx, (20.39)

with fyx being a complex-valued function on some measure space. We furthermore

8. The fact that we can use indefinite operators distinguishes this approach from the usage
of kernels in the support vector machine: in the latter, the definiteness is necessary for the
convex programming.

20.5 Discussion 351
assume that these spaces are equipped with a dot product
(e) = [) Fytu) (20.40)
We can then define kernels of the type
k(x,y) == (fx - fy)". (20.41)

(These kernels can also be used if our observations are already given as functions,
as is usually the case for the variant of PCA which is referred to as the Karhunen-
Lotve-Transformation; see Karhunen (1946)) As an example, suppose the input
patterns x; are ¢ X ¢ images. Then we can map them to two-dimensional image
intensity distributions fx, (e.g. splines on [0,1]%). The corresponding kernel will
then approximately equal the original dot product between the images represented
as pixel vectors, which can be seen by considering the finite sum approximation to
the integral,

i=1 j=1

Combining Kernels. If k and &’ satisfy Mercer’s conditions, then so will k + &’
and, for A > 0, M\k. In other words, the admissible kernels form a cone in the space
of all integral operators. Clearly, k+ k' corresponds to mapping into the direct sum
of the respective spaces into which k and &’ map. Of course, we could also explicitly
do the principal component extraction twice, for both kernels, and decide ourselves
on the respective numbers of components to extract. In this case, we would not
obtain combinations of the two feature types.

Combining polynomial kernels, we can thus construct admissible kernels by series
expansions: given a function f with a uniformly convergent power series expansion
f(z) = 3, aiz;, then kp(x,y) := f((x-y)) is a Mercer kernel. In fact, the latter
can be generalized to expansions in terms of Mercer kernels k, i.e. f(k(x,y)), other
than just the usual dot product. This is due to the fact that by an argument similar
to the one proving that (x-y)? is a Mercer kernel (d € N), also k(x,y)? is a Mercer
kernel, since it can be written as (®(x) - ®(y))? (Smola et al., 1998c).

Another way of combining kernels is to use different kernels for different parts of the
input vectors. In the simplest case, we can define k(x,y) := k1(x1,y1) +ka(x2,¥2),
where x = x; ®x3 and ¥y = y1 @ y2, and ki, ko are Mercer kernels on the two
lower-dimensional spaces comprising only parts of the input. This method can be
useful if the different parts of the input have different meanings and should be dealt
with differently.

Iterating Kernels. Given a kernel k, we can construct iterated kernels (e.g.
Courant and Hilbert, 1953) by

E?(x,y) = / k(x,2)k(z,y) dz. (20.43)

352 Kernel Principal Component Analysis

In fact, k®) will be positive even if k is not, as can be seen from

[P) 760sv) dxdy = [[kx 2)h(a.)10 v) dadxdy

= / (/ k%, 2) £ (%) dx)2 dz. (20.44)

This gives us a method for constructing admissible kernels.
Multi-Layer Support Vector Machines

By first extracting nonlinear principal components according to (20.18), and then
training a Support Vector machine, we can construct Support Vector type machines
with additional layers. The number of components extracted then determines the
size of of the first hidden layer. Combining (20.18) with the Support Vector decision
function (1.32), we thus get machines of the type

¢
f(x) =sgn (Z Vika(g(x:) - §(x)) + b) (20.45)
=1
with
. M J
gx); = (V! - @(x)) = Zaikl(xk,x). . (20.46)
k=1

Here, the expansion coefficients 1; are computed by a standard Support Vector
Machine. Note that different kernél functions k; and ks can be used for the
different layers. Also note that this could provide an efficient means of building
multivariate Support Vector Machines, i.e. ¢ machines mapping RY — RY, where
g € N. All these machines may share the first preprocessing layer which includes
the numerically expensive steps and then use a simple kernel for the second layer.
Similar considerations apply for multi-class classification, where often a set of binary
classifiers (which could share some preprocessing) is constructed.

