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Feature Selection Using Probabilistic Prediction of
Support Vector Regression

Jian-Bo Yang and Chong-Jin Ong

Abstract—This brief presents a new wrapper-based feature
selection method for support vector regression (SVR) using its
probabilistic predictions. The method computes the importance of
a feature by aggregating the difference, over the feature space, of
the conditional density functions of the SVR prediction with and
without the feature. As the exact computation of this importance
measure is expensive, two approximations are proposed. The
effectiveness of the measure using these approximations, in
comparison to several other existing feature selection methods
for SVR, is evaluated on both artificial and real-world problems.
The result of the experiments show that the proposed method
generally performs better than, or at least as well as, the existing
methods, with notable advantage when the dataset is sparse.

Index Terms— Feature ranking, feature selection, probabilistic
predictions, random permutation, support vector regression.

I. INTRODUCTION

Feature selection plays an important role in pattern recog-
nition, data mining, and information retrieval and has been
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the subject of intense research in the past decade. Generally,
methods for feature selection can be classified into two cate-
gories: filter and wrapper methods [1], [2]. Wrapper methods
rely heavily on the specific structure of the underlying learning
algorithm, whereas filter methods are independent of it. Due
to its more involved nature, wrapper methods usually yield
better performance than filter methods but have a heavier
computational load.

With a few exceptions [3]-[6], most feature selection meth-
ods are developed for use in classification problems. One
possible reason for this is the ease of formulation of criteria for
feature selection by exploiting the discriminability of classes.
While some methods can be extended from classification to
regression applications [3], [7], others may not. Straightfor-
ward adaptation by discretizing (or binning) the target variable
into several classes is not always desirable, as substantial loss
of important ordinal information may result.

This brief proposes a new wrapper-based feature selection
method for support vector regression (SVR), motivated by our
earlier work on classification problem using support vector
machine (SVM) [8] and multilayer perceptron neural net-
works [9]. Under the probabilistic framework, the output of
a standard SVR can be interpreted as p(y|x), the conditional
density function of target y € R given input x € R? for a
given dataset. The proposed method relies on the sensitivity
of p(y|x) with respect to a given feature as a measure of
importance of this feature. More exactly, the importance score
of a feature is the aggregation over the feature space of the
difference of p(y|x) with and without the feature. The exact
computation of the proposed method is expensive, so two
approximations are proposed. Each of the approximations,
embedded in an overall feature selection scheme, is tested on
various artificial and real-world datasets and compared with
several other existing feature selection methods. Experimental
results show that the proposed method performs generally
better than, if not at least as well as, other methods in almost
all experiments.

This brief is organized as follows. Section II reviews
the formulation of probabilistic SVR and other relevant
information. Details of the proposed feature ranking criterion
and two approximations are presented in Section III. Section
IV shows the overall feature selection scheme. Results of
numerical experiments of the proposed method, benchmarked
against other methods, are reported in Section V. Section VI
concludes this brief.

II. REVIEW OF PAST WORKS

Standard SVR [10] obtains the regressor function f(x) :=
@'¢(x)+b for a dataset D := {(x;, y;) : i € Ip} with x; € R?
and y € R by solving the following primal problem (PP) over
w, b, & &

1
e, 300+ Cierp (G +&) (D
st. yi—p(x))—b <e+¢& Vielp 2)
W' (i) +b—y <e+& Vielp. 3)
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The function ¢ : R? — H maps x into a high-dimensional
Hilbert space H, and w € H, b € R are variables that
define f(x) with &, &' being the nonnegative slack variables
needed to enforce constraints (2) and (3). The regularization
parameter, i.e., C > 0, trades offs the size of @ and the
amount of slack, s while the parameter ¢ > 0 specifies the
allowable deviation of the f(x;) from y;. In practice, PP is
often solved through its dual problem (DP)

1

1(223«( —3 Z Z (ai —a;“) (aj — a;f) K (xi,xj)
i€elp jelp
—eZ(ai—i—a;")—}—Zyi(ai—a?‘) (4a)
i€lp i€lp
> (wi—-af)=0,0<0<C 0<0af<C,ielp
i€lp
(4b)

where a; and a are the respective Lagrange multipliers of
(2) and 3), @ = > ;7 (@i — af)p(xi), and K(x;,x;) =
@(xi) ¢(x;). Using these expressions, the regressor function
is known to be

f@)=0¢p@)+b= D (ai—af)K(xi,x)+b. (5
ielp

Expression (5) provides an estimate f(x) for output y for
any x but provides no information on the confidence level of
this estimate. Recognizing this shortcoming, several attempts
to incorporate probabilistic values to SVR output has been
reported in the literature. Following the approach of Bayesian
framework for neural network [11], Law and Kwok [12]
proposed a Bayesian SVR (BSVR) formulation incorporating
probabilistic information. Gao et al. [13] improved upon
BSVR by deriving the evidence and error bar approximation.
Chu et al. [14] proposed the use of a unified loss function over
the standard e-insensitive loss function and provided better
accuracy in evidence evaluation and inferences. Lin and Weng
[15] follow the neural network [16] approach by assuming
that a deterministic regressor model exists and the SVR is an
attempt to represent this model. In this setting, the output y is
modeled as the SVR regressor function with an additive noise
in the form of

y=f@)+¢ (6)
where ¢ belongs to the Laplace or the Gaussian distributions.
It is then possible to assume that the SVR output corresponds
to the conditional density function of p(y|x). With (6), this
means that density functions of y for a given x are

Pt (lx; o) =%exp(—|y+f(x)|) 7

_ 2
exp(—i(y 2{: ;x))) (8)

for the Laplace and Gaussian cases, respectively. Like the
neural network approach, the intention is to obtain estimates
of ¢ of (7) and (8) from D. If p(x,y) is the joint density
function of x and y, the likelihood function, as a function of
o, of observing D is given by

1
G
X;0) = ——
POl ) V2mo

L (o) =ezp p (xi, yi) = Hiezp p (ilxi; o) p (x:)
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under the assumption of independent and identically distrib-
uted samples. By further assuming that p(x) is independent
of o, the expressions of o can be obtained by maximizing the
logarithm function of L(o) [16]. These expressions are

%, lyi — f (xi) |

L _ telp

= IZp| ®
> i = f(x)?

(0-6)2 _ i€Tp (10)
IZp]

for the Laplace and Gaussian distributions, respectively. It has

been shown [15] that this approach is competitive in terms

of performance to the BSVR methods. In view of this, the

proposed feature selection method uses this approach and

relies on (7) and (8) for its computation.

III. PROPOSED FEATURE SELECTION CRITERION FOR
REGRESSION

The proposed method of selection of feature importance
relies on measures of the difference between two density
functions. Our choice of this measure is the well-known
Kullback-Leibler divergence (KL divergence) Dk (+; ). The
use of KL divergence has appeared in the past (for example
[17], [18] and reference therein) as a filter feature selection
method. Typically, these methods look for the feature that
maximizes the KL distance between p(x/) (or p(y|x/)) and
p(y) although other variations exist. Unlike theirs, we use
this to measure the difference of two density functions in a
wrapper method for the SVR problem. Given two distributions

p(y) and g(y)

()
DKL(p(y);q(y))=/p(y)10g dy. (11)
q ()
From its definition, it is easy to verify that

Dkr(p(y); q(y)) =0 for any p(y) and q(y), Dkr(p(y);

q(y)) = 0 if and only if p(y) = ¢(y) and Dk r(p(y); ¢(¥))
is not symmetrical with respect to its arguments. The last

property is a result of treating p(y) as the reference
distribution.

In the case of SVR, the density function p(y|x) at any x is
assumed to be (7) or (8) with f(-) being the solution obtained
from (5). Given x € RY, x_j € R4~ can be obtained by
removing the jth feature from x or, equivalently, x ; = Z;lx
where Z9 is the (d — 1) x d matrix obtained by removing
the jth row of the d x d identity matrix. With this, the
difference of the two density functions p(y|x) and p(y|x_;)
at a particular x (and hence x_;) is Dgr(p(y|x); p(y|x—j)).
The proposed feature importance measure is an aggregation
of Dgr(p(ylx); p(ylx—;)) over all x in the x space. More
exactly, the measure is

Sp (j) = / Dir (p (l0): p (vx—j) p ) dx.  (12)

The motivation for defining Sp is simple: the greater
the Dk divergence between p(y|lx) and p(ylx_;) over
the x space, the greater the importance of the jth feature.
For convenience, (12) is termed the sensitivity of density
functions or SD.
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In (12), p(y|x) is either (7) or (8) with f(-) of (5) trained
on D. Similarly, p(ylx_;) is obtained from the SVR output
function trained using the derived dataset D_; = {(x_; ;, yi) :
i € Ip}, where x_j; € R4~ is the ith sample of the derived
vector x_;. Thus, evaluations of Sp(j), j =1,...,d require
the training of SVR d times, each with D_; for a different j.
Clearly, this process is computationally expensive. Following
[8], a random permutation (RP) or scrambling process [19] is
used to approximate p(y|x_;) such that the retraining of SVR
is avoided. The basic idea of the RP process is to scramble the
values of the jth feature in D while keeping the values of all
other features unchanged. Specifically, let xi] be the value of
the j feature of sample i and {#1, ..., #,} be a set of numbers
drawn from a discrete uniform distribution in the interval from
1 to n. Then, for each i starting from 1 to n, swap the values
of x] and xj,.

Let x(j) € R? be the sample derived from x after the RP
process on the jth feature and let p(y|x(;)) be the conditional
density function of y given x(;).

Theorem 1:

p(lxgy) = p (vlx—j). (13)

The proof of this theorem is given in [8]. The theorem
is stated for the case where the exact p(y|x), p(y|x(;)) and
p(y|x—;) are known. In the case where they are approximated
from a dataset, the equality of (13) becomes an approximation.
Nevertheless, our experiment shows that the approximation is
very good, even when the data is sparse.

The utility of Theorem 1 is clear. The density function
p(ylx_j) of (12) can be replaced by p(y|x(;)). Such a
replacement brings about significant computational advantage.
By assuming that p(y|x(j)) can be evaluated from (7) or (8)
using f(x(;)) obtained from the SVR training using D (since
x and x(jy are both d-dimensional), this avoids the expensive
d-time retraining of SVR on D_;. Correspondingly, (12) can
be equivalently stated as

&xnz/imL@uuxp@um»pqu (14)

Fig. 1 shows a plot of p(y;|x;) and p(yi|xj),;) at one choice
of x; for a typical SVR problem with d = 1. To compute the
Sp, further approximation of (14) is needed, resulting in

Sp (j) = |I—1| Z Dk (p Gilxi); p (vilxgy.i)) . (15)
D ielp
When p(y|x) and p(ylx(j) are Laplace functions or
Gaussian functions, explicit expressions of Sp( Jj) exist. Using
(7), the KL divergence for the case of Laplace function can
be shown to be

= 1110-(—?)—1+iexp(—|f(x)_f(x(j))|)

ot o) ot
L@ —Lf (x)) | 16)
%3
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Fig. 1. Demonstration of the proposed feature ranking criterion with d = 1.
Dots indicate locations of y;.

for a given x where o’ is given by (9) and O'(I}) is obtained

from (9) by replacing f(x) with f(x(;)). Using (16) in (15)
and removing associated constants yield

S e e O N
U= 1) iEZID [(’(Ln exp( ot

MLCON f (i) | +1n“(_2)}
g

(17)
L
%)
Following the same development for the case when p(y|x)
is Gaussian, the expressions are:

G
o
Dk1 (pG (ylx; oG) : p°© (ylxu): 05))) =1In %
i 2+ f (56)’ + (69’ —2f @) £ () L
2 2
2 (08))
(18)
50 (1 (f o) = £ (x.0)°
5= 570 )2
i€elp (O-(j))
G \? G
+(35)-+mnig (19)
) ?

where the expression of (18) is given by [20].

In summary, S’D(j) can be computed for all j =1,...,d,
after a one-time training of SVR, one-time evaluation of ol
(or 6 9), d-time RP process, d-time evaluation of a(’}.) (or a((j;.)),
and d-time evaluation of Dgy.

Remark 1: The kernel matrix is different for each of the
d-time evaluation of a(Lj) (or ag)) and this incurs additional
computations. Such computations can be kept low using
update formulae. Suppose x,,x; and X(j), X(j),q are two
samples before and after the RP process is applied to feature
J. It is easy to show that K (x(jy,r, X(j),q) = KX, x4) +
x(]j),r*x(]j),q —x} *xé for 1inear kerpel and K()C(j)’r, X(j).q) =
K (xr,xq) * explx (xi — x{,)2 — K(x(]j)jr - x(jj)’q)z] with kernel
parameter x for Gaussian kernel.
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IV. FEATURE SELECTION SCHEME

The proposed 3113 and S‘g can be used in two ways. The
most obvious is when it is used once to yield a ranking list
of all features based on a one-time training of SVR on D.
It can also be used for more extensive ranking schemes like
the recursive feature elimination (RFE) scheme. Basically, the
RFE approach works in iterations. In each iteration, a ranking
of all remaining features is obtained using some appropriate
measures (S‘g, S'g or others). The least important feature,
as determined by the measure, is then removed from further
consideration. This procedure stops after n—r iterations to
yield the top r features. Accordingly, the overall scheme
with respect to measure 5113 (S’g) is referred to as SD-L-
RFE (SD-G-RFE). Inputs to scheme SD-L-RFE are D and
I' ={1,...,d}, while the output is*a rankeg list of fegtures
in the form of an index set T'" = {y,, ..., 7.} where yj' el
for each j = 1,...,d in decreasing order of importance.

Following Theorem 1, the associated computational costs of
the SD-L-RFE (SD-G-RFE) scheme is the training of SVR at
each iteration and the evaluations of S‘g (j)(S‘g (j)) using (18)
(16) for each j of the remaining features in that iteration. This
is the case of the proposed scheme. In the next section where
other benchmark methods are discussed, the retraining of
SVR at each iteration and within the iteration may be needed
for the ranking of features because of the inapplicability of
Theorem 1.

V. EXPERIMENT

This section presents the result of a numerical experiment
of SD-L-RFE, SD-G-RFE, and the following five existing
benchmark methods on artificial and real-world data sets.

1) Mutual information (MI) method [18]: It measures the
importance of a feature by considering both the MI
between this feature and target and the MI between this
feature and the selected ones.

Dependence maximization method [4]: It uses cross-
covariance in the kernel space, known as the Hilbert—
Schmidt norm of cross-covariance operator (HSIC) [21],
as a dependence measure between feature variables and
target variable. The importance of a feature is measured
by its sensitivity to this dependence measure. This
method is used because of its relative good performances
despite its known limitations [22].

SVM-RFE method (A||a)||2) [3], [5]: It measures the
importance of a feature by the sensitivity of the cost
function (1) with and without this feature.

SVR radius-margin bound method (RMB) [5]: It mea-
sures the importance of a feature by its sensitivity w.r.t.
SVR RMB.

SVR span bound method (SpanB) [5]: It measures the
importance of a feature by its sensitivity w.r.t. SVR
SpanB bound.

2)

3)

4)

5)

The first two benchmark methods are filter methods, while
the last three are wrapper methods. All methods, except the
MI method, use the same RFE scheme described in Section IV
for ranking the features, and hence they are referred to as
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mRMR, HSIC-RFE, A|w|?-RFE, RMB-RFE, and SpanB-
RFE, respectively.

Note that the retraining of SVR within each RFE iteration is
not needed for Allw||2-RFE. However, in the implementation
of RMB-RFE and SpanB-RFE by [5], retraining is used within
each iteration of the RFE scheme. Obviously, this is much
more expensive than the proposed method since the result of
Theorem 1 is not applicable to them. Our experiments include
both cases: RMB-RFE and SpanB-RFE when retraining is not
used and RMB-RFE* and SpanB-RFE* when it is.

For each experiment dataset, the result is reported over 30
realizations, which are created by random (stratified) sampling
of the set D into subsets Dy, and D;g. As usual, Dy, is
used for SVR training, hyper-parameter tuning, and feature
ranking, while D,y is used for unbiased evaluation of the
feature selection performance. For each realization, D;,, is
normalized to zero mean and unit standard deviation, and its
normalization parameters are then used to normalize D;g;. The
kernel function used for all problems is the Gaussian kernel.
In each experiment, all hyperparameters (C, x, €) are chosen
by a fivefold cross validation on the first five realizations
of D;rp, and the hyperparameter corresponding to the low-
est average cross-validation error among five realizations is
chosen. The grid over the (C,x, €) is [272,271,...,2°] x
276,275, ...,221 x 275,274, ..., 22].

Two well-known regression performance measures, i.e.,
mean squared error (MSE) and squared correlation coefficient
(SCC), are used to evaluate the performance. They are given by

Distl (o 2
MSE o 2imt (i = ¥1)
|Dtst|

A A~ 2
(IDest| 3, Sivi — X 90 > vi)

SCC :=

(1Dese |22 97 = 2239i 20 50) (1Pest v = X3 2 vi)
where y; and y;, for i € {1,...,|D;sl|}, are the true and
predicted target values, respectively.

Statistical paired ¢-test using MSE and SCC are conducted
for all problems. Specifically, paired ¢-test between SD-L-RFE
and each of the other methods is conducted using different
numbers of top ranked features. Herein, the null hypothesis
is that the mean MSE or SCC of the two tested methods is
the same against the alternate hypothesis that they are not.
The chance that this null hypothesis is true is measured by
the returned p-value and the significance level is set at 0.05
for all experiments. The symbols “+4” and “—” are used to
indicate the win or loss situation of SD-L-RFE over the other
tested method.

In all experiments, the numerical algorithm for training of
SVR is implemented by the LIBSVM package [23], where
sequential minimal optimization method is used to solve the
DP (4).

A. Artificial Problems

In this subsection, three artificial regression problems are
used to evaluate the performance of every feature selection
method. The first two problems were used in [24] and the last
one is new. Each problem has 10 variables x', ..., x10 and
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Fig. 2. Average MSE (left-hand side) and average SCC (right-hand side) against top-ranked features over 30 realizations for the exponential function problem

with six different settings.

TABLE I
NUMBER OF REALIZATIONS THAT RELEVANT FEATURE IS
SUCCESSFULLY RANKED IN THE TOP POSITIONS OVER 30 REALIZATIONS
FOR THREE ARTIFICIAL PROBLEMS. THE BEST PERFORMANCE FOR EACH
|Dtrp| IS HIGHLIGHTED IN SHOWN IN BOLD

Method\[Dyrn| 200 100 70 50

SD-L-RFE 30 27 21 19
SD-G-RFE 30 28 23 19
mRMR 19 7 10
HSIC-RFE 4 5 5 3
Additive Allw||>-RFE 4 5 11 4
RMB-RFE 0 0 0 0
SpanB-RFE 0 1 0 0
RMB-RFE* 30 25 22 9
SpanB-RFE* 30 2320 9
Method\|D;;,| 200 100 70 50
SD-L-RFE 30 30 29 12
SD-G-RFE 30 30 30 11
mRMR 9 2 0 0
HSIC-RFE 7 9 8 6
Interactive Allw||*-RFE 0 14 9 10
RMB-RFE 0 0 0 0
SpanB-RFE 0 0 0 0
RMB-RFE* 30 30 30 20
SpanB-RFE* 30 30 30 16
Method\|Dsrn| 100 70 50 40
SD-L-RFE 30 30 30 30
SD-G-RFE 30 30 29 28
mRMR 18 2 0 0
HSIC-RFE 30 29 28 22
Exponential A ||o||2-RFE 30 30 28 28
RMB-RFE 0 0 0 0
SpanB-RFE 0 1 0 1
RMB-RFE* 4 5 29 27

SpanB-RFE* 28 28 30 29

the target variable y depends on some of the features as given
in their underlying functions:

1) additive function problem

4
1 +exp (=20 (x2 —0.5))
+3x03 + 2+ X0 + 0;

y = 0.lexp (4x1) +

2) interactive function problem

y = 10sin (nxlxz) +20 (x3 — 0.5) +10x* + 550 + 0;

TABLE 11
DESCRIPTION OF REAL-WORLD DATASETS. | Dsynl, |Drstl, d, C, x,
AND € REFER TO THE NUMBER OF TRAINING SAMPLES, NUMBER OF
TEST SAMPLES, NUMBER OF FEATURES, AND SVR HYPERPARAMETERS
C, k, AND €, RESPECTIVELY

Datasets |Dtynl | Dyt | d C K €
Mpg 353 39 7 26 2% 2
Abalone 1254 2923 8 26 275 2
Cpusmall 820 7372 12 26 275 2
Housing 456 50 13 206 274 2
Bodyfat 227 25 14 272 276 25
Triazines 168 18 60 271 276 -3

3) exponential function problem
y = 10exp (—(@)? + (2?) + 5

where x/, V j=1,...,10 is uniformly distributed within the
range [0, 1] for the first two problems and [-1, 1] for the
last. Gaussian noise d ~ N(0, 0.1) for the first two problems,
while 6 ~ N(0, 0.2) for the last.

Each artificial problem has 2000 samples. They are ran-
domly split into Dy, and Dsy; in the ratio of |Dypp|:|Drist| =
1:9. To investigate the effect of sparseness of the training
set, decreasing sizes of |D;,,| are also used while |D;g| is
maintained at 1800.

Table I presents the number of realizations (out of 30
realizations) that relevant feature are successfully ranked as the
top features by the various methods for the different settings of
|Dyrn |- The best performance in each setting is highlighted in
bold. From this table, the advantage of the proposed methods is
clear. They generally performs as least as well as, if not better
than, all other benchmark methods except when Dy, | = 50 in
the interactive problem. For benchmark methods RMB-RFE*
and SpanB-RFE*, the proposed methods yield comparable
performance. It is also evident that, as the size of |Dy,|
decreases, the performance of proposed methods generally
degrades less than that of benchmark methods. In fact, SD-
L-RFE correctly ranks the important features in the top two
positions for all settings for the exponential function problem.

Fig. 2 shows the average MSE and SCC against top-ranked
features over 30 realizations on D;g; for the exponential prob-
lem. Methods RMB-RFE and Span-RFE are not shown since
they completely fail as shown in Table I. From this figure, the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 25,2020 at 15:31:34 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 22, NO. 6, JUNE 2011

TABLE III
t-TEST ON REAL-WORLD DATASET. p-VALUES LESS THAN 0.05 ARE HIGHLIGHTED IN BOLD. N IS THE NUMBER OF TOP RANKED FEATURES
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SD-L- SD-G- mRMR HSIC- Alo|?- RMB- SpanB- RMB- SpanB-
RFE RFE RFE RFE RFE RFE RFE* RFE*
Dataset N Mean Mean p— Mean p— Mean p— Mean p— Mean p— Mean p— Mean p— Mean p—
value value  value value value value value value value value value value value value value value value
MSE measure
1 16.47 1647 1.00 16.86 0.75 2245 0.00+ 1647 1.00 2245 0.00+ 31.79 0.004+ 2221 0.00+ 1697 0.69
2 7.71 7.71 .00 1632  0.00+ 18.06 0.00+ 7.71 1.00  17.77 0.00+ 18.35 0.004+ 17.75 0.00+ 859 0.25
3 6.76 6.76 1.00 1551  0.00+ 15.67 0.00+ 7.54 022 1739 0.00+ 1629 0.00+ 1731 0.00+ 7.69 0.15
mpg 4 6.81 6.81 1.00 1346 0.00+ 13.46 0.00+ 6.88 091 1571 0.00+ 1430 0.00+ 1596 0.00+ 7.30 0.41
5 6.82 6.82 1.00  11.84 0.00+ 979 0.00+ 6.71 086 13.62 0.00+ 13.51 0.00+ 13.96 0.00+ 6.65 0.78
6 6.68 6.70 098 6.68 1.00 644 0.67 6.63 092 11.16 000+ 8.62 0.04+ 11.17 0.00+ 6.50 0.63
7 6.20 6.20 1.00 620 1.00 620 100 620 1.00 620 100 620 1.00 620 100 620 1.00
1 6.73 6.67 0.63 6.10 0.00— 6.15 0.00— 627 000— 7.15 000+ 697 0.01+ 7.12 0.00+ 6.18 0.00—
2 4.95 4.95 095 6.02 0.00+ 590 000+ 497 051 637 000+ 682 0.00+ 6.67 000+ 495 092
3 4.74 4.74 .00 539 0.00+ 562 000+ 480 005 516 0.00+ 629 0.00+ 596 0.00+ 4.87 0.00+
abalone 4 4.69 4.69 099 539 0.00+ 541 000+ 472 042 483 000+ 587 0.00+ 573 0.00+ 479 0.00+
5 4.67 4.67 095 534 0.00+ 529 000+ 4066 088 473 0.17 529 0.00+ 528 000+ 476 0.01+
6 4.64 4.64 087 521 0.00+ 528 000+ 463 067 471 0.16 489 0.00+ 488 000+ 470 0.06
7 4.62 4.62 098 459 032 490 000+ 460 062 463 078 471 007 463 079 467 0.12
8 4.57 4.57 1.00  4.58 1.00 457 1.00 457 100 458 100 458 100 458 1.00 458 1.00
2 4039  64.81  0.00+ 297.51 0.004+ 293.6 0.00+ 7545 0.004+ 276.56 0.00+ 141.00 0.004+ 295.11 0.00+ 291.26 0.00+
4 18.99 1933 0.55 279.65 0.00+ 8244 0.004+ 60.09 0.00+ 24223 0.004+ 32.66 0.15 222.18 0.00+ 247.39 0.00+
6 19.20 1922 097 116.14 0.00+ 28.57 032 3989 0.00+ 167.24 0.004+ 16.60 0.05 112.87 0.00+ 206.61 0.00+
cpusmall 8 20.66 2128 032 19.69 0.07 2049 0.78 2936 0.00+ 1996 0.25 1754 0.06 7851 0.00+ 124.44 0.00+
10 21.64 2252 024 2068 0.15 2249 0.28 25.61 0.00+ 20.81 025 19.67 0.07 5555 0.00+ 59.30 0.00+
12 2378 2378 1.00 2378 1.00 2378 1.00 2378 1.00 2378 1.00 2378 1.00 2378 1.00 23.78 1.00
2 19.00 19.00 1.00 29.36 0.004+ 19.00 1.00 28.99 0.004+ 64.09 0.00+ 62.60 0.00+ 46.80 0.00+ 19.00 1.00
4 16.00 1594 098 2546 0.00+ 1486 060 1519 0.71 3898 0.00+ 56.52 0.00+ 2322 0.01+ 1397 0.35
13.74 1359 094 1628 026 1390 094 13.69 098 2896 0.00+ 5093 0.00+ 1833 0.03+ 12.63 0.54
housing 8 11.47 1246 054 1524 0.06 11.54 096 12.02 0.74 24.63 0.004+ 4399 0.00+ 11.38 095 11.34 0.93
10 9.57 10.76 040 1132 0.18 1049 050 11.08 0.28 1225 0.07 3794 0.00+ 11.71 0.15 11.60 0.18
12 10.12 10.12 1.00 945 0.62 951 065 1036 0.87 10.81 0.63 17.83 0.00+ 10.81 0.65 10.69 0.70
13 1048 1048 1.00 1048 1.00 1048 1.00 1048 1.00 1048 1.00 1048 1.00 1048 1.00 10.48 1.00
0.00022 0.00022 0.91 0.00017 0.00— 0.00022 0.91  0.00022 0.91  0.00021 0.51  0.00026 0.08  0.00032 0.00+ 0.00018 0.00—
4 0.00018 0.00018 0.93 0.00016 0.07  0.000250.00+ 0.00017 0.19  0.00021 0.11  0.00023 0.02+ 0.00020 0.28  0.00022 0.04+
0.00021 0.00021 1.00 0.00019 0.08  0.00026 0.00+ 0.00020 0.29  0.00021 0.88  0.00021 0.16 ~ 0.00019 0.12  0.00024 0.06
bodyfat 8  0.00020 0.00020 0.97 0.00023 0.04 0.00026 0.05  0.00020 0.95  0.00022 0.31  0.00023 0.09  0.00019 0.54  0.00025 0.00+
10 0.00020 0.00020 0.99 0.00023 0.05 0.00025 0.05  0.00020 0.95  0.00022 0.14  0.00023 0.12  0.00019 0.78  0.00024 0.01+
12 0.00021 0.00021 1.00 0.00023 0.16  0.00025 0.05  0.00020 0.66  0.00023 0.27  0.00022 0.48  0.00020 0.59  0.00023 0.19
14 0.00021 0.00021 1.00 0.00021 1.00 0.00021 1.00  0.00021 1.00  0.00021 1.00  0.00021 1.00 ~ 0.00021 1.00  0.00021 1.00
1 0.020  0.020 1.00 0.020 095 0021 095 0.021 069 0021 0.65 0.021 065 0.021 0.65 0.021 0.85
10 0.018 0017 092 0017 084 0.019 063 0018 080 0.020 025 0021 0.18 0.020 020 0.018 0.89
20 0.017 0017 098 0.018 0.75 0.017 089 0017 0.87 0.020 0.15 0021 0.11 0.020 0.14 0017 0.93
triazines 30  0.017  0.018 0.83 0.018 0.63 0.017 094 0017 095 0.019 030 0.020 0.17 0.020 023 0.018 097
40 0.018 0.018 094 0018 098 0018 0.75 0.017 085 0018 0.83 0.019 043 0019 046 0.018 094
50 0.018 0018 099 0.018 091 0.020 052 0018 093 0.018 093 0019 073 0.019 072 0.018 0.96
60 0.018 0018 1.00 0.018 1.00 0.018 100 0018 1.00 0.018 100 0018 1.00 0.018 100 0.018 1.00
(Continued.)
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TABLE 1II (Continued.)

SD-L- SD-G- MRMR HSIC- Allo|?- RMB- SpanB- RMB- SpanB-

RFE RFE RFE RFE RFE RFE RFE* RFE*
Dataset N Mean Mean p— Mean p— Mean p— Mean p— Mean p— Mean p— Mean p— Mean p—
value value value value value value value value value value value value value value value value value

SCC measure

1 0.73 073 1.00 072 075 0.63 000+ 073 1.00 063 0.00+ 048 0.00+ 0.63 0.00+ 0.72 0.69
2 0.87 087 1.00 0.73 0.00+ 0.70 0.00+ 087 1.00 070 0.00+ 0.69 0.004+ 0.71 0.00+ 086 0.25
3 0.89 089 1.00 0.74 0.004+ 0.74 0.00+ 088 022 071 0.00+ 0.73 0.00+ 0.71 0.00+ 087 0.15
mpg 4 0.89 089 1.00 0.78 0.00+ 0.78 0.00+ 089 091 074 0.00+ 0.76 0.00+ 0.74 0.00+ 0.88 041
5 0.89 089 1.00 0.81 0.00+ 0.84 0.00+ 089 0.86 078 0.00+ 0.78 0.00+ 0.86 0.00+ 089 0.78
6 0.89 089 098 0.89 1.00 090 067 08 092 082 0.00+ 0.86 0.04+ 0.82 0.00+ 09 0.63
7 0.90 089 1.00 090 1.00 0.8 100 089 100 09 1.00 090 1.00 090 100 09 1.00
1 0.36 036 063 042 0.00— 041 0.00— 040 0.00— 032 000+ 033 001+ 032 000+ 041 0.00—
2 0.53 053 095 042 0.00+ 044 0.00+ 053 051 039 000+ 035 000+ 036 0.00+ 053 092
3 0.55 055 1.00 049 0.00+ 046 0.00+ 054 005 051 000+ 040 000+ 043 0.00+ 054 0.00+
abalone 4 0.55 055 099 049 0.00+ 048 0.00+ 055 042 054 002+ 044 0.00+ 045 0.00+ 0.54 0.00+
5 0.55 056 095 049 0.00+ 050 0.00+ 056 0.88 055 017 050 0.00+ 0.50 0.00+ 0.55 0.01+
6 0.56 056 087 050 0.00+ 0.50 0.00+ 056 0.67 055 0.16 053 0.00+ 0.54 0.00+ 0.55 0.06
7 0.56 056 098 056 032 053 000+ 056 062 056 078 055 007 056 078 053 0.12
8 0.56 056 1.00 056 1.00 056 100 056 100 056 1.00 056 1.00 056 100 056 1.00
2 0.89 082  0.00+ 0.16 0.004+ 0.17 0.00+ 0.79 0.00+ 022 0.00+ 0.60 0.00+ 0.17 0.00+ 0.17 0.00+
4 0.95 095 055 021 0.00+ 0.77 0.00+ 083 000+ 031 000+ 091 015 037 0.00+ 029 0.00+
6 0.95 095 097 067 0.00+ 092 032 089 000+ 052 000+ 095 005 0.68 0.00+ 041 0.00+
cpusmall 8 0.94 094 032 094 007 094 078 092 000+ 094 025 095 006 078 0.00+ 065 0.00+
10 0.94 094 024 094 015 094 028 093 000+ 094 025 094 007 084 000+ 084 0.00+
12 0.93 093 1.00 093 1.00 093 100 093 100 093 1.00 093 1.00 093 100 093 1.00
2 0.77 077 1.00 0.65 0.004+ 0.77 1.00 0.65 0.004+ 023 0.00+ 025 0.00+ 045 0.004+ 0.77 1.00
4 0.80 080 098 070 0.004+ 0.82 0.60 081 0.71 054 0.00+ 034 0.00+ 0.73 0.01+ 083 0.35
6 0.83 083 094 080 026 083 094 083 098 066 000+ 041 0.00+ 0.79 0.03+ 0.84 054
housing 8 0.86 08 054 08 006 08 09 08 074 071 0.00+ 049 0.00+ 086 095 086 0.93
10 0.88 087 040 086 018 087 050 08 028 08 007 056 0.00+ 086 0.15 086 0.18
12 0.88 088 1.00 0.8 062 0.88 065 087 0.87 08 063 079 0.00+ 0.87 064 086 0.70
13 0.87 087 1.00 087 1.00 0.87 100 087 100 087 1.00 087 100 0.87 100 087 1.00
2 0.89 089 091 095 0.00— 0.89 091 089 091 052 051 038 008 0.18 0.00+ 0.79 0.00+
4 0.84 084 093 092 007 083 000+ 08 019 073 011 046 0.024+ 058 028 0.75 0.04+
6 0.79 079 1.00 0.84 008 0.80 0.00+ 081 029 079 088 047 016 080 0.12 075 0.06
bodyfat 8 0.80 080 097 079 005 079 005 078 095 079 031 048 009 078 054 073 0.00+
10 0.75 075 099 076 005 077 005 076 095 078 014 053 012 076 078 0.73 0.01+
12 0.74 074 100 073 016 076 005 075 0.66 076 027 057 048 075 059 075 0.19
14 0.73 073 100 073 100 073 100 073 100 073 100 073 100 073 100 073 1.00
1 0.12 0.12 1.00 0.08 095 0.08 095 007 0.69 0.094 065 0.11 08 0094 065 011 0.85
10 0.26 027 092 025 084 019 063 022 080 011 025 o0.11 018 012 020 026 0.89
20 0.28 029 098 022 075 026 0.8 028 087 012 015 0.12 011 0.14 0.14 030 093
triazines 30 0.29 026 083 020 062 026 094 029 095 018 030 0.14 017 017 023 028 097
40 0.26 026 094 026 098 022 075 027 08 025 083 017 043 0.17 046 027 094
50 0.25 025 099 026 09 0.17 052 026 093 022 094 019 073 021 072 026 096
60 0.25 025 1.00 025 1.00 025 100 025 100 025 100 025 1.00 025 100 025 1.00
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advantages of the proposed methods are obvious. Specifically,
the proposed methods perform better than RMB-RFE* and
Span-RFE* when |D;,,| = 100, 70, better than HSIC-RFE and
A||a)||2-RFE when |D;,,| = 50,40, and better than mRMR
for all |D;p|. This can be verified by aforementioned f-test.
Also, it is interesting to see that the curves yielded by SD-L-
RFE and SD-G-RFE constantly have one minimal MSE point
(or maximal for SCC), and the unique extreme point happens
when the top two features are selected. These bimodal curves
strongly validate the effectiveness of the proposed feature
selection methods. This is not the case for the other methods.
The figures for other two problems show similar patterns and
therefore not shown here.

B. Real Problems

Six real-world datasets from the Statlib,! UCI repository
[25], and Delve archive® are used for evaluation purposes.
Description of these datasets and the parameters used in the
experiments are given in Table II.

Table III shows the z-test results for all six real-world
datasets. It is seen from this table that the proposed methods
consistently perform at least as well as, if not better than,
all benchmark methods and the advantage is more significant
for mpg, abalone, cpusmall, Housing, and Bodyfat datasets.
There are two exceptions: the first few rows of the datasets
abalone and bodyfat show that the SD-L-RFE is statistically
worse off than some benchmark methods. This should not be
seen as a worrying sign, as it happens for the case where one
or two features are used. Clearly, this case corresponds to one
of overelimination of features. In practice, early stopping of
RFE would have been triggered by the substantial increase of
MSE or decrease of SCC.

C. Discussion

The better performance of the proposed method over mRMR
is expected, since this common filter method is not effective
in capturing effects of three or more interacting features.
The other filter method, i.e., HSIC-RFE, appears to be quite
effective in dealing with data having interacting features,
and generally shows nearly comparable performance with the
wrapper method A ||w||>-RFE. However, it is not as effective as
the proposed methods from the results on artificial problems,
especially when the training data is sparse, and on real-world
datasets of mpg, abalone and cputime. The better performance
of the proposed methods over A[w|?-RFE, RMB-RFE and
Span-RFE is interesting and deserves more attention, since all
of them are wrapper-based feature selection methods for SVR.
The better performance of the proposed methods over them is
probably due to the following two differences: First, different
ranking criteria are used. The proposed method uses the
“aggregate” sensitivity of SVR probabilistic predictions with
respect to a feature over the feature space, while A llw||>-RFE
uses the sensitivity of the cost function of SVR with respect
to a feature and RMB-RFE and Span-RFE uses the sensitivity

1 Available at http://lib.stat.cmu.edu/datasets/.
2 Available at http://www.cs.toronto.edu/~delve/data/datasets.html.
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of the error bound of SVR with respect to a feature. Second,
Al|lw||*-RFE, RMB-RFE, and Span-RFE assume that the SVR
solution remains unchanged when a feature is removed within
each RFE iteration. This appears to be a strong assumption,
judging from the relative performances of RMB-RFE, Span-
RFE RMB-RFE*, and Span-RFE*.

Another advantage of the proposed method is the modest
computational load. As mentioned in Section III, the evalua-
tion of scores for d features includes a one-time training of
SVR of about O(n*?) [26] complexity, one-time evaluation
of o (or 69) of O(mn) where n = |D|, m is the number
of support vectors, d-time RP process of O(dn), d-time
evaluation of a(l}.) (or 08)) of O(dmn), and d-time evaluation
of Dk of O(dn). Hence, after one-time training of SVR,
the proposed criterion scales linearly with respect to d and n.
Obviously, A||?>-RFE, RMB-RFE, and Span-RFE have sim-
ilar computational costs as the proposed methods. However,
RMB-RFE* and Span-RFE* require the training of SVR d—1
times more than the proposed methods when evaluating the
scores for the d features. This additional computational load
is of O(dn*3), which is significant when 7 is large.

VI. CONCLUSION

This brief presented a new wrapper-based feature selection
method for SVR. This method measures the importance of
a feature by the aggregation, over the feature space, of the
sensitivity of SVR probabilistic prediction with and without
the feature. Two approximations of the criterion with RP
process were proposed. The numerical experiments on both
artificial and real-world problems suggest that the proposed
method generally performs as least as well as, if not better
than, three benchmark methods. The advantage of the proposed
methods is more significant when the training data is sparse
or has a low samples-to-features ratio. As a wrapper method,
the computational cost of proposed methods is moderate.
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Abstract—For classification problems, the generalized eigen-
value proximal support vector machine (GEPSVM) and twin
support vector machine (TWSVM) are regarded as milestones
in the development of the powerful SVMs, as they use the
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nonparallel hyperplane classifiers. In this brief, we propose an
improved version, named twin bounded support vector machines
(TBSYM), based on TWSVM. The significant advantage of our
TBSVM over TWSVM is that the structural risk minimization
principle is implemented by introducing the regularization term.
This embodies the marrow of statistical learning theory, so this
modification can improve the performance of classification. In
addition, the successive overrelaxation technique is used to solve
the optimization problems to speed up the training procedure.
Experimental results show the effectiveness of our method in
both computation time and classification accuracy, and therefore
confirm the above conclusion further.

Index Terms— Machine learning, maximum margin, structural
risk minimization principle, support vector machines.

I. INTRODUCTION

Support vector machines (SVMs), being computationally
powerful tools for supervised learning [1]-[3], have already
outperformed most other systems in a wide variety of appli-
cations [4]-[6]. For the standard support vector classification
(SVQ), its primal problem can be understood in the following
way: construct two parallel support hyperplanes such that,
on one hand, the band between the two parallel hyperplanes
separates the two classes (the positive and negative data
points) well, on the other hand, the width between the two
hyperplanes is maximized, leading to the introduction of a
regularization term. Thus, the structural risk minimization
principle is implemented. The final separating hyperlane is
selected to be the “middle one” between the two hyperplanes.
Different from SVC with two parallel hyperplanes, some non-
parallel hyperplane classifiers such as the generalized eigen-
value proximal support vector machine (GEPSVM) and twin
support vector machine (TWSVM) have been proposed in [7]
and [8]. TWSVM seeks two nonparallel proximal hyperplanes
such that each hyperplane is closest to one of two classes
and as far as possible from the other class. A fundamental
difference between TWSVM and SVC is that TWSVM solves
two smaller sized quadratic programming problems (QPPs),
whereas SVC solves one larger QPP. Therefore, TWSVM
works faster than SVC. Experimental results in [8], and [9]
have shown the effectiveness of TWSVM over both standard
SVC and GEPSVM on UCI datasets. In addition, TWSVM
is excellent at dealing with the “Cross Planes” dataset. Thus,
the methods of constructing the nonparallel hyperplanes have
been studied extensively [9]-[12].

It is well known that one significant advantage of SVC is the
implementation of the structural risk minimization principle
[13], [14]. However, only the empirical risk is considered
in the primal problems of TWSVM. In addition, we noticed
that the inverse matrices (G'G)~! and (H'H)~! appear
in the dual problems. This implies that, in order to obtain
the dual problems, TWSVM must assume that the inverse
matrices (G'G)~! and (H T H)~! exist or the matrices G' G
and HTH are nonsingular. However, this extra prerequisite
cannot always be satisfied. So the duality theory in TWSVM
is not perfect from the theoretical point of view, although these
inverse matrices have been handled by modifying the dual
problems technically and elegantly.
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