Chapter 5

Model Selection and
Adaptation of
Hyperparameters

In chapters 2 and 3 we have seen how to do regression and classification using
a Gaussian process with a given fixed covariance function. However, in many
practical applications, it may not be easy to specify all aspects of the covari-
ance function with confidence. While some properties such as stationarity of
the covariance function may be easy to determine from the context, we typically
have only rather vague information about other properties, such as the value
of free (hyper-) parameters, €.g. length-scales. In chapter 4 several examples
of covariance functions were presented, many of which have large numbers of
parameters. In addition, the exact form and possible free parameters of the
likelihood function may also not be known in advance. Thus in order to turn
CGaussian processes into powerful practical tools it is essential to develop meth-
ods that address the model selection problem. We interpret the model selection
problem rather broadly, to include all aspects of the model including the dis-
crete choice of the functional form for the covariance function as well as values

for any hyperparameters.

In section 5.1 we outline the model selection problem. In the following sec-
tions different methodologies are presented: in section 5.2 Bayesian principles
are covered, and in section 5.3 cross-validation is discussed, in particular the
leave-one-ont estimator. In the remaining two sections the different methodolo-
gies are applied specifically to learning in GP models, for regression in section

5.4 and classification in section 5.5.

?

model selection
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Model Selection and Adaptation of Hyperparameters

5.i The Model Selection Problem

In order for a model to be a practical tool in an application, one needs to make
decisions about the details of its specification. Some properties may be easy to
specify, while we typically have only vague information available about other
aspects. We use the term model selection to cover both discrete choices and the
setting of continuous (hyper-) parameters of the covariance functions. In fact,
model selection can help both to refine the predictions of the model, and give
a valuable interpretation to the user about the properties of the data, e.g. that
a non-stationary covariance function may be preferred over a stationary one.

A multitude of possible families of covariance functions exists, including
squared exponential, polynomial, neural network, etc., see section 4.2 for an
overview. Each of these families typically have a number of free hyperparameters
whose values also need to be determined. Choosing a covariance function for a
particular application thus comprises both setting of hyperparameters within a
family, and comparing across different families. Both of these problems will be
treated by the same methods, so there is no need to distinguish between them,
and we will use the term “model selection” to cover both meanings. We will
refer to the selection of a covariance function and its parameters as training of
a Gaussian process.! In the following paragraphs we give example choices of
parameterizations of distance measures for stationary covariance functions.

Covariance functions such as the squared exponential can be parameterized
in terms of hyperparameters. For example

1
k(xp,xq) == Uf“ exp (" :?._(XP = xq)TM(xp = xq)) + Ufbdpq) (5.1)
where 8 = ({M},0%,0%)7 is a vector containing all the hyperparameters,? and
{M?} denotes the parameters in the symmetric matrix M. Possible choices for
the matrix M include

M; =£7?], M, = diag(£)~2, Ms = AAT + diag(€)™%, (5.2

where £ is a vector of positive values, and A is a D x k matrix, k¥ < D. The
properties of functions with these covariance functions depend on the values of
the hyperparameters. For many covariance functions it is easy to interpret the
meaning of the hyperparameters, which is of great importance when trying to
understand your data. For the squared exponential covariance function eq. (5.1)
with distance measure M from eq. (5.2), the ¢y, ...,¢p hyperparameters play
the r6le of characteristic length-scales; loosely speaking, how far do you need
to move (along a particular axis) in input space for the function values to be-
come uncorrelated. Such a covariance function implements automatic relevance
determination (ARD) [Neal, 1996], since the inverse of the length-scale deter-
mines how relevant an input is: if the length-scale has a very large value, the

IThis contrasts the use of the word in the SVM literature, where “training” usually refers
to finding the support vectors for a fixed kernel.
28ometimes the noise level parameter, o2 is not considered a hyperparameter; however it

plays an analogous role and is treated in the same way, so we simply consider it a hyperpa-

rameter.
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hierarchical models

there is plenty of scope for variation even inside a single family of covariance
functions. Our task is, based on a set of training data, to make inferences about
the form and parameters of the covariance function, or equivalently, about the
relationships in the data.

It should be clear form the above example that model selection is essentially
open ended. Even for the squared exponential covariance function, there is a
huge variety of possible distance measures. However, this should not be a cause
for despair, rather seen as a possibility to learn. It requires, however, a sys-
tematic and practical approach to model selection. In a nutshell we need to be
able to compare two (or more) methods differing in values of particular param-
eters, or the shape of the covariance function, or compare a Gaussian process
model to any other kind of model. Although there are endless variations in the
suggestions for model selection in the literature three general principles cover
most: (1) compute the probability of the model given the data, (2) estimate
the generalization error and (3) bound the generalization error. We use the
term generalization error to mean the average error on unseen test examples
(from the same distribution as the training cases). Note that the training error
is usually a poor proxy for the generalization error, since the model may fit
the noise in the training set (over-fit), leading to low training error but poor
generalization performance. '

" In the next section we describe the Bayesian view on“model selection, which
involves the computation of the probability of the model given the data, based
on the marginal likelihood. In section 5.3 we cover cross-validation, which
estimates the generalization performance. These two paradigms are applied
to Gaussian process models in the remainder of this chapter. The probably
approximately correct (PAC) framework is an example of a bound on the gen-
eralization error, and is covered in section 7.4.2.

5.2 Bayesian Model Selection

In this section we give a short outline description of the main ideas in Bayesian
model selection. The discussion will be general, but focusses on issues which will
be relevant for the specific treatment of Gaussian process models for regression
in section 5.4 and classification in section 5.5.

It is common to use a hierarchical specification of models. At the lowest level
are the parameters, w. For example, the parameters could be the parameters
in a linear model, or the weights in a neural network model. At the second level
are hyperparameters 8 which control the distribution of the parameters at the
bottom level. For example the “weight decay” term in a neural network, or the
“ridge” term in ridge regression are hyperparameters. At the top level we may
have a (discrete) set of possible model structures, #;, under consideration.

We will first give a “mechanistic” description of the computations needed
for Bayesian inference, and continue with a discussion providing the intuition
about what is going on. Inference takes place one level at a time, by applying
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the rules of probability theory, see e.g. MacKay [1992b] for this framework and
MacKay [1992a] for the context of neural networks. At the bottom level, the
posterior over the parameters is given by Bayes’ rule

p(y|X, w, Hi)p(w|6, Hsi)
p(leagaH‘t) i

where p(y|X,w,H;) is the likelihood and p(w|@,H;) is the parameter prior.
The prior encodes as a probability distribution our knowledge about the pa-
rameters prior to seeing the data. If we have only vague prior information
about the parameters, then the prior distribution is chosen to be broad to
reflect this. The posterior combines the information from the prior and the
data (through the likelihood). The normalizing constant in the denominator of
eq. (5.3) p(y|X,8,H,) is independent of the parameters, and called the marginal
likelihood (or evidence), and is given by

p(“’b’a Xa 0’ Ht) ==

(5.3)

p(y|X,0,H:) = / (| X, w0, He)p(wl6, He) dw. (5.4)

At the next level, we analogously express the posterior over the hyperparam-
eters, where the marginal likelihood from the first level plays the role of the

likelihood
p(y|X, 0, Hi)p(6|H:)

where p(8|H;) is the hyper-prior (the prior for the hyperparameters). The
normalizing constant is given by

p(0ly, X, Hi) = (5.5)

p(y|X, H) = / p(y1X, 8, H:)p(O]H:)db. (5.6)

At the top level, we compute the posterior for the model

p(y| X, Hi)p(Hi)
pylX)

where p(y|X) = ¥, p(yIX ,H:)p(H;). We note that the implementation of
Bayesian inference calls for the evaluation of several integrals. Depending on the
details of the models, these integrals may or may not be analytically tractable
and in general one may have to resort to analytical approximations or Markov
chain Monte Carlo (MCMC) methods. In practice, especially the evaluation
of the integral in eq. (5.6) may be difficult, and as an approximation one may
shy away from using the hyperparameter posterior in eq. (5.5), and instead
maximize the marginal likelihood in eq. (5.4) w.r.t. the hyperparameters, 8.
This approximation is known as type 1I maximum likelihood (ML-II). Of course,
one should be careful with such an optimization step, since it opens up the
possibility of overfitting, especially if there are many hyperparameters. The
integral in eq. (5.6) can then be approximated using a local expansion around
the maximum (the Laplace approximation). This approximation will be good
if the posterior for 8 is fairly well peaked, which is more often the case for the

p(Hily, X) = (5.7)

level 1 inference

level 2 inference

level 3 inference

ML-II
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Figure 5.2: The marginal likelihood p(y|X,H;) is the probability of the data, given
the model. The number of data points n and the inputs X are fixed, and not shown.
The horizontal axis is an idealized representation of all possible vectors of targets y.
The marginal likelihood for models of three different complexities are shown. Note,
that since the marginal likelihood is a probability distribution, it must normalize
to unity. For a particular dataset indicated by y and a dotted line, the marginal
likelihood prefers a model of intermediate complexity over too simple or too complex
alternatives.

hyperparameters than for the parameters themselves, see MacKay [1999] for an
illuminating discussion. The prior over models H; in eq. {5.7) is often taken to
be flat, so that a priori we do not favour one model over another. In this case,
the probability for the model is proportional to the expression from eq. (5.6).

It is primarily the marginal likelihood from eq. (5.4) involving the integral
over the parameter space which distinguishes the Bayesian scheme of inference
from other schemes based on optimization. It is a property of the marginal
likelihood that it automatically incorporates a trade-off between model fit and
model complexity. This is the reason why the marginal likelihood is valuable
in solving the model selection problem.

In Figure 5.2 we show a schematic of the behaviour of the marginal likelihood
for three different model complexities. Let the number of data points n and
the inputs X be fixed; the horizontal axis is an idealized representation of all
possible vectors of targets y, and the vertical axis plots the marginal likelihood
p(y| X, H;). A simple model can only account for a limited range of possible sets
of target values, but since the marginal likelihood is a probability distribution
over y it must normalize to unity, and therefore the data sets which the model
does account for have a large value of the marginal likelihood. Conversely for
a complex model: it is capable of accounting for a wider range of data sets,
and consequently the marginal likelihood doesn’t attain such large values as
for the simple model. For example, the simple model could be a linear model,
and the complex model a large neural network. The figure illustrates why the
marginal likelihood doesn’t simply favour the models that fit the training data
the best. This effect is called Occam’s razor after William of Occam 1285-1349,
whose principle: “plurality should not be assumed without necessity” he used
to encourage simplicity in explanations. See also Rasmussen and Ghahramani
[2001] for an investigation into Occam’s razor in statistical models.
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Notice that the trade-off between data-fit and model complexity is automatic;
there is no need to set a parameter externally to fix the trade-off. Do not confuse
the automatic Occam’s razor principle with the use of priors in the Bayesian
method. Even if the priors are “fat” over complexity, the marginal likelihood
will still tend to favour the least complex model able to explain the data. Thus,
a model complexity which is well suited to the data can be selected using the
marginal likelihood.

In the preceding paragraphs we have thought of the specification of a model
as the model structure as well as the parameters of the priors, etc. If it is
unclear how to set some of the parameters of the prior, one can treat these as
hyperparameters, and do model selection to determine how to set them. At
the same time it should be emphasized that the priors correspond to (proba-
bilistic) assumptions about the data. If the priors are grossly at odds with the
distribution of the data, inference will still take place under the assumptions
encoded by the prior, see the step-function example in section 5.4.3. To avoid
this situation, one should be careful not to employ priors which are too narrow,
ruling out reasonable explanations of the data.?

5.3 Cross-validation

In this section we consider how to use methods of cross-validation (CV) for
model selection. The basic idea is to split the training set into two disjoint sets,
one which is actually used for training, and the other, the validation set, which
is used to monitor performance. The performance on the validation set is used
as a proxy for the generalization error and model selection is carried out using
this measure.

In practice a drawback of hold-out method is that only a fraction of the
full data set can be used for training, and that if the validation set it small,
the performance estimate obtained may have large variance. To minimize these
problems, CV is almost always used in the k-fold cross-validation setting: the
data is split into k disjoint, equally sized subsets; validation is done on a single

subset and training is done using the union of the remaining k — 1 subsets, the -

entire procedure being repeated k times, each time with a different subset for
validation. Thus, a large fraction of the data can be used for training, and all
cases appear as validation cases. The price is that & models must be trained
instead of one. Typical values for k are in the range 3 to 10.

An extreme case of k-fold cross-validation is obtained for £ = n, the number
of training cases, also known as leave-one-out cross-validation (LOO-CV). Of-
ten the computational cost of LOO-CV (“training” n models) is prohibitive, but
in certain cases, such as Gaussian process regression, there are computational
shortcuts.

3This is known as Cromwell’s dictum [Lindley, 1985] after Oliver Cromwell who on August
5th, 1650 wrote to the synod of the Church of Scotland: “I beseech you, in the bowels of
Christ, consider it possible that you are mistaken.”

automatic trade-off

cross-validation

k-fold cross-validation

leave-one-out
cross-validation

(LOO-CV)
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other loss functions

model parameters

Cross-validation can be used with any loss function. Although the squared
error loss is by far the most common for regression, there is no reason not to
allow other loss functions. For probabilistic models such as Gaussian processes
it is natural to consider also cross-validation using the negative log probabil-
ity loss. Craven and Wahba [1979] describe a variant of cross-validation using
squared error known as generalized cross-validation which gives different weight-
ings to different datapoints so as to achieve certain invariance properites. See
Wahba [1990, sec. 4.3] for further details.

5.4 Model Selection for GP Regression

We apply Bayesian inference in section 5.4.1 and cross-validation in section 54.2
to Gaussian process regression with Gaussian noise. We conclude in section
5.4.3 with some more detailed examples of how one can use the model selection
principles to tailor covariance functions.

5.4.1 Marginal Likelihood

Bayesian principles provide a persuasive and consistent framework for inference.
Unfortunately, for most interesting models for machine learning, the required
computations (integrals over parameter space) are analytically intractable, and
good approximations are not easily derived. Gaussian process regression mod-
els with Gaussian noise are a rare exception: integrals over the parameters are
analytically tractable and at the same time the models are very flexible. In this
section we first apply the general Bayesian inference principles from section
5.2 to the specific Gaussian process model, in the simplified form where hy-
perparameters are optimized over. We derive the expressions for the marginal
likelihood and interpret these.

Since a Gaussian process model is a non-parametric model, it may not be
immediately obvious what the parameters of the model are. Generally, one
may regard the noise-free latent function values at the training inputs f as the
parameters. The more training cases there are, the more parameters. Using
the weight-space view, developed in section 2.1, one may equivalently think
of the parameters as being the weights of the linear model which uses the
basis-functions ¢, which can be chosen as the eigenfunctions of the covariance
function. Of course, we have seen that this view is inconvenient for nondegen-
erate covariance functions, since these would then have an infinite number of
weights.

We proceed by applying eq. (5.3) and eq. (5.4) for the 1st level of inference—
which we find that we have already done back in chapter 2! The predictive dis-
tribution from eq. (5.3) is given for the weight-space view in eq. (2.11) and
eq. (2.12) and equivalently for the function-space view in eq. (2.22). The
marginal likelihood (or evidence) from eq. (5.4) was computed in eq. (2.30),
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Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into
its constituents: data-fit and complexity penalty, as a function of the characteristic
length-scale. The training data is drawn from a Gaussian process with SE covariance
function and parameters (£, 05,05) = (1,1,0.1), the same as in Figure 2.5, and we are
fitting only the length-scale parameter £ (the two other parameters have been set in
accordance with the generating process). Panel (b) shows the log marginal likelihood
as a function of the characteristic length-scale for different sizes of training sets. Also
shown, are the 95% confidence intervals for the posterior length-scales.

and we re-state the result here
1 T pinds], 1 n
logp(y|X,0) = —ay K, 'y~ §]og]Ky| - 510g27r, (5.8)

where K, = Ky + 021 is the covariance matrix for the noisy targets y (and Ky
is the covariance matrix for the noise-free latent f), and we now explicitly write
the marginal likelihood conditioned on the hyperparameters (the parameters of
the covariance function) 8. From this perspective it becomes clear why we call
eq. (5.8) the log marginal likelihood, since it is obtained through marginaliza-
tion over the latent function. Otherwise, if one thinks entirely in terms of the
function-space view, the term “marginal” may appear a bit mysterious, and
similarly the “hyper” from the @ parameters of the covariance function.*

The three terms of the marginal likelihood in eq. (5.8) have readily inter-
pretable réles: the only term involving the observed targets is the data-fit
~y " K;'y/2; log|Ky|/2 is the complexity penalty depending only on the co-
variance function and the inputs and nlog(27)/2 is a normalization constant.
In Figure 5.3(a) we illustrate this breakdown of the log marginal likelihood.
The data-fit decreases monotonically with the length-scale, since the model be-
comes less and less flexible. The negative complexity penalty increases with the
length-scale, because the model gets less complex with growing length-scale.

The marginal likelihood itself peaks at a value close to 1. For length-scales
~ somewhat longer than 1, the marginal likelihood decreases rapidly (note the

4 Another reason that we like to stick to the term “marginal likelihood” is that it is the
likelihood of a non-parametric model, i.e. a model which requires access to all the training
data when making predictions; this contrasts the situation for a parametric model, which
“absorbs” the information from the training data into its (posterior) parameter (distribution).
This difference makes the two “likelihoods” behave quite differently as a function of 6.

marginal likelihood

interpretation
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Figure 5.4: Contour plot showing the log marginal likelihood as a function of the
characteristic length-scale and the noise level, for the same data as in Figure 2.5 and
Figure 5.3. The signal variance hyperparameter was set to crft = 1. The optimum is
close to the parameters used when generating the data. Note, the two ridges, one
for small noise and length-scale £ = 0.4 and another for long length-scale and noise
02 = 1. The contour lines spaced 2 units apart in log probability density.

log scale!), due to the poor ability of the model to explain the data, compare to
Figure 2.5(c). For smaller length-scales the marginal likelihood decreases some-
what more slowly, corresponding to models that do accommodate the data,
but waste predictive mass at regions far away from the underlying function,
compare to Figure 2.5(b).

In Figure 5.3(b) the dependence of the log marginal likelihood on the charac-
teristic length-scale is shown for different numbers of training cases. Generally,
the more data, the more peaked the marginal likelihood. For very small numbers
of training data points the slope of the log marginal likelihood is very shallow
as when only a little data has been observed, both very short and intermediate
values of the length-scale are consistent with the data. With more data, the
complexity term gets more severe, and discourages too short length-scales.

To set the hyperparameters by maximizing the marginal likelihood, we seek
the partial derivatives of the marginal likelihood w.r.t. the hyperparameters.
Using eq. (5.8) and eq. (A.14-A.15) we obtain

] X0 =iy K E K ly = e
2, ogp(ylX,0) =3y a0, V3 tr (K aej) -
o P ((aaT - K”l)gfg) where a = K™ ly .
2 96 '

The complexity of computing the marginal likelihood in eq. (5.8) is dominated
by the need to invert the K matrix (the log determinant of K is easily com-
puted as a by-product of the inverse). Standard methods for matrix inversion of
positive definite symmetric matrices require time O(n?) for inversion of an n by
n matrix. Once K~! is known, the computation of the derivatives in eq. (5.9)
requires only time O(n?) per hyperparameter.® Thus, the computational over-

5Note that matrix-by-matrix products in eq. (5.9) should not be computed directly: in the
first term, do the vector-by-matrix multiplications first; in the trace term, compute only the
diagonal terms of the product.
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head of computing derivatives is small, so using a gradient based optimizer is
advantageous.

Estimation of 8 by optimzation of the marginal likelihood has a long history
in spatial statistics, see e.g. Mardia and Marshall [1984]. As n increases, one
would hope that the data becomes increasingly informative about 8. However,
it is necessary to contrast what Stein [1999, sec. 3.3] calls fixed-domain asymp-
totics (where one gets increasingly dense observations within some region) with
increasing-domain asymptotics (where the size of the observation region grows
with n). Increasing-domain asymptotics are a natural choice in a time-series
context but fixed-domain asymptotics seem more natural in spatial (and ma-
chine learning) settings. For further discussion see Stein [1999, sec. 6.4].

Figure 5.4 shows an example of the log marginal likelihood as a function
of the characteristic length-scale and the noise standard deviation hyperpa-
rameters for the squared exponential covariance function, see eq. (5.1). The
signal variance o? was set to 1.0. The marginal likelihood has a clear maximum
around the hyperparameter values which were used in the Gaussian process
from which the data was generated. Note that for long length-scales and a
noise level of o2 = 1, the marginal likelihood becomes almost independent of
the length-scale; this is caused by the model explaining everything as noise,
and no longer needing the signal covariance. Similarly, for small noise and a
length-scale of £ = 0.4, the marginal likelihood becomes almost independent of
the noise level; this is caused by the ability of the model to exactly interpolate
the data at this short length-scale. We note that although the model in this
" hyperparameter region explains all the data-points exactly, this model is still
disfavoured by the marginal likelihood, see Figure 5.2.

There is no guarantee that the marginal likelihood does not suffer from mul-
tiple local optima. Practical experience with simple covariance functions seem
to indicate that local maxima are not a devastating problem, but certainly they
do exist. In fact, every local maximum corresponds to a particular interpre-
tation of the data. In Figure 5.5 an example with two local optima is shown,
together with the corresponding (noise free) predictions of the model at each
of the two local optima. One optimum corresponds to a relatively complicated
model with low noise, whereas the other corresponds to a much simpler model
with more noise. With only 7 data points, it is not possible for the model to
confidently reject either of the two possibilities. The numerical value of the
marginal likelihood for the more complex model is about 60% higher than for
the simple model. According to the Bayesian formalism, one ought to weight
predictions from alternative explanations according to their posterior probabil-
ities. In practice, with data sets of much larger sizes, one often finds that one
local optimum is orders of magnitude more probable than other local optima,
so averaging together alternative explanations may not be necessary. However,
care should be taken that one doesn’t end up in a bad local optimum.

Above we have described how to adapt the parameters of the covariance
function given one dataset. However, it may happen that we are given several
datasets all of which are assumed to share the same hyperparameters; this
is known as multi-task learning, see e.g. Caruana [1997]. In this case one can

multiple local maxima

multi-task learning
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Figure 5.5: Panel (a) shows the marginal likelihood as a function of the hyperparame-
ters £ (length-scale) and o (noise standard deviation), where 0% = 1 (signal standard
deviation) for a data set of 7 observations (seen in panels (b) and (c)). There are
two local optima, indicated with '+’: the global optimum has low noise and a short
length-scale; the local optimum has a high noise and a long length scale. In (b) and (c)
the inferred underlying functions (and 95% confidence intervals) are shown for each
of the two solutions. In fact, the data points were generated by a Gaussian process
with (£,0%,02) = (1,1,0.1) in eq. (5.1).

simply sum the log marginal likelihoods of the individual problems and optimize
this sum w.r.t. the hyperparameters [Minka and Picard, 1999].

5.4.2 Cross-validation

The predictive log probability when leaving out training case i is

1 s (yi— p)® 1
log p(yi| X, y-1,8) = —5logoi — == — 5 log2m, (5.10)
where the notation y_; means all targets ezcept number i, and-p; and o? are
computed according to eq. (2.23) and (2.24) respectively, in which the training
sets are taken to be (X_;, y—i). Accordingly, the LOO log predictive probability
is

n
Lioo(X,y,8) = Y _logp(yi|X,y-:,6), (5.11)

i=1
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see [Geisser and Eddy, 1979] for a discussion of this and related approaches.
Lroo in eq. (5.11) is sometimes called the log pseudo-likelihood. Notice, that
in each of the n LOO-CV rotations, inference in the Gaussian process model
(with fixed hyperparameters) essentially consists of computing the inverse co-
variance miatrix, to allow predictive mean and variance in eq. (2.23) and (2.24)
to be evaluated (i.e. there is no parameter-fitting, such as there would be in a
parametric model). The key insight is that when repeatedly applying the pre-
diction eq. (2.23) and (2.24), the expressions are almost identical: we need the

inverses of covariance matrices with a single column and row removed in turn.:

This can be computed efficiently from the inverse of the complete covariance
matrix using inversion by partitioning, see eq. (A.11-A.12). A similar insight
has also been used for spline models, see e.g. Wahba [1990, sec. 4.2]. The ap-
proach was used for hyperparameter selection in Gaussian process models in
Sundararajan and Keerthi [2001]. The expressions for the LOO-CV predictive
mean and variance are :

pi = yi— [K7'y/[K i, and o = 1/[K a, (5.12)

where careful inspection reveals that the mean ; is in fact independent of y; as
indeed it should be. The computational expense of computing these quantities
is O(n3) once for computing the inverse of K plus O(n?) for the entire LOO-
CV procedure (when K~ is known). Thus, the computational overhead for
the LOO-CV quantities is negligible. Plugging these expressions into eq. (5.10)
“and (5.11) produces a performance estimator which we can optimize w.r.t. hy-
perparameters to do model selection. In particular, we can compute the partial
derivatives of Lyoo w.r.t. the hyperparameters (using eq. (A.14)) and use con-
jugate gradient optimization. To this end, we need the partial derivatives of
the LOO-CV predictive mean and variances from eq. (5.12) w.r.t. the hyperpa-
rameters
Oui _ [Zjeli  oulZ; K 8o} _ [Z; K Mui

9, N K-T: K% 89; - K=t ° (813)

where a = K~'y and Z; = K"lg;—{j—. The partial derivatives of eq. (5.11) are
obtained by using the chain-rule and eq. (5.13) to give

OLioo _ z":z‘?logp(yilX,y—i,G)%Jr3logp(yf%X»y—ia3)a_"_?_
00; - Op; 08 do? 88,
i = ’ ’ T (5.14)

n

= 3 («ilZs0di - S+ ﬁ(—‘f%;)[zjf{-l]ﬁ) JIE .

=1

The computational complexity is O(n?) for computing the inverse of K, and
O(n®) per hyperparameter® for the derivative eq. (5.14). Thus, the computa-
tional burden of the derivatives is greater for the LOO-CV method than for the
method based on marginal likelihood, eq. (5.9).

6Computation of the matrix-by-matrix product K = g% for each hyperparameter is un-
J
avoidable.

pseudo-likelihood
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LOO-CV with squared
error loss

In eq. (5.10) we have used the log of the validation density as a cross-
validation measure of fit (or equivalently, the negative log validation density as
a loss function). One could also envisage using other loss functions, such as the
commonly used squared error. However, this loss function is only a function
of the predicted mean and ignores the validation set variances. Further, since
the mean prediction eq. (2.23) is independent of the scale of the covariances
(i.e. you can multiply the covariance of the signal and noise by an arbitrary
positive constant without changing the mean predictions), one degree of freedom
is left undetermined” by a LOO-CV procedure based on squared error loss (or
any other loss function which depends only on the mean predictions). But, of
course, the full predictive distribution does depend on the scale of the covariance
function. Also, computation of the derivatives based on the squared error loss
has similar computational complexity as the negative log validation density loss.
In conclusion, it seems unattractive to use LOO-CV based on squared error loss
for hyperparameter selection.

Comparing the pseudo-likelihood for the LOO-CV methodology with the
marginal likelihood from the previous section, it is interesting to ask under
which circumstances each method might be preferable. Their computational
demands are roughly identical. This issue has not been studied much empir-
ically. However, it is interesting to note that the marginal likelihood tells us
the probability of the observations given the assumptions of the model. This
contrasts with the frequentist LOO-CV value, which gives an estimate for the
(log) predictive probability, whether or not the assumptions of the model may
be fulfilled. Thus Wahba [1990, sec. 4.8] has argued that CV procedures should
be more robust against model mis-specification.

5.4.3 Examples and Discussion

In the following we give three examples of model selection for regression models.
We first describe a 1-d modelling task which illustrates how special covariance
functions can be designed to achieve various useful effects, and can be evaluated
using the marginal likelihood. Secondly, we make a short reference to the model
selection carried out for the robot arm problem discussed in chapter 2 and again
in chapter 8. Finally, we discuss an example where we deliberately choose a
covariance function that is not well-suited for the problem; this is the so-called
mis-specified model scenario.

Mauna Loa Atmospheric Carbon Dioxide

We will use a modelling problem concerning the concentration of COy in the
atmosphere to illustrate how the marginal likelihood can be used to set multiple
hyperparameters in hierarchical Gaussian process models. A complex covari-
ance function is derived by combining several different kinds of simple covariance
functions, and the resulting model provides an excellent fit to the data as well

TIn the special case where we know either the signal or the noise variance there is no
indeterminancy.
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Figure 5.6: The 545 observations of monthly averages of the atmospheric concentra-
tion of CO, made between 1958 and the end of 2003, together with 95% predictive
confidence region for a Gaussian process regression model, 20 years into the future.
Rising trend and seasonal variations are clearly visible. Note also that the confidence
interval gets wider the further the predictions are extrapolated.

as insights into its properties by interpretation of the adapted hyperparame-
ters. Although the data is one-dimensional, and therefore easy to visualize, a
total of 11 hyperparameters are used, which in practice rules out the use of
cross-validation for setting parameters, except for the gradient-based LOO-CV
procedure from the previous section.

The data [Keeling and Whorf, 2004] consists of monthly average atmospheric
CO,, concentrations (in parts per million by volume (ppmv)) derived from in situ
air samples collected.at the Mauna Loa Observatory, Hawaii, between 1958 and
2003 (with some missing values).® The data is shown in Figure 5.6. Our goal is
the model the COy concentration as a function of time x. Several features are
immediately apparent: a long term rising trend, a pronounced seasonal variation
and some smaller irregularities. In the following we suggest contributions to a
combined covariance function which takes care of these individual properties.
This is meant primarily to illustrate the power and flexibility of the Gaussian
process framework—it is possible that other choices would be more appropriate
for this data set.

To model the long term smooth rising trend we use a squared exponential
(SE) covariance term, with two hyperparameters controlling the amplitude 6,
and characteristic length-scale 6

N2
ki(z,2)) = Gfexp(— (:E—QB%)_) (5.15)

Note that we just use a smooth trend; actually enforcing the trend a priori to
be increasing is probably not so simple and (hopefully) not desirable. We can
use the periodic covariance function from eq. (4.31) with a period of one year to
model the seasonal variation. However, it is not clear that the seasonal trend is
exactly periodic, so we modify eq. (4.31) by taking the product with a squared

8The data is available from http://cdiac.esd.ornl.gov/ftp/trends/co2/maunaloa.co2.

smooth trend

seasonal component
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Figure 5.7: Panel (a): long term trend, dashed, left hand scale, predicted by the
squared exponential contribution; superimposed is the medium term trend, full line,
right hand scale, predicted by the rational quadratic contribution; the vertical dash-
dotted line indicates the upper limit of the training data. Panel (b) shows the seasonal
variation over the year for three different years. The concentration peaks in mid May
and has a low in the beginning of October. The seasonal variation is smooth, but
not of exactly sinusoidal shape. The peak-to-peak amplitude increases from about 5.5
ppm in 1958 to about 7 ppm in 2003, but the shape does not change very much. The
characteristic decay length of the periodic component is inferred to be 90 years, so
the seasonal trend changes rather slowly, as also suggested by the gradual progression
between the three years shown.

exponential component (using the product construction from section 4.2.4), to
allow a decay away from exact periodicity

(z - :L")2 B 2Sin2(7r(:v = m'))), (5.16) .

ky(z,2') = 6%exp (— 207 52
where 63 gives the magnitude, 64 the decay-time for the periodic component,
and 65 the smoothness of the periodic component; the period has been fixed
to one (year). The seasonal component in the data is caused primarily by
different rates of CO» uptake for plants depending on the season, and it is
probably reasonable to assume that this pattern may itself change slowly over
time, partially due to the elevation of the COy level itself; if this effect turns
out not to be relevant, then it can be effectively removed at the fitting stage by
allowing 6, to become very large.

To model the (small) medium term irregularities a rational quadratic term
is used, eq. (4.19)

, z—z')2\ s

where g is the magnitude, @7 is the typical length-scale and 63 is the shape pa-
rameter determining diffuseness of the length-scales, see the discussion on page
87. One could also have used a squared exponential form for this component,
but it turns out that the rational quadratic works better (gives higher marginal
likelihood), probably because it can accommodate several length-scales.
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Figure 5.8: The time course of the seasonal effect, plotted in a months vs. year plot
(with wrap-around continuity between the edges). The labels on the contours are in
ppmv of CO2. The training period extends up to the dashed line. Note the slow
development: the height of the May peak may have started to recede, but the low in
October may currently (2005) be deepening further. The seasonal effects from three
particular years were also plotted in Figure 5.7(b).

Finally we specify a noise model as the sum of a squared exponential con-
tribution and an independent component
Tp — Tg)>
(—”26%&)—) 4 62,60, (5.18)
where 8 is the magnitude of the correlated noise component, 010 is its length-
scale and 6y is the magnitude of the independent noise component. Noise in
the series could be caused by measurement inaccuracies, and by local short-term
weather phenomena, so it is probably reasonable to assume at least a modest
amount of correlation in time. Notice that the correlated noise component, the
first term of eq. (5.18), has an identical expression to the long term component
in eq. (5.15). When optimizing the hyperparameters, we will see that one of
these components becomes large with a long length-scale (the long term trend),
while the other remains small with a short length-scale (noise). The fact that
we have chosen to call one of these components ‘signal’ and the other one ‘noise’
is only a question of interpretation. Presumably we are less interested in very
short-term effect, and thus call it noise; if on the other hand we were interested
in this effect, we would call it signal.

ka(zp,zq) = Ogexp (—

The final covariance function is
k(z,z') = ki(z,2') + ka(z, 2") + ka(z, t') + ky(z,2'), (5.19)

with hyperparameters 8 = (01,..., 611)7. We first subtract the empirical mean
of the data (341 ppm), and then fit the hyperparameters by optimizing the
marginal likelihood using a conjugate gradient optimizer. To avoid bad local
minima (e.g. caused by swapping roles of the rational quadratic and squared
exponential terms) a few random restarts are tried, picking the run with the
best marginal likelihood, which was log p(y|X, 8) = —108.5.

We now examine and interpret the hyperparameters which optimize the
marginal likelihood. The long term trend has a magnitude of 6; = 66 ppm

noise terms

parameter estimation
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and a length scale of §; = 67 years. The mean predictions inside the range
of the training data and extending for 20 years into the future are depicted in
Figure 5.7 (a). In the same plot (with right hand axis) we also show the medium
term effects modelled by the rational quadratic component with magnitude
s = 0.66 ppm, typical length 67 = 1.2 years and shape 0g = 0.78. The very
small shape value allows for covariance at many different length-scales, which
is also evident in Figure 5.7 (a). Notice that beyond the edge of the training
data the mean of this contribution smoothly decays to zero, but of course it
still has a contribution to the uncertainty, see Figure 5.6.

The hyperparameter values for the decaying periodic contribution are: mag-
nitude 3 = 2.4 ppm, decay-time 64 = 90 years, and the smoothness of the
periodic component is 5 = 1.3. The quite long decay-time shows that the
data have a very close to periodic component in the short term. In Figure 5.7
(b) we show the mean periodic contribution for three years corresponding to
the beginning, middle and end of the training data. This component is not
exactly sinusoidal, and it changes its shape slowly over time, most notably the
amplitude is increasing, see Figure 5.8.

For the noise components, we get the amplitude for the correlated compo-
nent 9 = 0.18 ppm, a length-scale of 610 = 1.6 months and an independent
noise magnitude of ¢;; = 0.19 ppm. Thus, the correlation length for the noise
component is indeed inferred to be short, and the total magnitude of the noise
is just V62 + 02, = 0.26 ppm, indicating that the data can be explained very
well by the model. Note also in Figure 5.6 that the model makes relatively
confident predictions, the 95% confidence region being 16 ppm wide at a 20
year prediction horizon.

In conclusion, we have seen an example of how non-trivial structure can be
inferred by using composite covariance functions, and that the ability to leave
hyperparameters to be determined by the data is useful in practice. Of course
a serious treatment of such data would probably require modelling of other
effects, such as demographic and economic indicators too. Finally, one may
want to use a real time-series approach (not just a regression from time to COg2
level as we have done here), to accommodate causality, etc. Nevertheless, the
ability of the Gaussian process to avoid simple parametric assumptions and still
build in a lot of structure makes it, as we have seen, a very attractive model in
many application domains.

Robot Arm Inverse Dynamics

We have discussed the use of GPR for the SARCOS robot arm inverse dynamics
problem in section 2.5. This example is also further studied in section 8.3.7
where a variety of approximation methods are compared, because the size of
the training set (44,484 examples) precludes the use of simple GPR due to its
O(n?) storage and O(n?®) time complexity.

One of the techniques considered in section 8.3.7 is the subset of datapoints
(SD) method, where we simply discard some of the data and only make use
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Figure 5.9: Mis-specification example. Fit to 64 datapoints drawn from a step func-
tion with Gaussian noise with standard deviation ¢, = 0.1. The Gaussian process
models are using a squared exponential covariance function. Panel (a) shows the mean
and 95% confidence interval for the noisy signal in grey, when the hyperparameters are
chosen to maximize the marginal likelihood. Panel (b) shows the resulting model when
the hyperparameters are chosen using leave-one-out cross-validation (LOO-CV). Note
that the marginal likelihood chooses a high noise level and long length-scale, whereas
LOO-CV chooses a smaller noise level and shorter length-scale. It is not immediately
obvious which fit it worse.
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of m < n training examples. Given a subset of the training data of size m
selected at random, we adjusted the hyperparameters by optimizing either the
marginal likelihood or Lyoo. As ARD was used, this involved adjusting D +
2 = 23 hyperparameters. This process was repeated 10 times with different
random subsets of the data selected for both m = 1024 and m = 2048. The
results show that the predictive accuracy obtained from the two optimization
methods is very similar on both standardized mean squared error (SMSE) and
mean standardized log loss (MSLL) criteria, but that the marginal likelihood
optimization is much quicker.

Step function example illustrating mis-specification

In this section we discuss the mis-specified model scenario, where we attempt
to learn the hyperparameters for a covariance function which is not very well
suited to the data. The mis-specification arises because the data comes from a
function which has either zero or very low probability under the GP prior. One
could ask why it is interesting to discuss this scenario, since one should surely

simply avoid choosing such a model in practice. While this is true in theory,

for practical reasons such as the convenience of using standard forms for the
covariance function or because vague prior information, one inevitably ends up
in a situation which resembles some level of mis-specification.

As an example, we use data from a noisy step function and fit a GP model
with a squared exponential covariance function, Figure 5.9. There is mis-
specification because it would be very unlikely that samples drawn from a GP
with the stationary SE covariance function would look like a step function. For
short length-scales samples can vary quite quickly, but they would tend to vary
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Figure 5.10: Same data as in Figure 5.9. Panel (a) shows the result of using a
covariance function which is the sum of two squared-exponential terms. Although this
is still a stationary covariance function, it gives rise to & higher marginal likelihood
than for the squared—exponential covariance function in Figure 5.9(a), and probably
also a better fit. In panel (b) the neural network covariance function eq. (4.29) was
used, providing a much larger marginal likelihood and a very good fit.

rapidly all over, not just near the step. Conversely a stationary SE covariance
function with a long length-scale could model the flat parts of the step function
but not the rapid transition. Note that Gibbs’ covariance function eq. (4.32)
would be a one way to achieve the desired effect. It is interesting to note the dif-
ferences between the model optimized with marginal'likelihood in Figure 5.9(2),
and one optimized with LOO-CV in panel (b) of the same figure. See exercise
5.6.2 for more on how these two criteria weight the influence of the prior.

For comparison, we show the predictive distribution for two other covari-
ance functions in Figure 5.10. In panel (a) a sum of two squared exponential
terms were used in the covariance. Notice that this covariance function is still
stationary, but it is more flexible than a single squared exponential, since it has
two magnitude and two length-scale parameters. The predictive distribution
looks a little bit better, and the value of the log marginal likelihood improves
from —37.7 in Figure 5.9(a) to —26.1in Figure 5.10(a). We also tried the neural
network covariance function from eq. (4.29), which is ideally suited to this case,
since it allow saturation at different values in the positive and negative direc-
tions of z. As shown in Figure 5.10(b) the predictions are also near perfect,
and the log marginal likelihood is much larger at 50.2.

] 5.5 Model Selection for GP Classification

In this section we compute the derivatives of the approximate marginal likeli-
hood for the Laplace and EP methods for binary classification which are needed
for training. We also give the detailed algorithms for these, and briefly discuss
the possible use of cross-validation and other methods for training binary GP
classifiers.




