
Support Vector Machine for Classification (SVM)

In Support Vector Machine (SVM) for classification, given a training data setD = {(x1, y1), . . . , (xM , yM )}
of M samples, where xi ∈ RN are multi-dimensional inputs and yi ∈ {−1, 1} are categorical (uni-
dimensional) outputs, we seek to find a continuous mapping function f : RN → RF such that

h : RN → {−1, 1}
x 7→ sgn(f(x))

best predicts the labels (or class) of the training points with the function y = h(x). Equivalently,
this amounts to finding a continuous mapping function f(x) such that the hyperplane f(x) = 0
best separate the training datapoints.

In order to select among the infinite number of possible separating hyperplanes, the goal of
SVM is to obtain a score function f(x) such that1{

f(xi) ≤ −1, if yi = −1

f(xi) ≥ 1, if yi = 1
⇐⇒ yif(xi) ≥ 1

and the margin, corresponding the width of the region between the hyperplanes defined by f(x) = 1
and f(x) = −1 (parallel to the separating hyperplane), is maximized.

Following the problem formulation of SVM described above, we seek to find a function f(x) of
the form:

f(x) = 〈w,x〉+ b with w ∈ RN

such that points that lie outside of the margin and on the correct side of the separating hyperplane
defined by f(x) = 0, i.e. for which yf(x) ≥ 1, are not penalized. This function can be learned by
solving the following optimization problem, also called primal problem:

min
w,b,ξ,ξ∗

(
1

2
||w||2 +

C

M

M∑
i=1

ξi

)
s.t. yi

(
〈w,xi〉+ b

)
≥ 1− ξi

ξi ≥ 0,∀i = 1 . . .M

(1)

where w is weight vector, ξi are the slack variables, b is the bias and C is the penalty factor
associated to points that lie in the margin or on the wrong side of the separating hyperplane.

In order to solve this convex optimization problem, we use the method of Lagrange multipliers.
By defining the positive multipliers α = {α1, ..., αM} , β = {β1, ..., βM}, the Lagrangian of the above
problem can be written as:

L(w, b, ξ, α, β) =
1

2
wTw +

C

M

M∑
i=1

ξi −
M∑
i=1

αi(yi(〈w,xi〉+ b)− 1 + ξi)−
M∑
i=1

βiξi

1In practice, the algorithm is given some slack and points lying inside the margin (or even on the wrong side of
the separating hyperplane) are tolerated but penalized in the optimization.
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To minimize with respect to the primal variables, the partial derivatives of the Lagrangian with
respect to w, b and ξ must vanish, i.e.:

∂L
∂w

= w −
∑M

i=1 yiαix
i = 0 ⇐⇒ w =

M∑
i=1

yiαix
i

∂L
∂b

= −
∑M

i=1 yiαi = 0 ⇐⇒
M∑
i=1

yiαi = 0

∂L
∂ξi

=
C

M
− αi − βi = 0 ⇐⇒ βi =

C

M
− αi

where the last equation and the positiveness of βi imply that αi ∈
[
0;
C

M

]
.

The dual problem is obtained by substituting the above equations into the following optimization
program, equivalent to the primal:

max
α,,β

min
w,b,ξ
L(w, b, ξ, α, β)

s.t. αi, α
∗
i , βi, β

∗
i ≥ 0

∂L
∂w

=
∂L
∂b

=
∂L
∂ξi

= 0

After a few simplifications, the dual problem takes the following form:

max
α

∑
i=M

αi −
1

2

M∑
i,j=1

αiαjyiyj〈xi,xj〉

s.t. 0 ≤ αi ≤
C

M
and

M∑
i=1

yiαi = 0

Additionally, the complementary optimality conditions, also called the KKT (Karush-Kuhn-
Tucker), can be written for all (training) points as:

{
αi(yi(〈w,xi〉+ b)− 1 + ξi) = 0

ξiβi = 0
=⇒

αi(yi(〈w,x
i〉+ b)− 1 + ξi) = 0

ξi

(
αi −

C

M

)
= 0

These latter conditions allow us to define the support vectors for which either αi > 0. The support
vectors thus lie either on the boundaries of the margin, inside the margin or on the wrong side of
the separating hyperplane. In addition, the last two conditions imply that all the points inside the

margin or on the wrong side of the separating hyperplane, for which ξi > 0, must satisfy αi =
C

M
.

Finally, all the other points satisfy αi = 0.
By solving the dual of this objective function, we obtain a score function of the following form:

y = f(x) =
M∑
i=1

yiαi〈x,xi〉+ b (2)
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Nonlinear classification

In order to perform nonlinear classification, we proceed to a transformation of the original dataset
through the mapping function

φ : RN → RF

x 7→ φ(x)

where F may be infinity. Instead of working directly in this potentially infinite-dimensional space,
we replace the dot products in feature space, 〈φ(xi), φ(xj)〉, by the corresponding kernel function,
k(xi, xj) in our optimization problem, this is the so-called kernel trick, the regressive function then
becomes:

y = f(x) =
M∑
i=1

yiαik(x,xi) + b (3)

where we used:

w =

M∑
i=1

yiαiφ(x) =⇒ 〈w, φ(x)〉 =

M∑
i=1

yiαi〈φ(xi), φ(x)〉 =

M∑
i=1

yiαik(x,xi)

Note: As shown in the above equations, in the nonlinear case, w lives in RF .

Kernels

The kernel function can be any type of function that corresponds to a dot-product of the features
transformed to a high-dimensional space. In this course, we focus on only two types of kernels:

• Linear : k(x,xi) = 〈x,xi〉
which is equivalent to the linear formulation of SVM.

• Radial Basis Function (RBF): k(x,xi) = exp
{
− 1

2σ2 ||x− xi||2
}

where σ is an hyper-parameter and corresponds to the width or scale of the Gaussian kernel
centered at xi

Optimization parameters

Apart from the kernel hyper-parameters, C-SVM has one open-parameter:

• C: Cost [0 → ∞] represents the penalty associated to points inside the margin or on the
wrong side of the separating hyperplane. Increasing cost value causes closer fitting to the
training data.

The total number of hyper-parameters is thus 1 for linear SVM and 2 for nonlinear SVM with RBF
kernel.
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Determining b

In order to determine the value of b from the optimization program, one can use the KKT conditions.
Indeed, for the support vectors that lie on the boundaries of the margin, we have:

ξi = ξ∗i = 0

and αi ∈
]
0;
C

M

[
yi(〈w,xi〉+ b)− 1 = 0

⇐⇒

αi ∈
]
0;
C

M

[
〈w,xi〉+ b− yi = 0

Hence, we can compute b by averaging the error over the subset of support vectors that lie on the
boundary of the margin:

b =
1

|I|
∑
i∈I

yi − 〈w,xi〉

or, equivalently

b =
1

|I|
∑
i∈I

yi −
M∑
j=1

yjαjk(xj ,xi)

where I is the set of indices of the support vectors that lie on the boundary of the margin, i.e. for
which αi ∈

]
0; CM

[
,

|I| =
M∑
i=1

1]0; CM [(αi) where 1]0; CM [(α) =

{
1, if α ∈

]
0; CM

[
0, otherwise
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Support Vector Machine for Regression (SVR)

In Support Vector Regression (SVR), given a training data set D = {(x1, y1), . . . , (xM , yM )} of M
samples, where xi ∈ RN are multi-dimensional inputs and yi ∈ R are continuous uni-dimensional
outputs, we seek to find a continuous mapping function f : RN → R that best predicts the set of
training points with the function y = f(x).

The goal of SVR is to obtain a function f(x) that has at most an ε-deviation from the training
outputs {y1, . . . , yM} and is as flat as possible. Intuitively, this means that we do not mind having
some errors in our regression, as long as they remain within an acceptable range defined by the
ε-deviation of f(x)2. This type of function is often called ε-insensitive loss function and the allowed
deviation is called ε-insensitive tube.

Following the problem formulation of SVR described above, we seek to find an estimate f(x)
of the true function:

f(x) = 〈w,x〉+ b with w ∈ RN (4)

such that points that are contained withing the ε-tube, i.e. for which |f(x) − y| ≤ ε, are not
penalized. This function can be learned by solving the following optimization problem, also called
primal problem:

min
w,b,ξ,ξ∗

(
1

2
||w||2 +

C

M

M∑
i=1

(ξi + ξ∗i )

)
s.t. yi − 〈w,xi〉 − b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0,∀i = 1 . . .M

(5)

where w is weight vector, ξi, ξ
∗
i are the slack variables, b is the bias, ε the allowable error and C is

the penalty factor associated to errors larger than ε.
In order to solve this convex optimization problem, we use the method of Lagrange multipliers.

By defining the positive multipliers α = {α1, ..., αM} , α∗ = {α∗1, ..., α∗M} , β = {β1, ..., βM} , β∗ =
{β∗1 , ..., β∗M}, the Lagrangian of the above problem can be written as:

L(w, b, ξ, ξ∗, α, α∗, β, β∗) =
1

2
wTw +

C

M

M∑
i=1

(ξi + ξ∗i ) +

M∑
i=1

α∗i (〈w,xi〉+ b− yi − ε− ξ∗i )

+

M∑
i=1

αi(yi − 〈w,xi〉 − b− ε− ξi)−
M∑
i=1

β∗i ξ
∗
i −

M∑
i=1

βiξi

2In practice, the algorithm is given some slack and larger errors are tolerated but penalized in the optimization.
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To minimize with respect to the primal variables, the partial derivatives of the Lagrangian with
respect to w, b, ξ, ξ∗ must vanish, i.e.:

∂L
∂w

= w +
∑M

i=1 α
∗
ix

i −
∑M

i=1 αix
i = 0 ⇐⇒ w =

M∑
i=1

(αi − α∗i ) xi

∂L
∂b

=
∑M

i=1 α
∗
i −

∑M
i=1 αi = 0 ⇐⇒

M∑
i=1

(αi − α∗i ) = 0

∂L
∂ξi

=
C

M
− αi − βi = 0 ⇐⇒ βi =

C

M
− αi

∂L
∂ξ∗i

=
C

M
− α∗i − β∗i = 0 ⇐⇒ β∗i =

C

M
− α∗i

where the last two equations and the positiveness of βi and β∗i imply that αi, α
∗
i ∈

[
0;
C

M

]
The dual problem is obtained by substituting the above equations into the following optimization

program, equivalent to the primal:

max
α,α∗,β,β∗

min
w,b,ξ,ξ∗

L(w, b, ξ, ξ∗, α, α∗, β, β∗)

s.t. αi, α
∗
i , βi, β

∗
i ≥ 0

∂L
∂w

=
∂L
∂b

=
∂L
∂ξi

=
∂L
∂ξ∗i

= 0

After a few simplifications, the dual problem takes the following form:

max
α,α∗
− ε

∑
i=M

(αi + α∗i ) +

M∑
i=1

(αi − α∗i ) yi −
1

2

M∑
i,j=1

(αi − α∗i )
(
αj − α∗j

)
〈xi,xj〉

s.t. 0 ≤ αi, α∗i ≤
C

M
and

M∑
i=1

(αi − α∗i ) = 0

Additionally, the complementary optimality conditions, also called the KKT (Karush-Kuhn-
Tucker), can be written for all (training) points as:


α∗i (〈w,xi〉+ b− yi − ε− ξ∗i ) = 0

αi(yi − 〈w,xi〉 − b− ε− ξi) = 0

ξ∗i β
∗
i = 0

ξiβi = 0

=⇒



α∗i (yi − 〈w,xi〉 − b+ ε+ ξ∗i ) = 0

αi(yi − 〈w,xi〉 − b− ε− ξi) = 0

ξ∗i

(
α∗i −

C

M

)
= 0

ξi

(
αi −

C

M

)
= 0
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These latter conditions allow us to define the support vectors for which either αi > 0 or α∗i > 03.
The support vectors thus lie either outside the ε-tube or on its boundaries. In addition, the last
two conditions imply that all the points outside the ε-tube, for which either ξi > 0 or ξ∗i > 0, must

satisfy αi =
C

M
or α∗i =

C

M
. Finally, all the other points satisfy αi = α∗i = 0.

By solving the dual of this objective function, we obtain a regressive function of the following
form:

y = f(x) =
M∑
i=1

(αi − α∗i )〈x,xi〉+ b (6)

Nonlinear regression

In order to perform nonlinear regression, we proceed to a transformation of the original dataset
through the mapping function

φ : RN → RF

x 7→ φ(x)

where F may be infinity. Instead of working directly in this potentially infinite-dimensional space,
we replace the dot products in feature space, 〈φ(xi), φ(xj)〉, by the corresponding kernel function,
k(xi, xj) in our optimization problem, this is the so-called kernel trick, the regressive function then
becomes:

y = f(x) =

M∑
i=1

(αi − α∗i )k(x,xi) + b (7)

where we used:

w =
M∑
i=1

(αi − α∗i )φ(x) =⇒ 〈w, φ(x)〉 =
M∑
i=1

(αi − α∗i ) 〈φ(xi), φ(x)〉 =
M∑
i=1

(αi − α∗i ) k(x,xi)

Note: As shown in the above equations, in the nonlinear case, w lives in RF .

Kernels

The kernel function can be any type of function that corresponds to a dot-product of the features
transformed to a high-dimensional space. In this course, we focus on only two types of kernels:

• Linear : k(x,xi) = 〈x,xi〉
which is equivalent to the linear formulation of SVR.

• Radial Basis Function (RBF): k(x,xi) = exp
{
− 1

2σ2 ||x− xi||2
}

where σ is an hyper-parameter and corresponds to the width or scale of the Gaussian kernel
centered at xi

3By definition αiα
∗
i = 0. Hence, if αi > 0, then α∗

i = 0 (and vice versa)
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Optimization parameters

Apart from the kernel hyper-parameters, ε-SVR has two open-parameters:

• C: Cost [0→∞] represents the penalty associated with errors larger than epsilon. Increasing
cost value causes closer fitting to the training data.

• ε: epsilon represents the minimal required precision.

The total number of hyper-parameters is thus 2 for linear SVR and 3 for nonlinear SVR with RBF
kernel.

Determining b

In order to determine the value of b from the optimization program, one can use the KKT conditions.
Indeed, for the support vectors that lie on the boundaries of the ε-insensitive tube, we have:

ξi = ξ∗i = 0

and αi ∈
]
0;
C

M

[
yi − 〈w,xi〉 − b− ε = 0

or

α∗i ∈
]
0;
C

M

[
yi − 〈w,xi〉 − b+ ε = 0

Hence, we can compute b by averaging the error over the subset of support vectors that lie on the
boundary of the ε-insensitive tube:

b =
1

|I|
∑
i∈I

yi − 〈w,xi〉 − εi

or, equivalently

b =
1

|I|
∑
i∈I

yi −
M∑
j=1

(
αj − α∗j

)
k(xj ,xi)− εi

where I is the set of indices of the support vectors that lie on the boundary of the ε-insensitive
tube, i.e. for which (αi + α∗i ) ∈

]
0; CM

[
4,

|I| =
M∑
i=1

1]0; CM [(αi + α∗i ) where 1]0; CM [(α) =

{
1, if α ∈

]
0; CM

[
0, otherwise

and

εi =

{
+ε, if αi > 0

−ε, if α∗i > 0

Author: Brice Platerrier

4This condition is equivalent to αi ∈
]
0; C

M

[
or α∗

i ∈
]
0; C

M

[
, since either αiα

∗
i and αi, α

∗
i ≥ 0 (by definition)
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