Chapter 2

Regression

Supervised learning can be divided into regression and classification problems.
Whereas the outputs for classification are discrete class labels, regression is
concerned with the prediction of continuous quantities. For example, in a fi-
nancial application, one may attempt to predict the price of a commodity as
a function of interest rates, currency exchange rates, availability and demand.
In this chapter we describe Gaussian process methods for regression problems;
classification problems are discussed in chapter 3.

There are several ways to interpret Gaussian process (GP) regression models.
One can think of a Gaussian process as defining a distribution over functions,
and inference taking place directly in the space of functions, the function-space
view. Although this view is appealing it may initially be difficult to grasp,
so we start our exposition in section 2.1 with the equivalent weight-space view
which may be more familiar and accessible to many, and continue in section
2.9 with the function-space view. Gaussian processes often have characteristics
that can be changed by setting certain parameters and in section 2.3 we discuss
how the properties change as these parameters are varied. The predictions
from a GP model take the form of a full predictive distribution; in section 2.4
we discuss how to combine a loss function with the predictive distributions
using decision theory to make point predictions in an optimal way. A practical
comparative example involving the learning of the inverse dynamics of a robot
arm is presented in section 2.5. We give some theoretical analysis of Gaussian
process regression in section 2.6, and discuss how to incorporate explicit basis
functions into the models in section 2.7. As much of the material in this chapter
can be considered fairly standard, we postpone most references to the historical
overview in section 2.8.

2.1 Weight-space View

The simple linear regression model where the output is a linear combination of
the inputs has been studied and used extensively. Its main virtues are simplic-

two equivalent views

Regression

L,—///

training set’

design matrix

bias, offset

likelihood

and interpretability. Its main drawback is that it only
ity; if the relationship between input and output can-
d by a linear function, the model will give poor

ity of implementation
allows a limited flexibil
not reasonably be approximate
predictions.

In this section we first discuss the Bayesian treatment of the linear model.
‘We then make a simple enhancement t0 this class of models by projecting the
inputs into a high—dimensional feature space and applying the linear model
there. We show that in some feature spaces one can apply the “kernel trick” to
licitly in the high dimensional space; this last step

carry out computations imnp.
leads to computational savings when the dimensionality of the feature space is

large compared t0 the number of data points.

We have a training set D of n observations, D = {(xi,) | 1= $onnsnib:
where x denotes an input vector (covariates) of dimension D and y denotes
a scalar output or target (dependent variable); the column vector inputs for
all n cases are aggregated in the D x n design maitriz® X, and the targets
are collected in the vector y, SO We can write D = (X,y)- In the regression
setting the targets are real values. We are interested in making inferences about

inputs and targets, i.e. the conditional distribution of

the relationship between 1
the targets given the inputs (but we are not interested in modelling the input

distribution itself).

2.1.1 The Standard Linear Model

We will review the Bayesian analysis of the standard linear regression model

with Gaussian noise
fo) = xTw, oy = fE+e s

where x is the input vector, W is a vector of weights (parameters) of the linear
model, f is the function value and y is the observed target value. Often a bias

weight or offset is included, but as this can be implemented by augmenting the
input vector ue is always one, we do not

« with an additional element whose val
explicitly include it in our notation. We have assumed that the observed values
y differ from the function values f(x) by additive noise, and we will further
assume that this noise follows an independent, identically distributed Gaussian
distribution with zero mean and variance o7,

e re NIO; 03)- (2.2)

This noise assumption together with the model directly gives rise to the likeli-
hood, the probability density of the observations given the parameters, which is

11y, statistics texts the design matrix is usually taken to be the transpose of our definition,
but our choice is deliberate and has the advantage that a data point is & standard (column)

vector.

2.1 Weight-space View

factored over cases in the training set (because of the independence assumption)
to give

- 7L (yi =%/ w)°
I ot w) = 1 70, =2 =722)

p(yl X, w)

) : (2.3)
o= WGXP (e ﬁly - XTW|2) = /\'r(XTW#’fzI),

where |z| denotes the Euclidean length of vector z. In the Bayesian formalism
we need to specify a prior over the parameters, expressing our beliefs about the
parameters before we look at the observations. We put a zero mean Gaussian
prior with covariance matrix ¥, on the weights

w ~ N(0, Ip). (2.4)
The role and properties of this prior will be discussed in section 2.2; for now
we will continue the derivation with the prior as specified.

Inference in the Bayesian linear model is based on the posterior distribution
over the weights, computed by Bayes’ rule, (see eq. (A.3))?

likelihood X prior
marginal likelihood’

p(y|X, w)p(w)
o) &)

where the normalizing constant, also known as the marginal likelihood (see page
19), is independent of the weights and given by

posterior = p(wly,X) =

. p(ylX) = f p(y| X, w)p(w) dw. (2.6)

The posterior in eq. (2.5) combines the likelihood and the prior, and captures
everything we know about the parameters. Writing only the terms from the
likelihood and prior which depend on the weights, and “completing the square”
we obtain

p(wlX,y) o exp (= 5z (y = XTW)(y = XTw) exp (= T w)
X exp (—%(W—W)T((—%XXT + 351 (w - W), (2.7)

where W = 072(072XXT + ;1) Xy, and we recognize the form of the
posterior distribution as Gaussian with mean W and covariance matrix At

1
p(w|X,y) ~ N (§V=§A‘1Xy, A7h, (2.8)

where A = 072X X7 + E;1. Notice that for this model (and indeed for any
Gaussian posterior) the mean of the posterior distribution p(w|y, X) is also
its mode, which is also called the mazimum a posteriori (MAP) estimate of

20ften Bayes’ rule is stated as p(ajb) = p(bla)p(a)/p(b); here we use it in a form where we
additionally condition everywhere on the inputs X (but neglect this extra conditioning for
the prior which is independent of the inputs).

prior

posterior

marginal likelihood

MAP estimate

[

w—

Regression

2 ///-‘\
ra N
} / ™
1 P
/ N
;N '\‘_‘ :.
g o 3
s y 5
o 3 / i °
: / /1
T s /
M /
D TS~]
-2 i 0 it 2
intercept, W,
(a)
of I = N —
==
N o
ES % 1
g o g o
g o i
) «» !
-1- : -1r
o . -2t)
-2 -1 0 1 2 -2 1 2

0
intercept, W, intercept, W,

(©) (d)

Figure 2.1: Example of Bayesian linear model f(z) = w1 + w2% with intercept
w; and slope parameter Wz Panel (a) shows the contours of the prior distribution
p(w) ~ N(0,1), eq. (24)- Panel (b) shows three training points marked by crosses.
Panel (c) shows contours of the likelihood p(y1X, w) eq. (2.3), assuming a noise level of
o, = 1: note that the slope is much more «well determined” than the intercept. Panel
(d) shows the posterior, p(w|X,y) eq. (2.7); comparing the maximum of the posterior
to the likelihood, we see that the intercept has been shrunk towards zero whereas the
more ‘well determined’ slope is almost unchanged. All contour plots give the 1 and
9 standard deviation equi-probability contours. Superimposed on the data in panel
(b) are the predictive mean plus/minus two standard deviations of the (noise-free)

. predictive Qistribution p(fx|%«, X;¥), €d- (2.9).

w. In a non-Bayesian setting the negative log prior is sometimes thought of
as a penalty term, and the MAP point is known as the penalized maximum
likelihood estimate of the weights, and this may cause some confusion between
Note, however, that in the Bayesian setting the MAP

the two approaches.
3 The penalized maximum likelihood procedure

estimate plays no special role.

‘es in the model and posterior, it happens that the mean

3In this case, due to symmetr
of the predictive distribution is the same as the prediction at the mean of the posterior.

However, this is not the case in general.

2.1 Weight-space View

3l

is known in this case as ridge regression [Hoerl and Kennard, 1970] because of
the effect of the quadratic penalty term %WTZ;IW from the log prior.

To make predictions for a test case we average over all possible parameter
values, weighted by their posterior probability. This is in contrast to non-
Bayesian schemes, where a single parameter is typically chosen by some crite-
rion. Thus the predictive distribution for f £ f(x.) at x, is given by averaging
the output of all possible linear models w.r.t. the Gaussian posterior

p(fulxn X,y) = / p(fule, W)p(W|X, y) dw
(2.9)
= N(}l—Zx;rA"le, xIA‘lx*).

The predictive distribution is again Gaussian, with a mean given by the poste-
rior mean of the weights from eq. (2.8) multiplied by the test input, as one would
expect from symmetry considerations. The predictive variance is a quadratic
form of the test input with the posterior covariance matrix, showing that the
predictive uncertainties grow with the magnitude of the test input, as one would
expect for a linear model.

An example of Bayesian linear regression is given in Figure 2.1. Here we
have chosen a 1-d input space so that the weight-space is two-dimensional and
can be easily visualized. Contours of the Gaussian prior are shown in panel (a).
The data are depicted as crosses in panel (b). This gives rise to the likelihood
shown in panel (c) and the posterior distribution in panel (d). The predictive
distribution and its error bars are also marked in panel (b).

.

2.1.2 Projections of Inputs into Feature Space

In the previous section we reviewed the Bayesian linear model which suffers
from limited expressiveness. A very simple idea to overcome this problem is to
first project the inputs into some high dimensional space using a set of basis
functions and then apply the linear model in this space instead of directly on
the inputs themselves. For example, a scalar input @ could be projected into
the space of powers of z: ¢(x) = (1,2,22,2%,...)7 to implement polynomial
regression. As long as the projections are fixed functions (i.e. independent of
the parameters w) the model is still linear in the parameters, and therefore
analytically tractable.? This idea is also used in classification, where a dataset
which is not linearly separable in the original data space may become linearly
separable in a high dimensional feature space, see section 3.3. Application of
this idea begs the question of how to choose the basis functions? As we shall
demonstrate (in chapter 5), the Gaussian process formalism allows us to answer
this question. For now, we assume that the basis functions are given.

Specifically, we introduce the function ¢(x) which maps a D-dimensional
input vector x into an N dimensional feature space. Further let the matrix

4)Models with adaptive basis functions, such as e.g. multilayer perceptrons, may at first
seem like a useful extension, but they are much harder to treat, except in the limit of an
infinite number of hidden units, see section 4.2.3.

ridge regression

predictive distribution

feature space

polynomial regression

linear in the parameters

P S

38 faiBBL

=

2FUE

12

Regression

explicit feature space
formulation

alternative formulation

computational load

kernel

kernel trick

®(X) be the aggregation of columns ¢(x) for all cases in the training set. Now
the model is ‘

fx) = ¢(x)"w, (2.10)

where the vector of parameters now has length N. The analysis for this model
is analogous to the standard linear model, except that everywhere ®(X) is
substituted for X. Thus the predictive distribution becomes

i, Xy = N(;12—¢<x*)TA—1¢y, ¢(x.) AT () (2.11)

with @ = ®(X) and A = 072927 + 3, To make predictions using this
equation we need to invert the A matrix of size N x N which may not be
convenient if N, the dimension of the feature space, is large. However, we can
rewrite the equation in the following way

fulxn X,y ~ N (o] 50K +02D)7y, (2.12)
OIS0, — ST 5, @(K +021) 12T 8p0,),

where we have used the shorthand ¢(x.) = ¢, and defined K = T,®.
To show this for the mean, first note that using the definitions of A and K
we have 0-20(K + 02I) = 0;,28(®7Z,® + 02I) = A%,®. Now multiplying
through by A~! from left and (K + 02I)”" from the right gives 0;2A7I® =
%,®(K +02I)~!, showing the equivalence of the mean expressions in eq. (2.11)
and eq. (2.12). For the variance we use the matrix inversion lemma, eq. (A.9),
setting Z~1 = %, Wl =0l and V =U = ® therein. In eq. (2.12) we
need to invert matrices of size n x n which is more convenient when n < N.
Geometrically, note that n datapoints can span at most n dimensions in the
feature space.

Notice that in eq. (2.12) the feature space always enters ‘m The form Ui
o7 2,®, qb;r £,®, or qb;r ,0,; thus the entries of these matrices are invariably of
the form ¢(x) " £p¢(x’) where x and %' are in either the training or the test sets.
Let us define k(x,x’) = ¢(x) T Zpp(x). For reasons that will become clear later
we call k(-,-) a covariance function or kernel. Notice that ¢(x) T Zp0(x’) is an
inner product (with respect to ¥,). As X is positive definite we can define Z,lg/ &
so that (Z:,/ %2 = 5; for example if the SVD (singular value decomposition)
of £, = UDUT, where D is diagonal, then one form for T5/% is UDY2UT.
Then defining ¥(x) = Z,l,/ %¢(x) we obtain a simple dot product representation
k(x,x') = ¢(x) - Y(x). :

If an algorithm is defined solely in terms of inner products in input space
then it can be lifted into feature space by replacing occurrences of those inner
products by k(x,x'); this is sometimes called the kernel trick. This technique is
particularly valuable in situations where it is more convenient to compute the
kernel than the feature vectors themselves. As we will see in the coming sections,
this often leads to considering the kernel as the object of primary interest, and
its corresponding feature space as having secondary practical importance.

2.2 Function-space View

13

2.2 Function-space View

An alternative and equivalent way of reaching identical results to the previous
section is possible by considering inference directly in function space. We use
a Qaussian process (GP) to describe a distribution over functions. Formally:

Definition 2.1 A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution. : O

A Gaussian process is completely specified by its mean function and co-
variance function. We define mean function m(x) and the covariance function
k(x,x') of a real process f(x) as

m(x) = E[f(x)];

tood) = Bl ~meGE) —mel,
and will write the Gaussian process as
F(x) ~ GP(m(x), k(x,x")). (2.14)

Usually, for notational simplicity we will take the mean function to be zero,
although this need not be done, see section 2.7.

In our case the random variables represent the value of the function f(x)
at location x. Often, Gaussian processes are defined over time, i.e. where the
index set of the random variables is time. This is not (normally) the case in
our use of GPs; here*the index set X' is the set of possible inputs, which could
be more general, e.g. RPD. For notational convenience we use the (arbitrary)
enumeration of the cases in the training set to identify the random variables
such that f; £ f(x;) is the random variable corresponding to the case (x;, Yi)
as would be expected.

A Gaussian process is defined as a collection of random variables. Thus, the
definition automatically implies a consistency requirement, which is also some-
times known as the marginalization property. This property simply means
that if the GP e.g. specifies (y1,72) ~ N(a, %), then it must also specify
y1 ~ N(u1,Z11) where Xy is the relevant submatrix of ¥, see eq. (A.6).
In other words, examination of a larger set of variables does not change the
distribution of the smaller set. Notice that the consistency requirement is au-
tomatically fulfilled if the covariance function specifies entries of the covariance
matrix.> The definition does not exclude Gaussian processes with finite index
sets (which would be simply Gaussian distributions), but these are not partic-
ularly interesting for our purposes.

5Note, however, that if you instead specified e.g. a function for the entries of the inverse
covariance matrix, then the marginalization property would no longer be fulfilled, and one
could not think of this as a consistent collection of random variables—this would not qualify
as a Gaussian process.

Gaussian process

covariance and
mean function

index set =
input domain

marginalization
property

finite index set

g 3 " a.x 3 = =

-8

s gogasy

A=8R

-5

§iiEsg

Regression

-

Bayesian linear model
is a Gaussian process

basis functions

smoothness

characteristic
length-scale

A simple example of a Gaussian process can be obtained from our Bayesian
linear regression model flx)= o(x)Tw with prior W ~ N(0,%,). We have for

the mean and covariance
E[f(x)] = ¢x) "EW] =0,
! T T ! 0 Vi (2‘15)
E[f(x)f(x)] = ¢(x) Efww ' |¢(x) = ¢(x) Tpd(x)-

Thus f(x) and f(x') are jointly Gaussian with zero mean and covariance given
by o(x) T Zpo(x)- Indeed, the function values f(x1),- - f(Fn) corresponding
to any number of input points n are jointly Gaussian, although if N < n then
this Gaussian is singular (as the joint covariance matrix will be of rank N).

In this chapter our running example of a covariance function will be the
squared ealcponential6 (SE) covariance function; other covariance functions are
discussed in chapter 4. The covariance function specifies the covariance between

pairs of random variables
cov (f(xp),f(xq)) = k(xp,%q) = €xp (- 3lxp — x5}

Note, that the covariance between the outputs is written as a function of the
inputs. For this particular covariance function, we see that the covariance is
almost unity between variables whose corresponding inputs are very close, and
decreases as their distance in the input space increases. ‘

It can be shown (see section 4.3.1) that the squared exponential covariance

function corresponds to a Bayesian linear regression model with an infinite
number of basis functions. Indeed for every positive definite covariance function
k(-,-), there exists a (possibly infinite) expansion in terms of basis functions
(see Mercer’s theorem in section 4.3). We can also obtain the SE covariance
function from the linear combination of an infinite number of Gaussian-shaped

basis functions, see eq. (4.13) and eq. (4.30).

The specification of the covariance function implies a distribution over func-
tions. To see this, we can draw samples from the distribution of functions evalu-
ated at any number of points; in detail, we choose a number of input points,7 X,
and write out the corresponding covariance matrix using eq. (2.16) elementwise.

Then we generate a random Gaussian vector with this covariance matrix
£, ~ N(0,K(Xx, X.)), (217)

function of the inputs. Figure 2.2(a) shows
on of multivariate Gaussian samples is de-

I

(2.16)

and plot the generated values as a
three such samples. The generati
scribed in section A.2.

In the example in Figure 2.2 the input values were equidistant, but this

need not be the case. Notice that “informally” the functions look smooth.

In fact the squared exponential covariance function is infinitely differentiable,

leading to the process being infinitely mean-square differentiable (see section
¢ length-scale,

4.1). We also see that the functions seem to have a characteristi

6Sometimes this covariance function is called the Radial Basis Function (RBF) or Gaussian;

here we prefer squared exponential.
TTechnically, these input points play th
asterisk; this will become clearer later when both trai

e role of test inputs and therefore carry a subscript
ning and test points are involved.

2.2 Function-space View

15

output, f(x)
output, f(x)

0 5 -5 0 5
input, X input, x

(a), prior (b), posterior

Figure 2.2: Panel (a) shows three functions drawn at random from a GP prior;
the dots indicate values of y actually generated; the two other functions have (less
correctly) been drawn as lines by joining a large number of evaluated points. Panel (b)
shows three random functions drawn from the posterior, i.e. the prior conditioned on
the five noise free observations indicated. In both plots the shaded area represents the
pointwise mean plus and minus two times the standard deviation for each input value
(corresponding to the 95% confidence region), for the prior and posterior respectively.

which informally can be thought of as roughly the distance you have to move in
input space before the function value can change significantly, see section 4.2.1.
For eq. (2.16) the characteristic length-scale is around one unit. By replacing
|xp —Xgq| by |%p—%,|/£ in €q. (2.16) for some positive constant £ we could change
the characteristic length-scale of the process. Also, the overall variance of the
random function can be controlled by a positive pre-factor before the exp in
eq. (2.16). We will discuss more about how such factors affect the predictions
in section 2.3, and say more about how to set such scale parameters in chapter
5.

Prediction with Noise-free Observations

We are usually not primarily interested in drawing random functions from the
prior, but want to incorporate the knowledge that the training data provides
about the function. Initially, we will consider the simple special case where the

observations are noise free, that is we know {(x;, fi)li = 1,... ,n}. The joint
distribution of the training outputs, f, and the test outputs f. according to the
prior is
f K(X,X) K(X, X.)
[f*] ~ N (0, [K(X*,X) Kix. %) |): (2.18)

If there are n training points and 7, test points then K(X, X,) denotes the
n X n, matrix of the covariances evaluated at all pairs of training and test
points, and similarly for the other entries K(X, X), K(X., Xx) and K(X,, X).
To get the posterior distribution over functions we need to restrict this joint
prior distribution to contain only those functions which agree with the observed
data points. Graphically in Figure 2.2 you may think of generating functions
from the prior, and rejecting the ones that disagree with the observations, al-

magnitude

joint prior

graphical rejection

————'

| O S~ > s e R R

FaganpuExw

FESES

Regression

I L RO NP e

noise-free predictive
distribution

predictive distribution

though this strategy would not be computationally very efficient. Fortunately,
in probabilistic terms this operation is extremely simple, corresponding to con-
ditioning the joint Gaussian prior distribution on the observations (see section

A.2 for further details) to give

£,X., X, f ~ N (KX, X)K(X, X)7'E,
» (2.19)
K(X., X.) — K(X., X)K (X, X) K. X0}

Function values £, (corresponding to test inputs X,) can be sampled from the
joint posterior distribution by evaluating the mean and covariance matrix from
eq. (2.19) and generating samples according t0 the method described in section
A2.

Figure 2.2(b) shows the results of these computations given the five data-
points marked with + symbols. Notice that it is trivial to extend these compu-
tations to multidimensional inputs —one simply needs to change the evaluation
of the covariance function in accordance with eq. (2.16), although the resulting
functions may be harder to display graphically.

Prediction using Noisy Observations

It is typical for more realistic modelling situations that we do not have access
to function values themselves, but only noisy versions thereof y = f(x) + i
Assuming additive independent identically distributed Gaussian noise € with
variance a%, the prior on the noisy observations becomes

cov(Yp: Yg) = k(xp,xq)+a§5pq or cov(y) = K(X,X)+U§I, (2.20)

where 0pq 1S 2 Kronecker delta which is one iff p = q and zero otherwise. It
follows from the independenceQ assumption about the noise, that a diagonal
matrix'© is added, in comparison to the noise free case, eq. (2.16). Introducing
the noise term in eq. (2.18) we can write the joint distribution of the observed
target values and the function values at the test locations under the prior &s

2]~ oo [MEREY KGR e

Deriving the conditional distribution corresponding to eq. (2.19) we arrive at*
the key predictive equations for Gaussian process regression ;

£ Xy, X, ~ N (£, cov(f,)), where (2.22)
£ 2 EfX.y,X] = K(X*,X)[K(X,X)+U§I]-1y, (2.23)
cov(fy) = K(Xy, X.) - K(Xs, X)E(X, X) + 021 K(X, X, (2:24)

8There are some situations where it is reasonable to assume that the observations are
noise-free, for example for computer simulations, see €.g. Sacks et al. [1989].

9More complicated noise models with non-trivial covariance structure can also be handled,
see section 9.2.

10Notice that the Kronecker delta is on the index of the cases, not the value of the input;
for the signal part of the covariance function the input value is the index set to the random
variables describing the function, for the noise part it is the identity of the point.

2.2 Function-space View

17

Observations Y1 @ Ye

S

Figure 2.3: Graphical model (chain graph) for a GP for regression. Squares rep-
resent observed variables and circles represent unknowns. The thick horizontal bar
represents a set of fully connected nodes. Note that an observation y; is conditionally
independent of all other nodes given the corresponding latent variable, f;. Because of
the marginalization property of GPs addition of further inputs, x, latent variables, f,
and unobserved targets, Y., does not change the distribution of any other variables.

Notice that we now have exact correspondence with the weight space view in
eq. (2.12) when identifying K(C, D) = ®(C)Tx,®(D), where C, D stand for ei-
ther X or X,. For any set of basis functions, we can compute the corresponding
covariance function as k(xp,Xq) = (xp) " Tpp(xg); conversely, for every (posi-
tive definite) covariance function k, there exists a (possibly infinite) expansion
in terms of basis functions, see section 4.3.

The expressions involving K (X, X), K(X, X.) and K (X, X.) etc. can look
rather unwieldy, so we now introduce a compact form of the notation setting
K = K(X,X) and K, = K(X,X,). In the case that there is only one test
point X, we write k(x.) = k. to denote the vector of covariances between the
test point and the n training points. Using this compact notation and for a
single test point x., equations 2.23 and 2.24 reduce to

f. = kI (K +02D)7y, (2.25)
V] = k(xax.) — ki (K +020) k. (2.26)

Let us examine the predictive distribution as given by equations 2.25 and 2.26.
Note first that the mean prediction eq. (2.25) is a linear combination of obser-
vations y; this is sometimes referred to as a linear predictor. Another way to
look at this equation is to see it as a linear combination of n kernel functions,
each one centered on a training point, by writing

I

flx.) = zn:aik(xiax*) (2:27)
i=1

where o = (K + 02I)~1y. The fact that the mean prediction for f(x.) can be
written as eq. (2.27) despite the fact that the GP can be represented in terms
of a (possibly infinite) number of basis functions is one manifestation of the
representer theorem; see section 6.2 for more on this point. We can understand
this result intuitively because although the GP defines a joint Gaussian dis-
tribution over all of the y variables, one for each point in the index set X, for

correspondence with
weight-space view

compact notation

predictive distribution

linear predictor

representer theorem

18

Regression

noisy predictions

joint predictions

posterior process

marginal likelihood

output, f(x)

post. covariance, cov(f(x),f(x"))

0 0
input, x input, x
(a), posterior (b), posterior covariance

Figure 2.4: Panel (a) is identical to Figure 2.2(b) showing three random functions
drawn from the posterior. Panel (b) shows the posterior co-variance between f(x) and
f(x') for the same data for three different values of x’. Note, that the covariance at
close points is high, falling to zero at the training points (where there is no variance,
since it is a noise-free process), then becomes negative, etc. This happens because if
the smooth function happens to be less than the mean on one side of the data point,
it tends to exceed the mean on the other side, causing a reversal of the sign of the
covariance at the data points. Note for contrast that the prior covariance is simply
of Gaussian shape and never negative.

making predictions at x, we only care about the (n+1)-dimensional distribution
defined by the n training points and the test point. As a Gaussian distribu-
tion is marginalized by just taking the relevant block of the joint covariance
matrix (see section A.2) it is clear that conditioning this (n+ 1)-dimensional
distribution on the observations gives us the desired result. A graphical madel
representation of a GP is given in Figure 2.3.

Note also that the variance in eq. (2.24) does not depend on the observed
targets, but only on the inputs; this is a property of the Gaussian distribution.
The variance is the difference between two terms: the first term K(X., X,) is
simply the prior covariance; from that is subtracted a (positive) term, repre-
senting the information the observations gives us about the function. We can
very simply compute the predictive distribution of test targets y. by adding
021 to the variance in the expression for cov(f,).

The predictive distribution for the GP model gives more than just pointwise
errorbars of the simplified eq. (2.26). Although not stated explicitly, eq. (2.24)
holds unchanged when X, denotes multiple test inputs; in this case the co-
variance of the test targets are computed (whose diagonal elements are the
pointwise variances). In fact, eq. (2.23) is the mean function and eq. (2.24) the
covariance function of the (Gaussian) posterior process; recall the definition
of Gaussian process from page 13. The posterior covariance in illustrated in
Figure 2.4(b). '

It will be useful (particularly for chapter 5) to introduce the marginal likeli-
hood (or evidence) p(y|X) at this point. The marginal likelihood is the integral

2.3 Varying the Hyperparameters

19

input: X (inputs), y (targets), k (covariance function), o2 (noise level),

x, (test input)
2: L := cholesky(K + o2I)

T
4 }} ';iT\CEL\Y) } predictive mean eq. (2.25)
y %f, [F]le’:(x i } predictive variance eq. (2.26)
log p(y|X) 1=v-%y—r0'- — Y ;log Li; — 5 log 21 eq. (2.30)

& return: f. (mean), V[f.] (variance), logp(y|X) (log marginal likelihood)

Algorithm 2.1: Predictions and log marginal likelihood for Gaussian process regres-
sion. The implementation addresses the matrix inversion required by eq. (2.25) and
(2.26) using Cholesky factorization, see section A.4. For multiple test cases lines
4-6 are repeated. The log determinant required in eq. (2.30) is computed from the
Cholesky factor (for large n it may not be possible to represent the determinant itself).
The computational complexity is n®/6 for the Cholesky decomposition in line 2, and
n? /2 for solving triangular systems in line 3 and (for each test case) in line 5.

of the likehhood times the prior

p(y|X) = j p(y|£, X)p(£1X) dF. (2.28)

The term marginal likelihood refers to the marginalization over the function
values f. Under the Gaussian process model the prior is Gaussian, f|X ~
N(0,K), or

logp(f|X) = —1fTK~'f — }log|K| — § log 2, (2.29)

and ¢he likelihood is a factorized Gaussian y|f ~ N(f, 021) so we can make use
of equations A.7 and A.8 to perform the integration yielding the log marginal
likelihood

logp(y|X) = —%yT(K + 020ty — 3 log|K + o2l - Zlog2m. (2.30)
This result can also be obtained directly by observing that y ~ N(0,K +02I).

A practical implementation of Gaussian process regression (GPR) is shown
in Algorithm 2.1. The algorithm uses Cholesky decomposition, instead of di-
rectly inverting the matrix, since it is faster and numerically more stable, see
section A.4. The algorithm returns the predictive mean and variance for noise
free test data—to compute the predictive distribution for noisy test data y.,
simply add the noise variance o2 to the predictive variance of f..

\
2.3 Varying the Hyperparameters

Typically the covariance functions that we use will have some free parameters.
For example, the squared-exponential covariance function in one dimension has
the following form

1
(zp — 34)%) + 020pq- (2.31)

ky(zp,Tq) = a?exp(— 5

20

Regression

hyperparameters

5 0 5 o5 0 5
input, x input, x

(b), £=0.3 (c), £=3

Figure 2.5: (a) Data is generated from a GP with hyperparameters (4, 08,0n) =
(1,1,0.1), as shown by the + symbols. Using Gaussian process prediction with these
hyperparameters we obtain a 95% confidence region for the underlying function f
(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this
time for hyperparameter values (0.3, 1.08,0.00005) and (3.0, 1.16, 0.89) respectively.

The covariance is denoted k, as it is for the noisy targets y rather than for the
underlying function f. Observe that the length-scale 4, the signal variance afc

and the noise variance o2 can be varied. In general we call the free parameters
hyperparameters.t!

In chapter 5 we will consider various methods for determining the hyperpa-
rameters from training data. However, in this section our aim is more simply to
explore the effects of varying the hyperparameters on GP prediction. Consider
the data shown by + signs in Figure 2.5(a). This was generated from a GP
with the SE kernel with (4,0¢,0,) = (1,1,0.1). The figure also shows the 2
standard-deviation error bars for the predictions obtained using these values of
the hyperparameters, as per eq. (2.24). Notice how the error bars get larger
for input values that are distant from any training points. Indeed if the x-axis

1We refer to the parameters of the covariance function as hyperparameters to emphasize
that they are parameters of a non-parametric model; in accordance with the weight-space

view, section 2.1, the parameters (weights) of the underlying parametric model have been
integrated out.

2.4 Decision Theory for Regression

21

were extended one would see the error bars reflect the prior standard deviation
of the process oy away from the data.

If we set the length-scale shorter so that £ = 0.3 and kept the other pa-
rameters the same, then generating from this process we would expect to see
plots like those in Figure 2.5(a) except that the x-axis should be rescaled by a
factor of 0.3; equivalently if the same x-axis was kept as in Figure 2.5(a) then
a sample function would look much more wiggly.

If we make predictions with a process with ¢ = 0.3 on the data generated
from the £ = 1 process then we obtain the result in Figure 2.5(b). The remaining
two parameters were set by optimizing the marginal likelihood, as explained in
chapter 5. In this case the noise parameter is reduced to ¢, = 0.00005 as the
greater flexibility of the “signal” means that the noise level can be reduced.
This can be observed at the two datapoints near r = 2.5 in the plots. In Figure
2.5(a) (£ = 1) these are essentially explained as a similar function value with
differing noise. However, in Figure 2.5(b) (£ = 0.3) the noise level is very low,
so these two points have to be explained by a sharp variation in the value of
the underlying function f. Notice also that the short length-scale means that
the error bars in Figure 2.5(b) grow rapidly away from the datapoints.

In contrast, we can set the length-scale longer, for example to £ = 3, as shown
in Figure 2.5(c). Again the remaining two parameters were set by optimizing the
marginal likelihood. In this case the noise level has been increased to o, = 0.89
and we see that the data is now explained by a slowly varying function with a
lot of noise.

Of course we can take the position of a quickly-varying signal with low noise,
or a slowly-varying'signal with high noise to extremes; the former would give rise
to a white-noise process model for the signal, while the latter would give rise to a
constant signal with added white noise. Under both these models the datapoints
produced should look like white noise. However, studying Figure 2.5(a) we see
that white noise is not a convincing model of the data, as the sequence of y’s does
not alternate sufficiently quickly but has correlations due to the variability of
the underlying function. Of course this is relatively easy to see in one dimension,
but methods such as the marginal likelihood discussed in chapter 5 generalize
to higher dimensions and allow us to score the various models. In this case the

marginal likelihood gives a clear preferepce for ({,0f,0,) = (1,1,0.1) over the .

other two alternatives.

2.4 Decision Theory for Regression

In the previous sections we have shown how to compute predictive distributions
for the outputs y. corresponding to the novel test input x,. The predictive dis-
tribution is Gaussian with mean and variance given by eq. (2.25) and eq. (2.26).
In practical applications, however, we are often forced to make a decision about
how to act, i.e. we need a point-like prediction which is optimal in some sense.
To this end we need a loss function, L(Yirues Yguess), Which specifies the loss (or

too short length-scale

too long length-scale

model comparison

optimal predictions
logs function

