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Abstract

Transductive support vector machines
(TSVM) has been widely used as a means
of treating partially labeled data in semi-
supervised learning. Around it, there has
been mystery because of lack of understand-
ing its foundation in generalization. This
article aims to clarify several controversial
aspects regarding TSVM. Two main results
are established. First, TSVM performs no
worse than its supervised counterpart SVM
when tuning is performed, which is contrary
to several studies indicating otherwise. The
“alleged” inferior performance of TSVM
is mainly because it was not tuned in
the process, in addition to the involved
minimization routines. Second, we utilize
difference convex programming to derive a
nonconvex minimization routine for TSVM,
which compares favorably against some
state-of-the-art methods.  This, together
with our learning theory lands some support
to TSVM.

1 Introduction

In many real-world applications, labeling is often
costly, while an enormous amount of unlabeled data
is available with little cost. Examples of this type in-
clude, but are not limited to, webpage classification,
medical diagnosis, spam email detection, text catego-
rization, image processing, c.f., Baluja (1998); Blum
and Mitchell (1998); Amini and Gallinari (2003); Bal-
can, et. al. (2005). In situation as such, how to en-
hance classification by utilizing additional unlabeled
data becomes critical, which is referred to as the prob-
lem of semi-supervised learning in what follows.
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In the semi-supervised learning literature, methods
have been proposed from different perspectives, in-
cluding margin-based classification (Vapnik, 1998;
Wang and Shen, 2006), the EM method (Nigam,
McCallum, Thrun and Mitchell, 1998), graph-based
method (Blum and Chawla, 2001; Zhu, Ghahramani
and Lafferty, 2003), and information regularization
(Szummer and Jaakkola, 2002). The central topic this
article concerns is the generalization performance of
transductive support vector machine (TSVM; Vapnik,
1998), which remains mysterious, particularly its “al-
leged” unstable performance in empirical studies.

TSVM seeks the largest separation between labeled
and unlabeled data through regularization. In em-
pirical studies, it performs well in text classification
(Joachims, 1999) but can perform substantially worse
than its supervised counterpart SVM (Cortes and Vap-
nik, 1995) in other applications (Wu, Bennett, Cris-
tianini and Shawe-Taylor, 1999). This unstable per-
formance has been criticized. Zhang and Oles (2000)
argued that there is lack of evidence that the notion
of separation leads to correct classification. Chapelle
and Zien (2005) suggested that the cost function of
TSVM is appropriate but implementation of TSVM
is inadequate. Astorino and Fuduli (2005) also noted
that implementation of TSVM is an issue.

In this article, we address the aforementioned issues.
We argue that in principle TSVM performs no worse
than its supervised counterpart SVM after tuning.
Key to it is tuning, which has been commonly ig-
nored in the literature. Tuning guards against poten-
tial unstable performance by tuning regularizers to-
wards labeled data. Furthermore, we develop a statis-
tical learning theory to demonstrate this aspect with
regard to TSVM’s generalization ability. To treat the
implementation issue, we develop a nonconvex mini-
mization routine based on recent advances in global
optimization, particularly difference convex (DC) pro-
gramming. Numerical analysis indicates that the pro-
posed routine delivers a better solution than that of



Joachims (1999), and confirms that TSVM performs
no worse than SVM.

At the time this article is nearly completed, we noted
that Collobert, Sinz, Weston and Bottou (2006) de-
veloped a similar implementation of TSVM using a
different DC decomposition of the hat function. Nev-
ertheless, some overlapping is inevitable between their
implementation and ours.

The rest of the paper is organized as follows. Section 2
introduces TSVM. Section 3 solves TSVM with a DC
algorithm. Section 4 presents some numerical exam-
ples, followed by a novel statistical learning theory in
Section 5. Section 6 contains summary and discussion.
Technical details are deferred to the appendix.

2 TSVM

In semi-supervised learning, a sample (X! Y!) =
{(X;,Y3)}, is observed with an independent unla-
beled sample X* = {X;}7_, 1 and n = n; + n,.
Here X; = (X;1,---,X;p) is an p-dimensional input
and Y; € {—1,1}, independently and identically dis-
tributed according to an unknown distribution P(z,y),
and X is distributed according to distribution P(z).

TSVM uses an idea of maximizing separation between
labeled and unlabeled data, c.f., Vapnik (1998). It

solves

n

min C1ZL(yif($i))+C2 > Llyif () +I(f),

y;,fe€F i1
(1)

where f is a decision function in F, a candidate
function class, L(z) = (1 — z)4 is the hinge loss,
and J(f) is the inverse of the geometric separation
margin. In the linear case, f(r) = w’z + b and
J(f) = %||w|*>. In the nonlinear kernel case, f(z) =
(K(z,21), , K(z,z,))wl + b, J(f) = %wTKw,
where K is a kernel satisfying Mercer’s condition to as-
sure w Kw with K = (K (z;, z;)); ;=1 being a proper
norm; see Wahba (1990) and Gu (2000) for more de-
tails.

Minimization of (??) with respect to f € F is non-
convex, which can be solved through integer program-
ming, and is known to be NP (Bennett and Demi-
riz, 1998). To solve (??), Joachims (1999) proposed
an efficient local search algorithm that is the basis
of SVML9ht  This algorithm may fail to deliver a
good local solution, resulting in worse performance of
TSVM against SVM. This aspect is confirmed by our
numerical results in Section 4.1 as well as empirical
studies in the literature. Chapelle and Zien (2005)
aimed to correct this problem by approximating (?7)
by a smooth convex problem through gradient descent.

Astorino and Fuduli (2005) used an extended bundle
method to treat nonconvexity and nonsmoothness of
the cost function. In what follows, we shall develop
our nonconvex minimization routine effectively utiliz-
ing the DC property of the cost function.

3 Difference convex programming

Key to DC programming is a decomposition of a cost
function into a difference of two convex functions,
based on which a sequence of upper approximations
of the cost function yields a sequence of solutions con-
verging to a stationary point, possibly an e-global min-
imizer. This technique is called DC algorithms (DCA,
An and Tao, 1997), and has been used in the imple-
mentation of ¢-learning (Shen et. al, 2003; Liu, Shen
and Wong, 2005) and large margin semi-supervised
learning (Wang and Shen, 2006) for large problems.

In (??), direct calculation gives an equivalent cost
function s(f) as:

n

Ciy Llyif@) +Co Y L(f(z))) + J(f)- (2)
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Minimization of (?7?) yields an estimated decision func-
tion f thus classifier Sign(f).

To utilize DCA, we construct a DC decomposition
of s(f): s(f) = s1(f) — s2(f); where s1(f) =
C1 320 Lyif () + C2 350 Ur(f(25) + 5l fI1?
and so(f) = Cy Z?:nlﬂ Us(f(x;)) for TSVM with
Ui(z) = (Jz] — 1)+ and Ua(z) = |z| — 1. This DC de-
composition is obtained through a DC decomposition
of the hat function L(|z|) = U(z) = U1(z) — Uz(2), as
displayed in Figure 1.

Given the decomposition, DCA solves a sequence
of subproblems min; s1(f) — s2(f*)) — (w —
wf(k),VSQ(f(k)» with Vso(f(#®)) is a gradient vector
of s5(f) at f%), or equivalently,

min (s1(f) — (w, Vaa(F9))), (3)

after omitting the constant terms that are indepen-
dent of f. Here s is approximated by its tangent
hyperplane at f*). By convexity, (??) is an upper ap-
proximation to s(f). Algorithm 1 below solves (??) for
TSVM based on sequential quadratic programming.

Algorithm 1: (TSVMP¢4)

Step 1. (Initialization) Set initial value f(©) as the
solution of SVM with labeled data alone, and an pre-
cision tolerance level € > 0.

Step 2. (Iteration) At iteration k+1, solve (?7) yield-
ing solution f(*+1). The dual problem of (??) can be
solved yielding the solution of (??), as described in



Figure 1: A plot of U, U; and Uy, for the DC decom-
position of U = U; — Us. Solid, dotted and dashed
lines represent U, U; and Us, respectively.
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Step 3. (Stopping rule) Terminate when |s(f*+1)) —
s(f®)| < e. Then the estimate f is the best solution
among f®): k=0,1,---.

A good initial value nevertheless enhances the chance
of Algorithm 1 to locate the global minima. Our nu-
merical experience suggests that SVM is an acceptable
choice.

For the convergence property and complexity of Al-
gorithm 1, we refer to Theorem 3 of Liu, Shen and
Wong (2005) for more details.

4 Numerical examples

This section examines the performance of TSVMP¢4
and compares it against some state-of-the-art
methods-its counterpart TSVMZ#95t (Joachims, 1999)
and SVM with labeled data alone in generaliza-
tion, and VTSVM (Chapelle and Zien, 2005) and
TSVMBundle (Agtorino and Fuduli, 2005) in transduc-
tion.

4.1 Generalization performance

All numerical analyses are performed in R2.1.1, and
TSVML#9" ig trained through SVM~Z9"* 6.01. In the
linear case, K(s,t) = (s, t) in the Gaussian kernel

case, K(s,t) = exp( ls=tl” t” , where o2 is set to be
p, a default value in the “svm”routine of R, to reduce

computational cost for tuning o?2.

Two simulated and five benchmark examples are ex-
amined for SVM, TSVML#"t and TSVMPC4. In each

example, an independent test error is used to eval-
uate a classifier’s generalization performance, which
approximates the generalization error. Each classifier
is optimized with respect to its tuning parameter(s).
In particular, a grid search is employed to minimize
the test error over the domain [1073,103] of its tuning
parameter(s).

Simulated examples: Simulated examples include
Examples 1 and 2 of Wang and Shen (2006), where 800
and 200 instances are randomly selected for testing and
training, among which 190 randomly chosen instances
are removed their labels to generate unlabeled data
whereas the remaining 10 treated as labeled data.

Benchmarks: Five benchmark examples are ex-
amined, including Wisconsin Breast Cancer (WBC),
Pima Indians Diabetes (Pima), Ionosphere, Mushroom
and Spam email, each available in the UCI Machine
Learning Repository (Blake and Merz, 1998). Except
for Spam email example, instances are randomly di-
vided into halves with 10 labeled and 190 unlabeled
instances for training, and the remaining for testing.
For the Spam email, instances are randomly divided
into halves with 20 labeled and 380 unlabeled instances
for training and the remaining for testing.

The smallest averaged testing errors of SVM,
TSVME9ht  and TSVMPC4 are summarized in Ta-
bles 1 and 2.

Table 1: Linear learning: Averaged test errors as
well as the estimated standard errors (in parenthe-
sis) of SVM with labeled data alone, TSVMZ#"*  and
TSVMPEA  over 100 pairs of training and testing sam-
ples, in the simulated and benchmark examples.

Data SVM TSVMFht  TsymMPea
Example 1 | .345(.0081) .230(.0081) .220(.0103)
Example 2 | .333(.0129) .222(.0128)  .203(.0088)
WBC .053(.0071)  .077(.0113)  .037(.0024)
Pima :328(.0092)  .316(.0121)  .314(.0086)
Tonosphere | .257(.0097)  .295(.0085)  .197(.0071)
Mushroom | .232(.0135)  .204(.0113)  .206(.0113)
Email 216(.0097)  .227(.0120)  .196(.0132)

Tables 1 and 2 indicate that TSVMPC4 performs no
worse than its SVM counterpart in all the cases, which
agrees with the theoretical result of Corollary 1. Over-
all TSVMPC4 yields better solutions than TSVMELight
in all the cases except in the linear Mushroom case
where it performs slightly worse. The superiority of
TSVMPE4 may be due to the DC minimization strat-
egy, where the DC property of the cost function has
been effectively used.



Table 2: Nonlinear learning with Gaussian ker-
nel: Averaged test errors as well as the estimated stan-
dard errors (in parenthesis) of SVM with labeled data
alone, TSVML9" and TSVMPCA, over 100 pairs of
training and testing samples, in the simulated and
benchmark examples.

Data SVM TSVMEtoht  TgyMPe4
Example 1 | .385(.0099) .267( 0132) .232(.0122)
Example 2 | .347(.0119) .258(.0157)  .205(.0091)
WBC .047(.0038)  .037(.0015) .037(.0045)
Pima .353(.0089)  .362(.0144)  .330(.0107)
Tonosphere | .232(.0088)  .214(.0097) .183(.0103)
Mushroom | .217(.0135) .217(.0117)  .185(.0080)
Email 226(.0108)  .275(.0158)  .192(.0110)

4.2 Transductive performance

As discussed above, VITSVM and TSVMB4ndle are two
state-of-the art proposals designed to repair the prob-
lem of TSVM%#9"* This section compares TSVMPC4
with VTSVM and TSVMPBZundle in the two simulated
examples g50c and g10n in Chapelle and Zien (2005),
and Astorino and Fuduli (2005), in addition to two
benchmark examples Heart and Ionosphere used in As-
torino and Fuduli (2005). To make a fair comparison,
we use the average transductive error (Vapnik, 1998)
based on their unlabeled sets under the exactly same
setting as theirs. Note that the datasets for gh0c and
gl0n were given in Chapelle and Zien (2005) whereas
those of Heart and Ionosphere were sampled at random
according to Astorino and Fuduli (2005).

Table 3: Averaged transductive errors of TSVML#9/t,
VTSVM, TSVMBundle and TSVMPCA  over 10 pairs
of labeled and unlabeled sets, in two simulated exam-
ples and two real examples. The bold case indicates
the best performer in each example.

Data | g50c  glOn Heart Ionosphere
TSVMLht 069 144 163 157
VTSVM 058  .098 - -
TSVMEBurdle | 040 086  .120 114
TSVMPCA .047 .081 .110 .069

Table 3 indicates that TSVMPC4  outperforms
VTSVM in all the cases, while outperforming
TSVMBundle iy all cases except ghOc. More impor-
tantly, DCA is efficient in that it usually converges in
about 5 iterations in here. In summary, DCA com-
pares favorably against VISVM and TSVMBundie in
addition to its fast convergence speed.

5 Statistical learning theory

This section derives a probability bound for quanti-
fying TSVM’s generalization performance after tun-
ing, as measured by infc |e(fe, f*)|, where f* =
arginf ;. » EL(Y f(X)) denotes the optimal Bayes rule
in F, and e(fo, f*) = GE(fc) — GE(f*) measures
TSVM fc’s generalization performance relative to f*.

5.1 Statistical learning theory

Before proceeding, we introduce some notations. De-
fine the surrogate loss W(f) to be :ig;L(yf(x)) +
U(f(x)) when Cy > 0, and L(yf(x)) when Cy = 0.
Define ew (f, f&) to be E(W(f(X)) — W(f&(X))) =
2160“12 er(f, f&) +eu(f, f&) > 0, the surrogate risk mea-
suring the performance of f under L and U. Here

er(f, f&) = EL(Y (X)) = EL(Y f&(X)), ev(f, &) =
EU(f(X)) — EU(f&(X)), € = (C1,Cy), and f =
arginf ;. » EW(f(X)).

Now define LT(z), truncated version of L(z), to be
L7(z) = L(yfe) + T it L(z) — L(yf) > T and
LT (z) = L(z) otherwise, for any f € F and some trun-
cation constant 7' > 2. Then WT'(f) = ;”glz LT(yf)+
U(f) when Cy > 0 and LT (yf) when Cy = 0, and
ewr (f, f&) = EOWE(f(X)) = W (f&(X))).

Assumption A. (Conversion formula) There exist
constants 0 < a(C) < oo and a1(C) > 0 depending
on tuning parameter C such that for any small § > 0,

o) <ar(0)8* @ (4)

sup e(f
{ewr (£,/5)<5)

Assumption B. (Variance) There exist constants 0 <
B(C) < 2 and a2(C) > 0 depending on C such that
for any small 6 > 0,

sup  Var(WT(f(X))-W(f&(X)))
(e (f.15)<6} (5)

< ay(C)0P©),

Assumptions A and B describe the local behavior of
e(f, £&:) and Var(WT(f(X)) ~ W(f5(X))) in a neigh-
borhood of f¢ defined by e (f, f&). In the para-
metric case, a(C) =1 in (??) and S(C) = 1 in (?7?).
In general, a(C) = B(C) = 0 are always true because
GE(f) and |[WT(f)| are bounded. See Shen and Wang
(2006) for a discussion of the relation of this type of
conditions to the “low noise” assumption.

To quantify complexity of F, we define the Lo-metric
entropy with bracketing. For any € > 0, denote
{(fL, fu)IM_| as an e-bracketing function set of F if
for any f € F, there exists an m such that f, < f <
£ and [|fL, — f4 2 < esm =1, , M, where | - ] is



the usual Lo norm. Then the Lo-metric entropy with
bracketing H (e, F) is defined as the logarithm of the
cardinality of smallest e-bracketing function set of F.

Let Jo = max(J(fg),1), F(k) = {f € F: J(f) <

kJo}, and r(ni, ny, C1,C2) > supser {%ﬁ +

oy Wi A7) = % Va7 00
L(Y f&(X))) and B(f) = Var(U(f(X)) = U(f&(X)))

when Cy > 0.
Assumption C. (Complexity) For some constants
a; >0;1=3,---,5and ¢, > 0,

sup (b(ena k) S a5n1/2a (6)

k>2

agnr)l/2 RAC)/2

where g(e,k) = [T g2 (s Fky)do/ R,
r = (m,nu,Cl,Cg) and R = R(e,,Ck) =

min(1, e/ 4 (n,Cy)~ (k)2 —1)Jp).

Assumption C’. (Complexity) For some constants

a; >0;7=3,---,5and €,, > 0,
sup @(en, , k) < asn)’?, (7)
E>2

1/2 pp(C)/2
where ¢(e, k) = [, HY/?(%,
R = R(e,C,k) = min(1, e/ 4 (n,Cy)~!

1)Jo).
The equation (??) yields €, for F. Such an assumption

has been used in Shen et al. (2003) in quantifying the
rates of convergence of 1-learning.

F(k))dv/R, and
(k/2 —

Theorem 1 (TSVM) In addition to Assumptions A-

C and C', ny < ny. For fo, the minimizer of (77),
there exist constants ap(C) > 0; k = 1,6 such that
when C5 > 0,

P(igf le(fe,

3.5 exp ( _ aﬁ(o*)(r*)fl((nuoék)fljo)max(lﬁ—ﬁ(c*)));

Ol =) <

when C5 =0,

P(inf le(fe, /) > ar(C7)8:7 7)) <

3.5exp (= as(CT)ni((mC) ™ Jo) 2O,
where s, = 2max(a (C*)éw(c ) Jinfoee le(f&, )1,
dp, = min(e,, 1), r* = (nl,nu,Cf,Cg) and C* =
(Cf,c;) = arginfCEC|e(fé'7f*)| with C = {C :
n,Co > 2(5;2J0,’I’Ll01 > 257;2J0}.

Corollary 1 Under the assumptions of Theorem 2,

irclf |e(fc, )] = Op(min(sn,éi;x(c*))),

provided that aG(C’*)nl((nle)*1J0)maX(172*ﬁ(C*))
and aﬁ(c*)(r*)fl((nucék)flJo)max(1,27[3(c*)) are
bounded away from 0.

As suggested by Corollary 1, TSVM outperforms its
supervised counterpart when {f% : C € C} provides
an adequate approximation to the Bayes rule f* in
that infeoec le(f&, f*)| = 0 for some C* with C5 > 0.

In this case, the rate of TSVM O (520‘(0 )) is usu-

ally faster than O (5%(0 )) of its counterpart. On
the other hand, TSVM never performs worse than its
supervised counterpart SVM asymptotically in view
the fact that infoec le(f&, f*)| = 0 is always true for
C5 = 0. In this process, tuning is critical to achieve
the aforementioned result.

Remark: Note that Theorem 1 and Corollary 1 con-
tinue to hold when the “global” entropy in (??) is re-
placed by a “local” entropy, c.f., Van De Geer (1993).
Let Fu(k) ={f € F: J(f) < kJo,le(f, f*)| < 2v} be
the “local” entropy of F(k). The proof requires only
a sight modification. The local entropy avoids a loss
of log n,, factor in the linear case, although it may not
be useful in the nonlinear case.

5.2 TIllustrative Example

Consider a two-dimensional linear example, where
X = (Xq1), X(2)) is the input with X1y and X (o) dis-
tributed independently according to probability densi-
ties ¢1(z) = 3(0 4+ 1)[z|? for z € [-1,1] and ¢2(z) = 3,
and given X, Y = 1if X;) > 0 and Y = —1 other-
wise, and # > 0. To generate the nonseparable case,
Y is randomly flipped with a constant probability 7
with 0 < 7 < % Here the candidate decision function
class F = {f(z) = wlz +b: we R? be R}, which
contains fi(z) = (1) yielding the true classification
boundary.

Case I: 0 < 6 < oco. Note that E(W(f(X))) =
E(EW(f(X)X@)) = EW(f&(X))), where f& =
argming .z E(W(f(X))) and F1 = {f(z) = wr +b:
w,b € R}, because (X(1),Y) is independent of Xy).
Without loss of generality, we restrict our attention to
Fi.

It can be verified that infoece(fs,f*) = 0 be-
cause e(f&, f*) — 0 when C; — oo. Denote by
C* = arginfoe(fs, f*). We verify Assumptions
A-C and C’. For Assumption A, note that fg.
minimizes E(WT(f)), direct calculation yields that
ewr (f, f&.) = (eo,e1)[(eo, e1)T when wy = wys, t+e1,
by = bys. +eo and I is a positive definite matrix. Thus
there exists a constant A; > 0 such that eyr (f, f&.) >
M(ed + €?).  Furthermore, le(f, f&.)] < (1 —
2r)min(fwys. |, s, + eal)"OH]eo T < Aa(ed +
e2)@+1/2 for some constant Ay > 0. A combination




of the two inequalities leads to (??) with «(C*)
(0 + 1)/2. For Assumption B, Var(WT(f(X)) —
W(fe (X)) < (1+ (FGDEF(X) = [ (X))?
Cl*?CtQC max(1, E(X(Ql)))(eg + €2), which implies (??)
with B(C*) = 1. For Assumption C, by Lemma
3 of Wang and Shen (2006), H(v,F,(k)) <

IN

O(log(v=0/+1))) for any given k. Note that
supso d(6,k) < O(log(((nr®)/2e)=0/U+))1/2 e,
Solving (??), we obtain e, = (%Cleanyl/2

(

(r*logn)'/? when n,C5/Jo ~ 6,2 ~ (r*logn)~'. For
Assumption (7, solving (??) yielding €,, = (1(’5—;”)1/2
when n;CY /Jo ~ 0,2 ~ ny(logng) ="

When Cf > 2—21 and C7/C5 is small enough such

n Ci&T2 % %
that Z—’;A(f) < TZLHCSQ < B(f), r(n;,n,,C5,C3) =
% and |e(f&e, f)] = 0. By Corollary 1,
info le(fo, /%) = Op(n5(9+1)/2(10gn)(9+1)/2), which
is arbitrary fast as 6 — oo.

Case II: 6 = 0. Let ¢1(z) = 3 and X following the
uniform distribution. The assumptions can be verified
similarly as in Case I. Note that the approximation er-

ror infoece le(f&, f*)]) = 0 implies that ’“C” + 9+2 <
E(V(72)) < BOV(1) = 29 or C1/C) > —

where 1(xz) = 1 for all z. Using this inequality
and the fact that Var(LT (Y f(X)) — L(Y f&(X))) and
Var(U(f(X))—U(f&(X))) are two constants indepen-
dent of (n;,n,), we have r(n;,n,, C1,Cs) = n% and

info |e(fc,f*)| = Op(nl_(9+1)/2(logm)(GJrl)/Q). This
says that TSVM is of the same order of speed of SVM
and unlabeled data contributes little to classification
in this uniform situation.

In conclusion, TSVM yields better performance in
some situations and the same performance in other
situations than its supervised counterpart SVM. This
depends entirely on if unlabeled data is informative
with respect to classification. In this process, tuning
is critical to assure the no-worse performance.

6 Summary

This article investigates computational and theoretical
aspects of TSVM. With regard to implementation of
TSVM, we solve the non-convex minimization using
DC programming. Our numerical analysis suggests
that our implementation compares favorably against
the existing ones. Most importantly, TSVM equipped
our implementation performs no worse than its super-
vised counterpart SVM, which is in contrast to the
unstable performance of TSVM reported in the liter-
ature. With respect to learning theory, we develop a
novel theory to quantify TSVM’s generalization abil-

ity.

In conclusion, the results in this article land some sup-
port to TSVM. When TSVM is tuned, its regularizers
guard against potential unstable performance due to
unlabeled data.
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Appendix A: Proof of Theorem 1

Without loss of generality, we just prove the case of
Cy > 0. The proof of Cy = 0 is similar and thus omit-

ted. Let W(f) = W(f) + MI(f) = 2E Lwf) + U(f)
with A = nu02 (yf(x)) = L(yf(z))+ 2mC1 J(f) and
U(f(z)) =U(f(x)) + mJ(f). By the definition of

fe,
{ewr(r.02) 2 02}

nCi 1 <X - . R
C{ WT(f fc>>5% ﬁn—l ;(L(yifc(m)) — L(yif(21)))
v LS @) - ) 0}

u
Jj=n;+1
7]

[ s B S fee) - E (i)

ew T (f1FE)>682 nuC my i=1

n

Fo Y O - O(fa) > 0},

w Jj=n;+1
where P* denotes the outer probability measure.

Before proceeding, we introduce some no-
tations to be wused below. Define the
scaled  empirical  process as  E,(W(ff) -—

wr() = (I 2L (L)

LT (yif(z:)) — E(LYf6(X)) — LT(Yf(X))) +
Yt s (U(fE()) = Uf(25) — BU(fe(X)) —
U(f(X))))) Then P(eyr(fo, f&) is upper bounded
by

P*( sup
ewr (£ f&)>02

Eo(W(f&) =W (f)) =

W (F(X) = W(f5(X)) = T.

inf
ey (f,f&)>02

To bound Z, we apply a large deviation empirical tech-
nique for risk minimization. Such a technique has been



previously developed in function estimation as in Shen
and Wong (1994). Specifically, we bound Z through a
sequence of empirical processes over a partition and by
controlling their means and variances.

Let Ay = {f € F : 257182 < ewr(f, f&) <
2562, 2171 ]y < J(f) < 28Jo} and A = {f € F :
28_1(5721 < ewT(f,fév) < 255721“](]:) < Jo}; s,t =
1,2,---. Then it suffices to bound the corresponding
probability over A, ;.

For the first moment, by assumption 62 > 2\J,

inf EWT(f(X)) = W(f&6(X))

> 27 AT o= M(s t)s t =1,2,- -,
inf BOVT(f(X)) = W(/f&(X))
> 276 = Mo 2277700 = M(5,0)55 = 1,2,

For the second moment,

s - (e Var (JEG (LT (Y F(00) = LY S (X))
+u Var (25 (U(F(X) = U(f(X))) )

<sp 2 (B4 Var (L7 (v 506) = LY 1))
+ — Var (U(f(X)) - U(fé(X))))

<nr(ni, n, Oy, C5) sup Vax (W7 (r(x)) = w(fe(x))

<nr(ni,nu, C1,Cs) sup az(C) (et (f, fé))ﬁ(C)

As,t
Sag(C)nr(nl,nu,Cl,C’g)(Qséi)ﬁ(c)
<2% a4y (CYnr(ny, n, C1, Ca) M (s, )7,

Now 7 < I, + I, with I, =
Yoaie1 Pr(supy, , En(W (fé) WT(f) > M(s,t))
and I, = 300 1P (supa, , E.(W(f&) = WT(f)) >

M(s,0)). We bound 7, and T, separately using
Lemma 1. First, we verify conditions (?7)-(??) there.

To compute the metric entropy of {L(yf) — L(yf&) :
f € As,t} and {U(f) - U(fé‘) : f € As,t}v we
define bracketing functions for them. Suppose

(fL, )M with M = exp(H(e, F)) forms a e
bracket for F. That is, for any f € F, there exists
a m such that f < f < f% and [|f% — fL]2 < e
Let fi1 be truncated version of f such that
fr1 = fif |f] < 1 and Sign(f) otherwise. Fur-

thermore, let L'(yf) = 1 — max(yfﬁ%il,yf#@,ﬂ)v

Lu(yf) = 1= min(yfvlﬂn,:l:layf%,:tl)v Ul(f) =
1 — max(|fl, ol [f%l)  and  U“(f) =

I(fhfy > 0)ymin(|fh, ool 1f 2a])- Then
(L'yf) - Lyfe),L*(wf) — L(yfe)) and

UNf) — Uf8),U(f) — U(f%)) form 2e-brackets
for L(yf) — L(yfE) and U(f) — U(f&) respectively.
Thus Assumption C implies (??) using the fact
that f;&( )t) HY?(w, F(2!))dw/M(s,t) is mnonin-
creasing in s and M(s,t). In addition, (??) and
(??) are satisfied by setting M = n!/2M(s,t),
v = QB(C)GQ(C)nT(nlanuaClacQ)M(Svt)ﬁ(C)v €= 1/2
and max (|2 (U(f&(25)) = U(f () = EU(f&(X)) —
UL G 2 (Lyife (@) — LM (yif (x:) —
B(LY f&(X)) = LT (Y f(X)))| < 2=E2T. An

application of Lemma 1 yields that Z; is upper
bounded by

= as(C) max(1,2—B(C))
o) (s, )
Z 3exp( r(nl,nu,C’1,C’2) (87 ) )

ae(C)

25—1 2
r(nl,nu,Cl,Cg)( On

+ /\(2t71 . 1)J0)max(1,27ﬁ(c)))
3exp(— %(AJ ymax(1.2-5(0)))
(1= Bexp(— it Gy (Mo)mex(2-0(00))2
Similarly Z, is bounded. Then 7 <
6€Xp(_7'(m,(:zi(,%)1702) ()\J )max (2= B(C)))/( -
Sexp(i 7‘(m,(:zi(,%)1702) (AJ )max (2 B(C)))) The

desired result follows from Assumption A and the fact

that [e(fo, )| < le(fo, fE)| + le(f& £*)I-

Lemma 1 Let F and G be classes of functions
bounded above by T such that max(f,g) < T for
(f,9) € FUG. Let va(f.g) = n 2T, (f(Z) —
E(f(Z))+3- m+1(9(Z')—E( (Z:))) for f € F and
geG, andv> = (mvl + nyv2) with vy = supx Var(f)

and vy = supg Var( ). For M > 0 and € € (0,1), let
1/)2(M v, f g) 4v++/3nl/2) and s = eM/Snl/Q.
Suppose

ny

TH(0F) T H(0),0) < 0a(M. 0. F,G), (8)

M < ent/2-2 max(vl,vg)l/Q <T, (9)
4T
and if s < min(vy,v9)/?,
3 3
ny [ 1 ny U2 1 Mé?
[ b 7/ (H(,6))du < M
(10)

Then

P*(S;lpvn(f,g) > M) < 3exp (— (1 — e)ha(M, v, F, G)).
’ (11)

Proof: The proof is similar to that of Theorem 3 in
Shen and Wong (1994), and thus is omitted.



Appendix B: Dual form of (?77)

Let a = (alv"' aO‘m)Ta g = (6m+1a"' aﬂn)Ta
o= (7nz+17"' a’yn)Ta Yo = (y1041,"' 7ynlanl)T7
and V = (V1,V2)! with Vi = 0, and V, =

CQ(VUQ(f(k) (Inl-i-l)); T aVUQ(f(k) ($n)))

Theorem 2 The dual problem of (?77) with respect to
(a, 8,7) is

max{ — S(v2, (v~ B KGE, (- )T

o, B,y

(12)

+ (@ =B+ = (va", (v - HTKV |
subject to (yal,(y—B)T + V2)1, =0, 0,, < a <
Cllnl; Onu, S ﬁ7 Onu S ’Y7 and Onu, S ﬁ +’y S CQ]‘nu'

Proof: For simplicity, we only prove the linear case
as the nonlinear case is essentially the same. Rewrite

(??) as miny, , C1 Y ity & + Co Z;‘L=m+1 &+ Hwl? -
(w, Dy) — (b, Dy) subject to 1 — y;(w’ax; +b) < &,
& >0, [wlz; + b —1 < ¢ and & > 0, where Dy =
(V2 X“)T and Dy = Va1,,. To solve this minimization

problem, the Lagrangian multipliers are employed to
yield L(w, b, &;,&;) as

S° &+ glhwl = (w, D) = (b, D)+

j=n;+1

ny
Cy Z{z + Cs
i=1
Zai(l —yi(w zi +b) — &) — ZCi§i+
i=1 i=1

> Biwlm+b—1-¢)-

Jj=n;+1
S ovwTz +b+1+&)— Y mg,
J=ng+1 J=ng+1

where oy, 5j, vj, G, 1; are nonnegative. Differen-
tiate L with respect to (w,b,&;,&;) and set the par-

tial derivatives to be zero, we obtain that 2_51 =

w— Dy = 3 iy + 305, 4B — vz = 0,

8¢ = =Dy — >0 aayi + X5, (B — ) = 0,
g—é =Ci—a; — ¢ = 0 and g—é = Cy — (B +
vj) —n; = 0. Solving these equations yields that
w* = Dy + 300 cayiwi — 305,41 (B5 — 75)w5, Do+
Yoy iy — Z?zmﬂ(ﬂj —7;) =0,0<q; <C; and

0 < Bj+7v; < Co. Substituting w* and these identities
into (?77?), we obtain (??) after ignoring all constant
terms. The solution of (??) isw = D1+ > 4, iy —

> i+ 1(B; = ;) and b satisfying KKT’s condition:
yi(wlz; +b) = 1 for any i with 0 < a; < Cj.

Remark: When there is no 7 such that yi(wTaci +
b) = 1, KKT’s condition is not applicable. Linear

programming (LP) is applied to determine the solution
b by substituting w in (?7?).

and thus is omitted.
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