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Abstract

Transductive support vector machines
(TSVM) has been widely used as a means
of treating partially labeled data in semi-
supervised learning. Around it, there has
been mystery because of lack of understand-
ing its foundation in generalization. This
article aims to clarify several controversial
aspects regarding TSVM. Two main results
are established. First, TSVM performs no
worse than its supervised counterpart SVM
when tuning is performed, which is contrary
to several studies indicating otherwise. The
“alleged” inferior performance of TSVM
is mainly because it was not tuned in
the process, in addition to the involved
minimization routines. Second, we utilize
difference convex programming to derive a
nonconvex minimization routine for TSVM,
which compares favorably against some
state-of-the-art methods. This, together
with our learning theory lands some support
to TSVM.

1 Introduction

In many real-world applications, labeling is often
costly, while an enormous amount of unlabeled data
is available with little cost. Examples of this type in-
clude, but are not limited to, webpage classification,
medical diagnosis, spam email detection, text catego-
rization, image processing, c.f., Baluja (1998); Blum
and Mitchell (1998); Amini and Gallinari (2003); Bal-
can, et. al. (2005). In situation as such, how to en-
hance classification by utilizing additional unlabeled
data becomes critical, which is referred to as the prob-
lem of semi-supervised learning in what follows.
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In the semi-supervised learning literature, methods
have been proposed from different perspectives, in-
cluding margin-based classification (Vapnik, 1998;
Wang and Shen, 2006), the EM method (Nigam,
McCallum, Thrun and Mitchell, 1998), graph-based
method (Blum and Chawla, 2001; Zhu, Ghahramani
and Lafferty, 2003), and information regularization
(Szummer and Jaakkola, 2002). The central topic this
article concerns is the generalization performance of
transductive support vector machine (TSVM; Vapnik,
1998), which remains mysterious, particularly its “al-
leged” unstable performance in empirical studies.

TSVM seeks the largest separation between labeled
and unlabeled data through regularization. In em-
pirical studies, it performs well in text classification
(Joachims, 1999) but can perform substantially worse
than its supervised counterpart SVM (Cortes and Vap-
nik, 1995) in other applications (Wu, Bennett, Cris-
tianini and Shawe-Taylor, 1999). This unstable per-
formance has been criticized. Zhang and Oles (2000)
argued that there is lack of evidence that the notion
of separation leads to correct classification. Chapelle
and Zien (2005) suggested that the cost function of
TSVM is appropriate but implementation of TSVM
is inadequate. Astorino and Fuduli (2005) also noted
that implementation of TSVM is an issue.

In this article, we address the aforementioned issues.
We argue that in principle TSVM performs no worse
than its supervised counterpart SVM after tuning.
Key to it is tuning, which has been commonly ig-
nored in the literature. Tuning guards against poten-
tial unstable performance by tuning regularizers to-
wards labeled data. Furthermore, we develop a statis-
tical learning theory to demonstrate this aspect with
regard to TSVM’s generalization ability. To treat the
implementation issue, we develop a nonconvex mini-
mization routine based on recent advances in global
optimization, particularly difference convex (DC) pro-
gramming. Numerical analysis indicates that the pro-
posed routine delivers a better solution than that of



Joachims (1999), and confirms that TSVM performs
no worse than SVM.

At the time this article is nearly completed, we noted
that Collobert, Sinz, Weston and Bottou (2006) de-
veloped a similar implementation of TSVM using a
different DC decomposition of the hat function. Nev-
ertheless, some overlapping is inevitable between their
implementation and ours.

The rest of the paper is organized as follows. Section 2
introduces TSVM. Section 3 solves TSVM with a DC
algorithm. Section 4 presents some numerical exam-
ples, followed by a novel statistical learning theory in
Section 5. Section 6 contains summary and discussion.
Technical details are deferred to the appendix.

2 TSVM

In semi-supervised learning, a sample (X l, Y l) =
{(Xi, Yi)}

nl
i=1 is observed with an independent unla-

beled sample Xu = {Xj}
n
j=nl+1 and n = nl + nu.

Here Xi = (Xi1, · · · , Xip) is an p-dimensional input
and Yi ∈ {−1, 1}, independently and identically dis-
tributed according to an unknown distribution P (x, y),
and Xu is distributed according to distribution P (x).

TSVM uses an idea of maximizing separation between
labeled and unlabeled data, c.f., Vapnik (1998). It
solves

min
yj ,f∈F

C1

nl
∑

i=1

L(yif(xi))+C2

n
∑

j=nl+1

L(yjf(xj))+J(f),

(1)
where f is a decision function in F , a candidate
function class, L(z) = (1 − z)+ is the hinge loss,
and J(f) is the inverse of the geometric separation
margin. In the linear case, f(x) = wTx + b and
J(f) = 1

2‖w‖
2. In the nonlinear kernel case, f(x) =

(K(x, x1), · · · ,K(x, xn))wT + b, J(f) = 1
2w

T Kw,
whereK is a kernel satisfying Mercer’s condition to as-
sure wT Kw with K = (K(xi, xj))

n
i,j=1 being a proper

norm; see Wahba (1990) and Gu (2000) for more de-
tails.

Minimization of (??) with respect to f ∈ F is non-
convex, which can be solved through integer program-
ming, and is known to be NP (Bennett and Demi-
riz, 1998). To solve (??), Joachims (1999) proposed
an efficient local search algorithm that is the basis
of SVMLight. This algorithm may fail to deliver a
good local solution, resulting in worse performance of
TSVM against SVM. This aspect is confirmed by our
numerical results in Section 4.1 as well as empirical
studies in the literature. Chapelle and Zien (2005)
aimed to correct this problem by approximating (??)
by a smooth convex problem through gradient descent.

Astorino and Fuduli (2005) used an extended bundle
method to treat nonconvexity and nonsmoothness of
the cost function. In what follows, we shall develop
our nonconvex minimization routine effectively utiliz-
ing the DC property of the cost function.

3 Difference convex programming

Key to DC programming is a decomposition of a cost
function into a difference of two convex functions,
based on which a sequence of upper approximations
of the cost function yields a sequence of solutions con-
verging to a stationary point, possibly an ε-global min-
imizer. This technique is called DC algorithms (DCA,
An and Tao, 1997), and has been used in the imple-
mentation of ψ-learning (Shen et. al, 2003; Liu, Shen
and Wong, 2005) and large margin semi-supervised
learning (Wang and Shen, 2006) for large problems.

In (??), direct calculation gives an equivalent cost
function s(f) as:

C1

nl
∑

i=1

L(yif(xi)) + C2

n
∑

j=nl+1

L(|f(xj)|) + J(f). (2)

Minimization of (??) yields an estimated decision func-

tion f̂ thus classifier Sign(f̂).

To utilize DCA, we construct a DC decomposition
of s(f): s(f) = s1(f) − s2(f); where s1(f) =
C1

∑nl

i=1 L(yif(xi)) + C2

∑n
j=nl+1 U1(f(xj)) + 1

2‖f‖
2

and s2(f) = C2

∑n
j=nl+1 U2(f(xj)) for TSVM with

U1(z) = (|z| − 1)+ and U2(z) = |z| − 1. This DC de-
composition is obtained through a DC decomposition
of the hat function L(|z|) = U(z) = U1(z) − U2(z), as
displayed in Figure 1.

Given the decomposition, DCA solves a sequence
of subproblems minf s1(f) − s2(f

(k)) − 〈w −
wf(k) ,∇s2(f

(k))〉 with ∇s2(f
(k)) is a gradient vector

of s2(f) at f (k), or equivalently,

min
f

(s1(f) − 〈w,∇s2(f
(k))〉), (3)

after omitting the constant terms that are indepen-
dent of f . Here s2 is approximated by its tangent
hyperplane at f (k). By convexity, (??) is an upper ap-
proximation to s(f). Algorithm 1 below solves (??) for
TSVM based on sequential quadratic programming.

Algorithm 1: (TSVMDCA)
Step 1. (Initialization) Set initial value f (0) as the
solution of SVM with labeled data alone, and an pre-
cision tolerance level ǫ > 0.
Step 2. (Iteration) At iteration k+1, solve (??) yield-
ing solution f (k+1). The dual problem of (??) can be
solved yielding the solution of (??), as described in



Figure 1: A plot of U , U1 and U2, for the DC decom-
position of U = U1 − U2. Solid, dotted and dashed
lines represent U , U1 and U2, respectively.
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Step 3. (Stopping rule) Terminate when |s(f (k+1))−

s(f (k))| ≤ ǫ. Then the estimate f̂ is the best solution
among f (k); k = 0, 1, · · · .

A good initial value nevertheless enhances the chance
of Algorithm 1 to locate the global minima. Our nu-
merical experience suggests that SVM is an acceptable
choice.

For the convergence property and complexity of Al-

gorithm 1, we refer to Theorem 3 of Liu, Shen and
Wong (2005) for more details.

4 Numerical examples

This section examines the performance of TSVMDCA

and compares it against some state-of-the-art
methods–its counterpart TSVMLight (Joachims, 1999)
and SVM with labeled data alone in generaliza-
tion, and ∇TSVM (Chapelle and Zien, 2005) and
TSVMBundle (Astorino and Fuduli, 2005) in transduc-
tion.

4.1 Generalization performance

All numerical analyses are performed in R2.1.1, and
TSVMLight is trained through SVMLight 6.01. In the
linear case, K(s, t) = 〈s, t〉; in the Gaussian kernel

case, K(s, t) = exp
(

− ‖s−t‖2

σ2

)

, where σ2 is set to be

p, a default value in the “svm”routine of R, to reduce
computational cost for tuning σ2.

Two simulated and five benchmark examples are ex-
amined for SVM, TSVMLight and TSVMDCA. In each

example, an independent test error is used to eval-
uate a classifier’s generalization performance, which
approximates the generalization error. Each classifier
is optimized with respect to its tuning parameter(s).
In particular, a grid search is employed to minimize
the test error over the domain [10−3, 103] of its tuning
parameter(s).

Simulated examples: Simulated examples include
Examples 1 and 2 of Wang and Shen (2006), where 800
and 200 instances are randomly selected for testing and
training, among which 190 randomly chosen instances
are removed their labels to generate unlabeled data
whereas the remaining 10 treated as labeled data.

Benchmarks: Five benchmark examples are ex-
amined, including Wisconsin Breast Cancer (WBC),
Pima Indians Diabetes (Pima), Ionosphere, Mushroom
and Spam email, each available in the UCI Machine
Learning Repository (Blake and Merz, 1998). Except
for Spam email example, instances are randomly di-
vided into halves with 10 labeled and 190 unlabeled
instances for training, and the remaining for testing.
For the Spam email, instances are randomly divided
into halves with 20 labeled and 380 unlabeled instances
for training and the remaining for testing.

The smallest averaged testing errors of SVM,
TSVMLight, and TSVMDCA are summarized in Ta-
bles 1 and 2.

Table 1: Linear learning: Averaged test errors as
well as the estimated standard errors (in parenthe-
sis) of SVM with labeled data alone, TSVMLight, and
TSVMDCA, over 100 pairs of training and testing sam-
ples, in the simulated and benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .345(.0081) .230(.0081) .220(.0103)
Example 2 .333(.0129) .222(.0128) .203(.0088)
WBC .053(.0071) .077(.0113) .037(.0024)
Pima .328(.0092) .316(.0121) .314(.0086)
Ionosphere .257(.0097) .295(.0085) .197(.0071)
Mushroom .232(.0135) .204(.0113) .206(.0113)
Email .216(.0097) .227(.0120) .196(.0132)

Tables 1 and 2 indicate that TSVMDCA performs no
worse than its SVM counterpart in all the cases, which
agrees with the theoretical result of Corollary 1. Over-
all TSVMDCA yields better solutions than TSVMLight

in all the cases except in the linear Mushroom case
where it performs slightly worse. The superiority of
TSVMDCA may be due to the DC minimization strat-
egy, where the DC property of the cost function has
been effectively used.



Table 2: Nonlinear learning with Gaussian ker-

nel: Averaged test errors as well as the estimated stan-
dard errors (in parenthesis) of SVM with labeled data
alone, TSVMLight, and TSVMDCA, over 100 pairs of
training and testing samples, in the simulated and
benchmark examples.

Data SVM TSVMLight TSVMDCA

Example 1 .385(.0099) .267(.0132) .232(.0122)
Example 2 .347(.0119) .258(.0157) .205(.0091)
WBC .047(.0038) .037(.0015) .037(.0045)
Pima .353(.0089) .362(.0144) .330(.0107)
Ionosphere .232(.0088) .214(.0097) .183(.0103)
Mushroom .217(.0135) .217(.0117) .185(.0080)
Email .226(.0108) .275(.0158) .192(.0110)

4.2 Transductive performance

As discussed above, ∇TSVM and TSVMBundle are two
state-of-the art proposals designed to repair the prob-
lem of TSVMLight. This section compares TSVMDCA

with ∇TSVM and TSVMBundle in the two simulated
examples g50c and g10n in Chapelle and Zien (2005),
and Astorino and Fuduli (2005), in addition to two
benchmark examples Heart and Ionosphere used in As-
torino and Fuduli (2005). To make a fair comparison,
we use the average transductive error (Vapnik, 1998)
based on their unlabeled sets under the exactly same
setting as theirs. Note that the datasets for g50c and
g10n were given in Chapelle and Zien (2005) whereas
those of Heart and Ionosphere were sampled at random
according to Astorino and Fuduli (2005).

Table 3: Averaged transductive errors of TSVMLight,
∇TSVM, TSVMBundle and TSVMDCA, over 10 pairs
of labeled and unlabeled sets, in two simulated exam-
ples and two real examples. The bold case indicates
the best performer in each example.

Data g50c g10n Heart Ionosphere

TSVMLight .069 .144 .163 .157
∇TSVM .058 .098 - -
TSVMBundle .040 .086 .120 .114
TSVMDCA .047 .081 .110 .069

Table 3 indicates that TSVMDCA outperforms
∇TSVM in all the cases, while outperforming
TSVMBundle in all cases except g50c. More impor-
tantly, DCA is efficient in that it usually converges in
about 5 iterations in here. In summary, DCA com-
pares favorably against ∇TSVM and TSVMBundle, in
addition to its fast convergence speed.

5 Statistical learning theory

This section derives a probability bound for quanti-
fying TSVM’s generalization performance after tun-
ing, as measured by infC |e(f̂C , f

∗)|, where f∗ =
arginff∈F EL(Y f(X)) denotes the optimal Bayes rule

in F , and e(f̂C , f
∗) = GE(f̂C) − GE(f∗) measures

TSVM f̂C ’s generalization performance relative to f∗.

5.1 Statistical learning theory

Before proceeding, we introduce some notations. De-
fine the surrogate loss W (f) to be nlC1

nuC2
L(yf(x)) +

U(f(x)) when C2 > 0, and L(yf(x)) when C2 = 0.
Define eW (f, f∗

C) to be E(W (f(X)) −W (f∗
C(X))) =

nlC1

nuC2
eL(f, f∗

C)+eU(f, f∗
C) ≥ 0, the surrogate risk mea-

suring the performance of f under L and U . Here
eL(f, f∗

C) = EL(Y f(X)) −EL(Y f∗
C(X)), eU (f, f∗

C) =
EU(f(X)) − EU(f∗

C(X)), C = (C1, C2), and f∗
C =

arginff∈F EW (f(X)).

Now define LT (z), truncated version of L(z), to be
LT (z) = L(yf∗

C) + T if L(z) − L(yf∗
C) ≥ T and

LT (z) = L(z) otherwise, for any f ∈ F and some trun-
cation constant T ≥ 2. Then WT (f) = nlC1

nuC2
LT (yf)+

U(f) when C2 > 0 and LT (yf) when C2 = 0, and
eW T (f, f∗

C) = E(WT (f(X)) −WT (f∗
C(X))).

Assumption A. (Conversion formula) There exist
constants 0 < α(C) < ∞ and a1(C) > 0 depending
on tuning parameter C such that for any small δ > 0,

sup
{e

WT (f,f∗

C)≤δ}

|e(f, f∗
C)| ≤ a1(C)δα(C). (4)

Assumption B. (Variance) There exist constants 0 <
β(C) < 2 and a2(C) > 0 depending on C such that
for any small δ > 0,

sup
{e

W T (f,f∗

C)≤δ}

Var(WT (f(X))−W (f∗
C(X)))

≤ a2(C)δβ(C).

(5)

Assumptions A and B describe the local behavior of
e(f, f∗

C) and Var(WT (f(X))−W (f∗
C(X))) in a neigh-

borhood of f∗
C defined by eW T (f, f∗

C). In the para-
metric case, α(C) = 1 in (??) and β(C) = 1 in (??).
In general, α(C) = β(C) = 0 are always true because
GE(f) and |WT (f)| are bounded. See Shen and Wang
(2006) for a discussion of the relation of this type of
conditions to the “low noise” assumption.

To quantify complexity of F , we define the L2-metric
entropy with bracketing. For any ǫ > 0, denote
{(f l

m, f
u
m)}M

m=1 as an ǫ-bracketing function set of F if
for any f ∈ F , there exists an m such that f l

m ≤ f ≤
fu

m and ‖f l
m − fu

m‖2 ≤ ǫ;m = 1, · · · ,M , where ‖ · ‖2 is



the usual L2 norm. Then the L2-metric entropy with
bracketing H(ǫ,F) is defined as the logarithm of the
cardinality of smallest ǫ-bracketing function set of F .

Let J0 = max(J(f∗
C), 1), F(k) = {f ∈ F : J(f) ≤

kJ0}, and r(nl, nu, C1, C2) ≥ supf∈F

{

1
nl

A(f)
A(f)+B(f) +

1
nu

B(f)
A(f)+B(f)

}

with A(f) = ( nlC1

nuC2
)2 Var(LT (Y f(X))−

L(Y f∗
C(X))) and B(f) = Var(U(f(X)) − U(f∗

C(X)))
when C2 > 0.

Assumption C. (Complexity) For some constants
ai > 0; i = 3, · · · , 5 and ǫn > 0,

sup
k≥2

φ(ǫn, k) ≤ a5n
1/2, (6)

where φ(ǫ, k) =
∫ (a3nr)1/2Rβ(C)/2

a4R H1/2(v
2 ,F(k))dv/R,

r = r(nl, nu, C1, C2) and R = R(ǫ, C, k) =
min(1, ǫ2/β(C) + (nuC2)

−1(k/2 − 1)J0).

Assumption C′. (Complexity) For some constants
ai > 0; i = 3, · · · , 5 and ǫnl

> 0,

sup
k≥2

φ(ǫnl
, k) ≤ a5n

1/2
l , (7)

where φ(ǫ, k) =
∫ a

1/2
3 Rβ(C)/2

a4R H1/2(v
2 ,F(k))dv/R, and

R = R(ǫ, C, k) = min(1, ǫ2/β(C) + (nlC1)
−1(k/2 −

1)J0).

The equation (??) yields ǫn for F . Such an assumption
has been used in Shen et al. (2003) in quantifying the
rates of convergence of ψ-learning.

Theorem 1 (TSVM) In addition to Assumptions A-

C and C′, nl ≤ nu. For f̂C , the minimizer of (??),
there exist constants ak(C) > 0; k = 1, 6 such that
when C∗

2 > 0,

P
`

inf
C

|e(f̂C , f
∗)| ≥ sn

´

≤

3.5 exp
“

− a6(C
∗)(r∗)−1((nuC

∗
2 )−1

J0)
max(1,2−β(C∗))

”

;

when C∗
2 = 0,

P
`

inf
C

|e(f̂C , f
∗)| ≥ a1(C

∗)δ2α(C∗)
nl

´

≤

3.5 exp
“

− a6(C
∗)nl((nlC

∗
1 )−1

J0)
max(1,2−β(C∗))

”

,

where sn = 2 max(a1(C
∗)δ

2α(C∗)
n , infC∈C |e(f

∗
C , f

∗)|),
δn = min(ǫn, 1), r∗ = r(nl, nu, C

∗
1 , C

∗
2 ) and C∗ =

(C∗
1 , C

∗
2 ) = arginfC∈C |e(f

∗
C , f

∗)| with C = {C :
nuC2 ≥ 2δ−2

n J0, nlC1 ≥ 2δ−2
nl
J0}.

Corollary 1 Under the assumptions of Theorem 2,

inf
C

|e(f̂C , f
∗)| = Op

(

min(sn, δ
2α(C∗)
nl

)
)

,

provided that a6(C
∗)nl((nlC

∗
1 )−1J0)

max(1,2−β(C∗))

and a6(C
∗)(r∗)−1((nuC

∗
2 )−1J0)

max(1,2−β(C∗)) are
bounded away from 0.

As suggested by Corollary 1, TSVM outperforms its
supervised counterpart when {f∗

C : C ∈ C} provides
an adequate approximation to the Bayes rule f∗ in
that infC∈C |e(f

∗
C , f

∗)| = 0 for some C∗ with C∗
2 > 0.

In this case, the rate of TSVM Op(δ
2α(C∗)
n ) is usu-

ally faster than Op(δ
2α(C∗)
nl ) of its counterpart. On

the other hand, TSVM never performs worse than its
supervised counterpart SVM asymptotically in view
the fact that infC∈C |e(f

∗
C , f

∗)| = 0 is always true for
C∗

2 = 0. In this process, tuning is critical to achieve
the aforementioned result.

Remark: Note that Theorem 1 and Corollary 1 con-
tinue to hold when the “global” entropy in (??) is re-
placed by a “local” entropy, c.f., Van De Geer (1993).
Let Fv(k) = {f ∈ F : J(f) ≤ kJ0, |e(f, f

∗)| ≤ 2v} be
the “local” entropy of F(k). The proof requires only
a sight modification. The local entropy avoids a loss
of lognu factor in the linear case, although it may not
be useful in the nonlinear case.

5.2 Illustrative Example

Consider a two-dimensional linear example, where
X = (X(1), X(2)) is the input with X(1) and X(2) dis-
tributed independently according to probability densi-
ties q1(z) = 1

2 (θ+ 1)|z|θ for z ∈ [−1, 1] and q2(z) = 1
2 ,

and given X , Y = 1 if X(1) > 0 and Y = −1 other-
wise, and θ ≥ 0. To generate the nonseparable case,
Y is randomly flipped with a constant probability τ
with 0 < τ < 1

2 . Here the candidate decision function
class F = {f(x) = wTx+ b : w ∈ R2, b ∈ R}, which
contains ft(x) = x(1) yielding the true classification
boundary.

Case I: 0 < θ < ∞. Note that E(W (f(X))) =
E(E(W (f(X))|X(2))) ≥ E(W (f̃∗

C(X))), where f̃∗
C =

argminf∈F1
E(W (f(X))) and F1 = {f̃(x) = wx + b :

w, b ∈ R}, because (X(1), Y ) is independent of X(2).
Without loss of generality, we restrict our attention to
F1.

It can be verified that infC∈C e(f
∗
C , f

∗) = 0 be-
cause e(f∗

C , f
∗) → 0 when C1 → ∞. Denote by

C∗ = arginfC e(f
∗
C , f

∗). We verify Assumptions
A-C and C′. For Assumption A, note that f∗

C∗

minimizes E(WT (f)), direct calculation yields that
eW T (f, f∗

C∗) = (e0, e1)Γ(e0, e1)
T when wf = wf∗

C∗
+e1,

bf = bf∗

C∗
+e0 and Γ is a positive definite matrix. Thus

there exists a constant λ1 > 0 such that eW T (f, f∗
C∗) ≥

λ1(e
2
0 + e21). Furthermore, |e(f, f∗

C∗)| ≤ 1
2 (1 −

2τ)min(|wf∗

C∗
|, |wf∗

C∗
+ e1|)

−(θ+1)|e0|
θ+1 ≤ λ2(e

2
0 +

e21)
(θ+1)/2 for some constant λ2 > 0. A combination



of the two inequalities leads to (??) with α(C∗) =
(θ + 1)/2. For Assumption B, Var(WT (f(X)) −

W (f∗
C∗(X))) ≤ (1 + (

nlC
∗

1

nuC∗

2
)2)E(f(X) − f∗

C∗(X))2 ≤

C∗2
1 +C∗2

2

C∗2
2

max(1, E(X2
(1)))(e

2
0 + e21), which implies (??)

with β(C∗) = 1. For Assumption C, by Lemma
3 of Wang and Shen (2006), H(v,Fv(k)) ≤
O(log(v−θ/(θ+1))) for any given k. Note that
supk≥2 φ(ǫ, k) ≤ O(log(((nr∗)1/2ǫ)−θ/(θ+1)))1/2/ǫ.

Solving (??), we obtain ǫn = (nr∗ log n
n )1/2 =

(r∗ logn)1/2 when nuC
∗
2/J0 ∼ δ−2

n ∼ (r∗ logn)−1. For
Assumption C′, solving (??) yielding ǫnl

= ( log nl

nl
)1/2

when nlC
∗
1/J0 ∼ δ−2

nl
∼ nl(log nl)

−1.

When C∗
1 ≥ 1

2nl
and C∗

1/C
∗
2 is small enough such

that nu

nl
A(f) ≤

nlC
∗2
1 T 2

nuC∗2
2

≤ B(f), r(nl, nu, C
∗
1 , C

∗
2 ) =

2
nu

and |e(f∗
C∗ , f∗)| = 0. By Corollary 1,

infC |e(f̂C , f
∗)| = Op

(

n
−(θ+1)/2
u (log n)(θ+1)/2

)

, which
is arbitrary fast as θ → ∞.

Case II: θ = 0. Let q1(z) = 1
2 and X following the

uniform distribution. The assumptions can be verified
similarly as in Case I. Note that the approximation er-
ror infC∈C |e(f

∗
C , f

∗)|) = 0 implies that nlC1τ
nuC2

+ 1
θ+2 ≤

E(W (f∗
C)) ≤ E(W (1)) = nlC1

2nuC2
or C1/C2 ≥ nu

nl(1−2τ) ,

where 1(x) = 1 for all x. Using this inequality
and the fact that Var(LT (Y f(X))−L(Y f∗

C(X))) and
Var(U(f(X))−U(f∗

C(X))) are two constants indepen-
dent of (nl, nu), we have r(nl, nu, C1, C2) = 1

nl
and

infC |e(f̂C , f
∗)| = Op(n

−(θ+1)/2
l (lognl)

(θ+1)/2). This
says that TSVM is of the same order of speed of SVM
and unlabeled data contributes little to classification
in this uniform situation.

In conclusion, TSVM yields better performance in
some situations and the same performance in other
situations than its supervised counterpart SVM. This
depends entirely on if unlabeled data is informative
with respect to classification. In this process, tuning
is critical to assure the no-worse performance.

6 Summary

This article investigates computational and theoretical
aspects of TSVM. With regard to implementation of
TSVM, we solve the non-convex minimization using
DC programming. Our numerical analysis suggests
that our implementation compares favorably against
the existing ones. Most importantly, TSVM equipped
our implementation performs no worse than its super-
vised counterpart SVM, which is in contrast to the
unstable performance of TSVM reported in the liter-
ature. With respect to learning theory, we develop a
novel theory to quantify TSVM’s generalization abil-
ity.

In conclusion, the results in this article land some sup-
port to TSVM. When TSVM is tuned, its regularizers
guard against potential unstable performance due to
unlabeled data.
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Appendix A: Proof of Theorem 1

Without loss of generality, we just prove the case of
C2 > 0. The proof of C2 = 0 is similar and thus omit-
ted. Let W̃ (f) = W (f) + λJ(f) = nlC1

nuC2
L̃(yf) + Ũ(f)

with λ = 1
nuC2

, L̃(yf(x)) = L(yf(x))+ 1
2nlC1

J(f) and

Ũ(f(x)) = U(f(x)) + 1
2nuC2

J(f). By the definition of

f̂C ,

n

eW T (f, f∗
C) ≥ δ

2
n

o

⊂
n

sup
e

WT (f,f∗

C
)≥δ2

n

nlC1

nuC2

1

nl

nl
X

i=1

(L̃(yif
∗
C(xi)) − L̃(yif(xi)))

+
1

nu

n
X

j=nl+1

(Ũ(f∗
C(xj)) − Ũ(f(xj))) ≥ 0

o

⊂
n

sup
e

WT (f,f∗

C )≥δ2
n

nlC1

nuC2

1

nl

nl
X

i=1

(L̃(yif
∗
C(xi)) − L̃

T (yif(xi)))

+
1

nu

n
X

j=nl+1

(Ũ(f∗
C(xj)) − Ũ(f(xj))) ≥ 0

o

,

where P ∗ denotes the outer probability measure.

Before proceeding, we introduce some no-
tations to be used below. Define the
scaled empirical process as En(W (f∗

C) −

WT (f)) = 1
n

(

∑nl

i=1
nlC1

nuC2

n
nl

(

L(yif
∗
C(xi)) −

LT (yif(xi)) − E(L(Y f∗
C(X)) − LT (Y f(X)))

)

+
∑n

j=nl+1
n
nu

(

U(f∗
C(xj)) − U(f(xj)) − E(U(f∗

C(X)) −

U(f(X)))
)

)

. Then P (eW T (f̂C , f
∗
C) is upper bounded

by

P ∗
(

sup
e

W T (f,f∗

C)≥δ2
n

En(W (f∗
C) −WT (f)) ≥

inf
e

W T (f,f∗

C)≥δ2
n

E(W̃T (f(X)) − W̃ (f∗
C(X)))

)

= I.

To bound I, we apply a large deviation empirical tech-
nique for risk minimization. Such a technique has been



previously developed in function estimation as in Shen
and Wong (1994). Specifically, we bound I through a
sequence of empirical processes over a partition and by
controlling their means and variances.

Let As,t = {f ∈ F : 2s−1δ2n ≤ eW T (f, f∗
C) ≤

2sδ2n, 2
t−1J0 ≤ J(f) ≤ 2tJ0} and As,0 = {f ∈ F :

2s−1δ2n ≤ eW T (f, f∗
C) ≤ 2sδ2n, J(f) < J0}; s, t =

1, 2, · · · . Then it suffices to bound the corresponding
probability over As,t.

For the first moment, by assumption δ2n ≥ 2λJ0,

inf
As,t

E(W̃ T (f(X)) − W̃ (f∗
C(X)))

≥ 2s−1
δ
2
n + λ(2t−1 − 1)J0 = M(s, t); s, t = 1, 2, · · · ,

inf
As,0

E(W̃ T (f(X)) − W̃ (f∗
C(X)))

≥ 2s−1
δ
2
n − λJ0 ≥ 2s−2

δ
2
n = M(s, 0); s = 1, 2, · · · .

For the second moment,

sup
As,t

1

n

“

nl Var
` nlC1

nuC2

n

nl
(LT (Y f(X)) − L(Y f∗

C(X)))
´

+ nu Var
` n

nu
(U(f(X)) − U(f∗

C(X)))
´

”

≤ sup
As,t

n

nl

“

` nlC1

nuC2

´2
Var

“

L
T (Y f(X)) − L(Y f∗

C(X))
””

+
n

nu
Var

“

U(f(X)) − U(f∗
C(X))

””

≤nr(nl, nu, C1, C2) sup
As,t

Var
“

W
T (f(X)) −W (f∗

C(X))
”

≤nr(nl, nu, C1, C2) sup
As,t

a2(C)
`

eW T (f, f∗
C)

´β(C)

≤a2(C)nr(nl, nu, C1, C2)
`

2s
δ
2
n)β(C)

≤2β(C)
a2(C)nr(nl, nu, C1, C2)M(s, t)β(C)

.

Now I ≤ I1 + I2 with I1 =
∑∞

s,t=1 P
∗(supAs,t

En(W (f∗
C) − WT (f)) ≥ M(s, t))

and I2 =
∑∞

s=1 P
∗(supAs,0

En(W (f∗
C) − WT (f)) ≥

M(s, 0)). We bound I1 and I2 separately using
Lemma 1. First, we verify conditions (??)-(??) there.

To compute the metric entropy of {L(yf) − L(yf∗
C) :

f ∈ As,t} and {U(f) − U(f∗
C) : f ∈ As,t}, we

define bracketing functions for them. Suppose
(f l

m, f
u
m)M

m=1 with M = exp(H(ǫ,F)) forms a ǫ-
bracket for F . That is, for any f ∈ F , there exists
a m such that f l

m ≤ f ≤ fu
m and ‖fu

m − f l
m‖2 ≤ ǫ.

Let f±1 be truncated version of f such that
f±1 = f if |f | ≤ 1 and Sign(f) otherwise. Fur-
thermore, let Ll(yf) = 1 − max(yf l

m,±1, yf
u
m,±1),

Lu(yf) = 1 − min(yf l
m,±1, yf

u
m,±1), U l(f) =

1 − max(|f l
m,±1|, |f

u
m,±1|) and Uu(f) =

1 − I(f l
mf

u
m > 0)min(|f l

m,±1|, |f
u
m,±1|). Then

(Ll(yf) − L(yf∗
C), Lu(yf) − L(yf∗

C)) and

U l(f) − U(f∗
C), Uu(f) − U(f∗

C)) form 2ǫ-brackets
for L(yf) − L(yf∗

C) and U(f) − U(f∗
C) respectively.

Thus Assumption C implies (??) using the fact

that
∫ v(s,t)

aM(s,t)H
1/2(w,F(2t))dw/M(s, t) is nonin-

creasing in s and M(s, t). In addition, (??) and
(??) are satisfied by setting M = n1/2M(s, t),
v = 2β(C)a2(C)nr(nl, nu, C1, C2)M(s, t)β(C), ǫ = 1/2
and max(| n

nu

(

U(f∗
C(xj))−U(f(xj))−E(U(f∗

C(X))−

U(f(X)))|, | nlC1

nuC2

n
nl

(

L(yif
∗
C(xi)) − LT (yif(xi)) −

E(L(Y f∗
C(X)) − LT (Y f(X)))| ≤ max(C1,C2)

C2
T . An

application of Lemma 1 yields that I1 is upper
bounded by

∞
X

s,t=1

3 exp
“

−
a6(C)

r(nl, nu, C1, C2)
M(s, t)max(1,2−β(C))

”

≤
∞

X

s,t=1

3 exp
“

−
a6(C)

r(nl, nu, C1, C2)
(2s−1

δ
2
n

+ λ(2t−1 − 1)J0)
max(1,2−β(C))

”

≤
3 exp(− a6(C)

r(nl,nu,C1,C2)
(λJ0)

max(1,2−β(C)))

(1 − 3 exp(− a6(C)
r(nl,nu,C1,C2)

(λJ0)max(1,2−β(C))))2
.

Similarly I2 is bounded. Then I ≤

6 exp(− a6(C)
r(nl,nu,C1,C2)

(λJ0)
max(1,2−β(C)))/(1 −

3 exp(− a6(C)
r(nl,nu,C1,C2)

(λJ0)
max(1,2−β(C))))2. The

desired result follows from Assumption A and the fact
that |e(f̂C , f

∗)| ≤ |e(f̂C , f
∗
C)| + |e(f∗

C , f
∗)|.

Lemma 1 Let F and G be classes of functions
bounded above by T such that max(f, g) < T for
(f, g) ∈ F

⋃

G. Let vn(f, g) = n−1/2(
∑nl

i=1(f(Zi) −
E(f(Zi)))+

∑n
j=nl+1(g(Zi)−E(g(Zi))) for f ∈ F and

g ∈ G, and v ≥ 1
n (nlv1 + nuv2) with v1 = supF Var(f)

and v2 = supG Var(g). For M > 0 and ǫ ∈ (0, 1), let

ψ2(M, v,F ,G) = M2

2(4v+MT/3n1/2)
and s = ǫM/8n1/2.

Suppose

nl

n
H(v

1/2
1 ,F)+

nu

n
H(v

1/2
2 ,G) ≤

ǫ

4
ψ2(M, v,F ,G), (8)

M ≤ ǫn1/2 v

4T
, max(v1, v2)

1/2 ≤ T, (9)

and if s < min(v1, v2)
1/2,

nl

n

Z v
1
2
1

s
4

(H(u,F))
1
2 du+

nu

n

Z v
1
2
2

s
4

(H(u,G))
1
2 du ≤

Mǫ3/2

210
.

(10)
Then

P
∗
“

sup
f,g

vn(f, g) ≥M
”

≤ 3 exp
`

− (1 − ǫ)ψ2(M,v,F ,G)
´

.

(11)

Proof: The proof is similar to that of Theorem 3 in
Shen and Wong (1994), and thus is omitted.



Appendix B: Dual form of (??)

Let α = (α1, · · · , αnl
)T , β = (βnl+1, · · · , βn)T ,

γ = (γnl+1, · · · , γn)T , yα = (y1α1, · · · , ynl
αnl

)T ,
and ∇ = (∇1,∇2)

T with ∇1 = 0l and ∇2 =
C2(∇U2(f

(k)(xnl+1)), · · · ,∇U2(f
(k)(xn))).

Theorem 2 The dual problem of (??) with respect to
(α, β, γ) is

max
α,β,γ

n

−
1

2
(yT

α , (γ − β)T )K(yT
α , (γ − β)T )T

+ (αT
,−(β + γ)T )1n − (yα

T
, (γ − β)T )K∇

o

(12)

subject to (yα
T , (γ − β)T + ∇2)1n = 0, 0nl

≤ α ≤
C11nl

, 0nu ≤ β, 0nu ≤ γ, and 0nu ≤ β + γ ≤ C21nu .

Proof: For simplicity, we only prove the linear case
as the nonlinear case is essentially the same. Rewrite
(??) as minw,b C1

∑nl

i=1 ξi +C2

∑n
j=nl+1 ξj + 1

2‖w‖
2 −

〈w,D1〉 − 〈b,D2〉 subject to 1 − yi(w
Txi + b) ≤ ξi,

ξi ≥ 0, |wTxj + b| − 1 ≤ ξj and ξj ≥ 0, where D1 =
(∇2X

u)T and D2 = ∇21u. To solve this minimization
problem, the Lagrangian multipliers are employed to
yield L(w, b, ξi, ξj) as

C1

nl
X

i=1

ξi +C2

n
X

j=nl+1

ξj +
1

2
‖w‖2 − 〈w,D1〉 − 〈b,D2〉+

nl
X

i=1

αi(1 − yi(w
T
xi + b) − ξi) −

nl
X

i=1

ζiξi+

n
X

j=nl+1

βj(w
T
xj + b− 1 − ξj)−

n
X

j=nl+1

γj(w
T
xj + b+ 1 + ξj) −

n
X

j=nl+1

ηjξj ,

where αi, βj , γj , ζi, ηj are nonnegative. Differen-
tiate L with respect to (w, b, ξi, ξj) and set the par-
tial derivatives to be zero, we obtain that ∂L

∂w =
w − D1 −

∑nl

i=1 αiyixi +
∑n

j=nl+1(βj − γj)xj = 0,
∂L
∂b = −D2 −

∑nl

i=1 αiyi +
∑n

j=nl+1(βj − γj) = 0,
∂L
∂ξi

= C1 − αi − ζi = 0 and ∂L
∂ξj

= C2 − (βj +

γj) − ηj = 0. Solving these equations yields that
w∗ = D1 +

∑nl

i=1 αiyixi −
∑n

j=nl+1(βj − γj)xj , D2 +
∑nl

i=1 αiyi −
∑n

j=nl+1(βj − γj) = 0, 0 ≤ αi ≤ C1 and
0 ≤ βj +γj ≤ C2. Substituting w∗ and these identities
into (??), we obtain (??) after ignoring all constant
terms. The solution of (??) is w = D1+

∑nl

i=1 αiyixi−
∑n

j=nl+1(βj −γj)xj and b satisfying KKT’s condition:

yi(w
T xi + b) = 1 for any i with 0 < αi < C1.

Remark: When there is no i such that yi(w
T xi +

b) = 1, KKT’s condition is not applicable. Linear
programming (LP) is applied to determine the solution
b by substituting w in (??).

and thus is omitted.
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