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where R is a bound on the norm of the feature vectors @ (x) and 7y is Lhe
margin obtained by the corresponding hard margin batch algorithm. This
gives the following corollary.

Corollary 8.16 Fiz o > 0. Suppose the batch ranking algorithm with v =
1/£ has margin 7y 0T the. training set

S = {(x1.41):---- (x¢.y0)}

drawn independently at random according to a distribution D and contained
in a ball of radius R about the origin. Then with probability at least 1—0
over the draw of the set S, the generalisation error of the ranking function
Tab (X) obtained by running the on-line ranking algorithm on S in batch
mode is bounded by

B 2
Po (ran () 9) < 7 (ﬂ_Y‘__”_@_ﬂ nf+1n 5%) ,
provided
(IY|-1)(R*+1) _ ¢
w‘z( = 2

8.2 Discovering cluster structure in a feature space

Cluster analysis aims to discover the internal organisation of a dataset by
finding structure within the data in the form of ‘clusters’. This generic
word indicates separated groups of similar data items. Intuitively, the di-
vision into clusters should be characterised by within-cluster similarity and
between-cluster (external) dissimilarity. Hence, the data is broken down
into a number of groups composed of similar objects with different groups
containing distinctive elements. This methodology is widely used both in
multivariate statistical analysis and in machine learning.

Clustering data is useful for a number of different reasons. Firstly, it can
aid our understanding of the data by breaking it into subsets that are signif-
icantly more uniform than the overall dataset. This could assist for example
in understanding consumers by identifying different ‘types’ of behaviour that
can be regarded as prototypes. perhaps forming the basis for targeted mar-
keting exercises. It might also form the initial phase of a more complex
data analysis. For example, rather than apply a classification algorithm to
the full dataset, we could use a separate application for each cluster with
the intention of rendering the local problem within a single cluster easier to
solve accurately. In general we can view the clustering as making the data
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simpler to describe, since a new data item can be specified by indicating its
cluster and then its relation to the cluster centre.

Each application might suggest its own criterion for assessing the quality
of the clustering obtained. Typically we would expect the quality to involve
<ome measure of fit between a data item and the cluster to which it is
assigned. This can be viewed as the pattern function of the cluster analysis.
Hence, a stable clustering algorithm will give assurances about the expected
value of this fit for a new randomly drawn example. As with other pattern
analysis algorithms this will imply that the pattern of clusters identified in
the training set is not a chance OCCUITence, but characterises some underlying
property of the distribution generating the data.

Perhaps the most common choice for the measure assumes that each clus-
ter has a centre and assesses the fit of a point by its squared distance from
the centre of the cluster to which it is assigned. Clearly, this will be min-
imised if new points are assigned to the cluster whose centre is nearest. Such
a division of the space creates what is known as a Voronoi diagram of re-
gions each containing one of the cluster centres. The boundaries between
the regions are composed of intersecting hyperplanes each defined as the set
of points equidistant from some pair of cluster centres.

Throughout this section we will adopt the squared distance criterion for
assessing the quality of clustering, initially based on distances in the input
space, but subsequently generalised to distances in a kernel-defined feature
space. In many ways the use of kernel methods for clustering is very natu-
ral, since the kernel-defines pairwise similarities between data items, hence
providing all the information needed to assess the quality of a clustering.
Furthermore, using kernels ensures that the algorithms can be developed
in full generality without specifying the particular similarity measure being
used.

Ideally, all possible arrangements of the data into clusters should be tested
and the best one selected. This procedure is computationally infeasible in
all but very simple examples since the number of all possible partitions
of a dataset grows exponentially with the number of data items. Hence,
efficient algorithms need to be sought. We will present a series of algorithms
that make use of the distance in a kernel-defined space as a measure of
dissimilarity and use simple criteria of performance that can be used to
drive practical, efficient algorithms that approximate the optimal solution.

We will start with a series of general definitions that are common to all
approaches, before specifying the problem as a (non-convex) optimisation
problem. We will then present a greedy algorithm to find sub-optimal solu-
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tions (local minima) and a spectral algorithm that can be solved globally at

the expense of relaxing the optimisation criterion.

8.2.1 Measuring cluster quality
Given an unlabelled set of data

8 =4{x1,..%» X¢}s
one of a finite — but not

we wish to find an assignment of each point to
In other words, we seek &

necessarily prespecified — number N of classes.

map

This partition of the data should be chosen among all possible assignments

in such a way as to solve the measure of clustering quality given in the

following computation.

[Cluster quality] The clustering function should be

a

Computation 8.17
chosen to optimise

f = argmin S o (xi) — @ )2, (8.6
Foighi=fx)=F()=Fi

where we have as usual assumed a projection function ¢ into a feature space

F, in which the kernel xk computes the inner product

K‘(thj) = <¢ (Xi) *d)(xj)) -

We will use the short notation fi = f(x:) throughout this section. Figure
8.2 shows an example of a clustering of a set of data into two clusters with
an indication of the contributions to (8.6). As indicated above this is not the

most general clustering criterion that could be considered, but we begin by

ber of useful properties and does subsume

showing that it does have a num
some apparently more general criteria. A first criticism of the criterion is

that it does not seem to take into account the between-cluster separation.
but only the within-cluster similarity. We might want to consider a criterion
that balanced both of these two factors

mind Y b)) — A T el —eb)l o BT

i.j:fi=1; ij:fi#fi
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c1-

L

Fig. 8.2. An example of a clustering of a set of data.

However, observe that we can write

" ‘

T o) eI = S Nl (ki) — & () I

ijfi# fi i.j=1
| =Y o) - o)l
ijifi=fi
= a- Y gl - I
i.j.fi=f;

where A is constant for a given dataset. Hence. equation (8.7) can be ex-
pressed as

m}n z o (x:) — @ (XJ)HQ ~ A Z o (xi) — o (x)11?
ig:fi=f; ig:fi#f;

= m}n{um 3 \w(xf)—qb(xj)\\‘z—'m}.

i.j:fi=f;

showing that the same clustering function f solves the two optimisations
(8.6) and (8.7). These derivations show that minimising the within-cluster
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distances for a fixed number of clusters automatically maximises the between-

cluster distances.
There is another nice property
(8.6). If we simply expand the expression, we obtain

opt = 3 lloGx)— oI’
i.j:fi=1;

N
- Z Z Z <¢(Xi)—¢(Xj)~¢(xi)_¢(xj)>

k=11i:fi=kj:fi=k

N
= 22 \f"l (k)\ Z E(Xi,xi)— Z Z K.(X.i,Xj)
k=1

ifi=k i:fi=k j:f;=k

of the solution of the optimisation criterion

N

_ S0 Y et — el
k=1

i:fi=k

where the last line follows from (5.4) of Chapter 5 expressing the average-
squared distance of a set of points from their centre of mass. and

1
B = TR ie);(k)d) (%:) (8.8)

is the centre of mass of those examples assigned to cluster k. a point often
referred to as the centroid of the cluster. This implies that the optimisation

criterion (8.6) is therefore also equivalent to the criterion

N ¢ 3
foargmind | 3 lb) — il _ argmin' Y™ 660 — s

f k=1 \isfi=k foa=
(8.9)

that seeks a clustering of points minimising the sum-squared distances to
the centres of mass of the clusters. One might be tempted to assume that
this implies the points are assigned to the cluster whose centroid is nearest.
The following theorem shows that indeed this is the case.

Theorem 8.18 The solution of the clustering optimisation criterion

feargmin Y (1o (k) - &I’
Fooigfi=f;

of Computation 8.17 can be found in the form

© f (%) = argmin [|¢ (x:) — pll -
1<k<N



8.2 Discovering cluster structure in a feature space 269

where p; is the centroid of the points assigned to cluster j.

Proof Let i, be as in equation (8.8). If we consider a clustering function g
defined on S that assigns points to the nearest centroid

g (x;) = argmin || (x;) — px|l -
1<k<N

we have, by the definition of g

ZE: “‘i’(x") - "g(xﬂng s Zé: H‘ﬁ(xi) - “f(xz-)“2 : (8.10)
Furthermore, if we let

R 1
e = 5] > o)
g ieg=1 (k)
it follows that

2

£ 2 £
3 [[6060) = e < 2 9060 = Hote (811)
7=1 i==1
by Proposition 5.2. But the left-hand side is the value of the optimisation
criterion (8.9) for the function g. Since f was assumed to be optimal we
must have

4 9 £ 9
Z “d’(xl) - /:lg(x?-)H 2 z; ||¢(xl) - .u'f(x,)” 3
i=1 =

implying with (8.10) and (8.11) that the two are in fact equal. The result
follows. » O

The characterisation given in Proposition 8.18 also indicates how new data
should be assigned to the clusters. We simply use the natural generalisation
of the assignment as

£ (x) = argmin [|¢ (x) — pl -
1<k<N

Once we have chosen the cost function of Computation 8.17 and observed
that its test performance is bound solely in terms of the number of centres
and the value of equation (8.6) on the training examples. it is clear that any
clustering algorithm must attempt to minimise the cost function. Typically
we might expect to do this for different numbers of centres, finally selecting
the number for which the bound on Epmin,_,_, [l¢ (x) - u)1? is minimal.

3
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Hence, the core task is given a fixed aumber of centres N find the partition
into clusters which minimises equation (8.6). In view of Proposition 8.18,
we therefore arrive at the following clustering optimisation strategy.

Computation 8.19 [Clustering optimisation strategy] The clustering op-
timisation strategy is given by

input \ S =1{X1,.:s x¢}. integer N
process | B = argmin,, S mini<keN o (x:i) — il
output | f (-) = argminir<y o () — mall

Figure 8.3 illustrates this strategy by showing the distances (dotted ar-
rows) involved in computed the sum-squared criterion. The minimisation of
this sum automatically maximises the indicated distance (dot-dashed arrow)
between the cluster centres.

I - f

Fig. 8.3. The clustering criterion reduces to finding cluster centres to minimise o
sum-squared distances. ‘

Remark 8.20 [Stability analysis] Furthermore we can see that this strat-
egy suggests an appropriate pattern function for our stability analysis to
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estimate

Ep min [ (x) = il

1<k<N

the smaller the bound obtained the better the quality of the clustering
achieved. B

Unfortunately, unlike the optimisation problems that we have described
previously, this problem is not convex. Indeed the task of checking if there
exists a solution with value better than some threshold turns out to be NP-
complete. This class of problems is generally believed not to be solvable
in polynomial time. and we are therefore forced to consider heuristic or
approximate algorithms that seek solutions that are close to optimal.

We will describe two such approaches in the next section. The first will
use a greedy iterative method to seek a local optimum of the cost function,
hence failing to be optimal precisely because of its non-convexity. The sec-
ond method will consider a relaxation of the cost function to give an approx-
imation that can be globally optimised. This is reminiscent of the approach
taken to minimise the number of misclassification when applying a support
vector machine to non-separable data. By introducing slack variables and
using their 1-norm to Upper bound the number of misclassifications we can
approximately minimise this number through solving a convex optimisation
problem.

The greedy method will lead to the well-known k-means algorithm, while
the relaxation method gives spectral clustering algorithms. In both cases
the approaches can be applied in kernel-defined feature spaces.

Remark 8.21 [Kernel matrices for well-clustered data] We have seen how
we can compute distances in a kernel-defined feature space. This will provide
the technology required to apply the methods in these spaces. It is often
more natural to consider spaces in which unrelated objects have zero inner
product. For example using a Gaussian kernel ensures that all distances
between points are less than /2 with the distances becoming larger as the
inputs become more orthogonal. Hence. a good clustering is achieved when
the data in the same cluster are concentrated close to the prototype and
the prototypes are nearly orthogonal. This means that the kernel matrix
for clustered data — assuming without loss of generality that the data are
sorted by cluster — will be a perturbation of a block-diagonal matrix with
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one block for each cluster

0o 0 Bz O
o 0 0 B

Note that this would not be the case for other distance functions where, for

example, negative inner products were possible. =

On between cluster distances There is one further property of this min-
imisation that relates to the means of the clusters. If we consider the co-
variance matrix of the data, we can perform the following derivation

)
(€ = 3 (¢0x) - @s) (90x) — bs)
i=1

¢
= Z (@ (xi) — mg, T Hg dg) (@ (xi) = pg, T Hg— os)
=l
¢
= Z (qb (X,’,) B ufi) (d) (xi) - 'ufz')l
=1

N ’
+> > (o (xi) — 1) (s — @s)
k=1 \i:fi=k .

F3 (= ¢s) Y (9 k) — )

N
k=1 i:fi=k
4

+57 (uy, — #5) (s, — @s)

31

£
= S (@ (xi) —ug) (@(x) ~ )
i=1

1

i

N |
+3 (k)| (e — @s) (ke — bs) -
k=1

Taking traces of both sides of the equation we obtain

¢ N
tr (£C) = [|¢ (xi) — Hfi\lz +y |7 ()| e — sl
k=1

i=1

g
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The first term on the right-hand side is just the value of the Computation
8.19 that is minimised by the clustering function, while the value of the left-
hand side is independent of the clustering. Hence, the clustering criterion
automatically maximises the trace of the second term on the right-hand side.
This corresponds to maximising

N
ST ) s — 51
k=1

in other words the sum of the squares of the distances from the overall mean
of the cluster means weighted by their size. We again see that optimising the
tightness of the clusters automatically forces their centres to be far apart.

8.2.2 Greedy solution: k-means

Proposition 8.18 confirms that we can solve Computation 8.17 by identifying
centres of mass of the members of each cluster. The first algorithm we
will describe attempts to do just this and is therefore referred to as the k-
means algorithm. It keeps a set of cluster centroids Ci.Co,...,Cn that are

initialised randomly and then seeks to minimise the expression

£
S llo6x) — Croenll (8.12)
=1

by adapting both f as well as the centres. It will converge to a solution in
which Cy is the centre of mass of the points assigned to cluster k£ and hence
will satisfy the criterion of Proposition 8.18.

The algorithm alternates between updating f to adjust the assignment of
points to clusters and updating the C}. giving the positions of the centres
in a two-stage iterative procedure. The first stage simply moves points to
the cluster whose cluster centre is closest. Clearly this will reduce the value
of the expression in (8.12). The second stage repositions the centre of each
cluster at the centre of mass of the points assigned to that cluster. We have
already analysed this second stage in Proposition 5.2 showing that moving
the cluster centre to the centre of mass of the points does indeed reduce the
criterion of (8.12).

Hence, each stage can only reduce the expression (8.12). Since the number
of possible clusterings is finite. it follows that after a finite number of itera-
tions the algorithm will converge to a stable clustering assignment provided
ties are broken in a deterministic way. If we are to implement in a dual form
we must represent the clusters by an indicator matrix A of dimension £ x N
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containing a 1 to indicate the containment of an example in a cluster

Bk 1 if x; is in cluster k:
k=10 otherwise.

We will say that the clustering is given by matrix A. Note that each row
of A contains exactly .one 1. while the column sums give the number of
points assigned to the different clusters. Matrices that have this form will
be known as cluster matrices. We can therefore compute the coordinates of
the centroids Cy as the N columns of the matrix

X'AD.

where X contains the training example feature vectors as rows and D is
a diagonal N x N matrix with diagonal entries the inverse of the column
sums of A. indicating the number of points ascribed to that cluster. The
distances of a new test vector o(x) from the centroids is now given by

lo(x) - Cil® = e()I2 — 2 (@(x). Cx) + |Gkl
k (x.x) — 2 (KAD), + (DA’XX'AD),, .

where k is the vector of inner products between o(x) and the training ex-

amples. Hence. the cluster to which o(x) should be assigned is given by
argmin ||p(x) — Ci|* = argmin (DA'KAD),, —2 (KAD), .
1<k<N 1<k<N

where K is the kernel matrix of the training set. This provides the rule for

classifving new data. The update rule consists in reassigning the entries in

the matrix A according to the same rule in order to redefine the clusters.

Algorithm 8.22 [Kernel k-means] Matlab code for the kernel k-means al-
gorithm is given in Code Fragment 8.3. B

Despite its popularity. this algorithm is prone to local minima since the
optimisation is not convex. Considerable effort has been devoted to finding
good initial guesses or inserting additional constraints in order to limit the
effect of this fact on the quality of the solution obtained. In the next section
we see two relaxations of the original problem for which we can find the
global solution. -

8.2.3 Relaxed solution: spectral methods

In this subsection, rather than relying on gradient descent methods to tackle
a non-convex problem, we make a convex relaxation of the problem in order
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7 original kernel matrix stored in variable K
% clustering given by a ell x N binary matrix A
% and cluster allocation function f
gives the distances to cluster centroids
zeros(ell,N);
ceil(rand(ell,1)* N);
for i=1,ell
AGLEE)) = 43
end
change = 1;
while change = 1
change = 0;
E = A * diag(1./sum(A));
7 = ones(ell,1)* diag(E’*K+E) >~ 2¥K*E;
[a, £ff] = min(z, [0, 2);
for i=1,ell
if £(i) "= ££(1)
K@ gFEECi)) = 15

=
([~

h
I

AGi, £(2)) = 03
change = i;
end
end
f = ff;

end

Code Fragment 8.3. Matlab code to perform k-means clustering.

to obtain a closed form approximation. We can then study the approxima-
tion and statistical properties of its solutions.

Clustering into two classes We first consider the simpler case when there
are just two clusters. In this relaxation we represent the cluster assignment
by a vector y € {—1. +1}*. that associates to each point a {—1.41} label.
For the two classes case the clustering quality criterion described above is
minimised by maximising
2

Yl (ki) = & ()7

YiFY;
Assuming that the data is normalised and the sizes of the clusters are equal
this will correspond to minimising the so-called cut cost

¢

2 Z K (x:.%x5) = Z Kk (Xi:Xj5) — Z yiyjk (Xi.%;5) -

ViFY; ij=1 ij=1
subject to y € {~1,+1},
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since it measures the kernel ‘weight’ between vertices in different clusters.
Hence, we must solve

max v Ky
subject to Y € {—1,—{—1}’3.

We can relax this optimisation by removing the restriction that y be a
binary vector while controlling its norm. This is achieved by maximising
the Raleigh quotient (3.2)
yKy

Yy
As observed in Chapter 3 this is solved by the eigenvector of the matrix K

corresponding to the largest eigenvalue with the value of the quotient equal
to the eigenvalue ;. Hence. we obtain a lower bound on the cut cost of

max

£

0.5 Z i‘L(X,'_.Xj) == )\1

ij=1

giving a corresponding lower bound on the value of the sum-squared cri-
terion. Though such a lower bound is useful, the question remains as to
whether the approach can suggest useful clusterings of the data. A very
natural way to do so in this two-cluster case is simply to threshold the vec-
tor y hence converting it to a binary clustering vector. This naive approach
can deliver surprisingly good results though there is no a priori guarantee
attached to the quality of the solution.

Remark 8.23 [Alternative criterion] It is also possible to consider minimis-
ing a ratio between the cut size and a measure of the size of the clusters.’
This leads through similar relaxations to different eigenvalue problems. For
example if we let D be the diagonal matrix with entries

¢
Dy = Z Kij.
=1

then useful partitions can be derived from the eigenvectors of
DK, D"Y2KD™/? and K-D

with varying justifications. In all cases thresholding the resulting vectors
delivers the corresponding partitions. Generally the approach is motivated
using the Gaussian kernel with its useful properties discussed above. B
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Multiclass clustering We now consider the more general problem of multi-
class clustering. We start with an equivalent formulation of the sum-of-
squares minimization problem as a trace maximization under special con-
straints. By successively relaxing these constraints we are led to an approx-
imate algorithm with nice global properties.

Consider the derivation and notation introduced to obtain the program
for k-means clustering. We can compute the coordinates of the centroids Ci
as the N columns of the matrix

X'AD.

where X is the data matrix, A a matrix assigning points to clusters and D a
diagonal matrix with inverses of the cluster sizes on the diagonal. Consider
now the matrix '

X'ADA’.

It has ¢ columns with the ith column a copy of the cluster centroid corre-
sponding to the ith example. Hence. we can compute the sum-squares of
the distances from the examples to their corresponding cluster centroid as

Il

|x/ADA - X[ = [|(I~ ADA) X[
= tr (X' (I - ADA') X)

tr (XX') — tr (\/ﬁA’XX’A\/ﬁ) .

Il

since
(I, - ADA')? = (I, - ADA)

as A/AD = vDA’AVD = Iy. indicating that (I, — ADA’) is a projection
matrix. We have therefore shown the following proposition.

Proposition 8.24 The sum-squares cost function ss(A) of a clustering,
given by matriz A can be expressed as

ss(A) = tr (K) — tr (\/ﬁA’KA\/ﬁ) ,

where K is the kernel matriz and D = D (A) is the diagonal matriz with
the inverses of the column sums of A.

Since the first term is not affected by the choice of clustering, the propo-
sition leads to the Computation.
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Computation 8.25 [Multiclass clustering] We can minimise the cost ss(A)

by solving

maxy O (mAfKAm)
subject to Alsa cluster matrix and D =D (A).
' B

Remark 8.26 [Distances of the cluster centres from the origin] We can see

that tr (\/ﬁA’ KA\/5> is the sum of the squares of the cluster centroids.
relating back to our previous observations about the sum-square criterion
corresponding to maximising the sum-squared distances of the centroids
from the overall centre of mass of the data. This shows that this holds for

the origin as well and since an optimal clustering is invariant to translations
of the coordinate axes, this will be true of the sum-squared distances to any

fixed point. B

We have now arrived at a constrained optimisation problem whose solution
solves to the min-squared clustering criterion. Our aim now is to relax the
constraints to obtain a problem that can be optimised exactly, but whose
solution will not correspond precisely to a clustering. Note that the matrices

- A and D = D (A) satisfy

VDA/AVD = Iy =HH. (8.13)

where H = AvVD. Hence, only requiring that this ¢ x N matrix satisfies
equation (8.13), we obtain the relaxed maximization problem given in the

computation.

Computation 8.27 [Relaxed multiclass clustering] The relaxed maximisa-
tion for multiclass clustering is obtained by solving

max tr (H'KH)

subject to H'H =1Ix.

| |

The solutions of Computation 8.27 will not correspond to clusterings, but

may lead to good clusterings. The important property of the relaxation is
that it can be solved in closed-form.

Proposition 8.28 The magzimum of the trace tr (H'KH) over all £ X N
matrices satisfying H/H = Iy is equal to the sum of the first N eigenvalues
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of K

N
£ " f == .
H}lﬁaﬁ\ tr (H KH) L}; Ak

while the H* realising the optimum 1s given by
ViQ.

where Q is an arbitrary N x N orthonormal matric and Vy is the £ x N
matriz composed of the first N eigenvectors of K. Furthermore, we can
lower bound the sum-squared error of the best clustering by

A clustering matriz A clustering matric

min ss(A) = u(K)- max . tr (\/I_)A’KA\/T)—)

¢
- ax tr (HKH) = Z Ak
) k=N+1

> tr(K)
Proof Since HH = Iy the operator P = HH' is a rank N projection. This
follows from the fact that (HH')? = HHHH = HInyH = HH and
rank H = rank H'H =rank Iy = N. Therefore

I H'KHIy = HHH'XX'HH'H = [H'PX|} = IPX]|F.

Hence, we seek the N _dimensional projection of the columns of X that max-
imises the resulting sum of the squared norms. Treating these columns as the
training vectors and viewing maximising the projection as minimising the
residual we can apply Proposition 6.12. It follows that the maximum will be
realised by the eigensubspace spanned by the N eigenvectors corresponding
to the largest eigenvalues for the matrix XX’ = K. Clearly. the projection
is only specified up to an arbitrary N x N orthonormal transformation Q.

£

At first sight we have not gained a great deal by moving to the relaxed
version of the problem. It is true that we have obtained a strict lower bound
on the quality of clustering that can be achieved. but the matrix H that
realises that lower bound does not in itself immediately suggest a method of
performing a clustering that comes close to the bound. Furthermore, in the
case of multi-class clustering we do not have an obvious simple thresholding
algorithm for converting the result of the eigenvector analysis into a clus-
tering as we found in the two cluster examples. We mention three possible
approaches. .
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Re-clustering One approach is to apply a different clustering algorithm
in the reduced N-dimensional représentation of the data. when we map
each example to the corresponding row of the matrix V. possibly after
performing a renormalisation.

Eigenvector approach We will describe a different method that is related
to the proof of Proposition 8.28. Consider the choice H* = V y that realises
the optimum bound of the proposition. Let W = V /Ay be obtained
from V by multiplying column i by v/A;. i = 1..... N. We now form the
cluster matrix A by setting the largest entry in each row of W to 1 and the
remaining entries to 0.

QR approach An alternative approach is inspired by a desire to construct
an approximate cluster matrix which is related to Vy by an orthonormal
transformation

A~ VxQ.
implying that
Vi = QA"
If we perform a QR decomposition of V', we obtain
v =QR

with Q an N x N orthogonal matrix and R an N x £ upper triangular. By
assigning vector ¢ to the cluster index by the row with largest entry in the
column i of matrix R, we obtain a cluster matrix A’ ~ R, hence giving a
value of ss(A) close to that given by the bound.

8.3 Data visualisation

Visualisation refers to techniques that can present a dataset

in a manner that reveals some underlying structure of the data in a way
that is easily understood or appreciated by a user. A clustering is one
type of structure that can be visualised. If for example there is a natural
clustering of the data into say four clusters, each one grouped tightly around
a separate centroid, our understanding of the data is greatly enhanced by
displaying the four centroids and indicating the tightness of the clustering
around them. The centroids can be thought of as prototypical data items.
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Hence, for example in a market analysis, customers might be clustered into a
set of typical types with individual customers assigned to the type to which
they are most similar.

In this section we will consider a different type of visualisation. Our aim
is to provide a two- or three-dimensional ‘mapping’ of the data, hence dis-
playing the data points as dots on a page Or as points in a three-dimensional
image. This type of visualisation is of great importance in many data mining
tasks, but it assumes a special role in kernel methods. where we typically
embed the data into a high-dimensional vector space. We have already
considered measures for assessing the quality of an embedding such as the
classifier margin, correlation with output values and so on. We will also
in later chapters be looking into procedures for transforming prior models
into embeddings. However once we arrive at the particular embedding, it
is also important to have ways of visually displaying the data in the chosen
feature space. Looking at the data helps us get a ‘feel’ for the structure of
the data, hence suggesting why certain points are outliers, or what type of
relations can be found. This can in turn help us pick the best algorithm
out of the toolbox of methods we have been assembling since Chapter 5.
In other words being able to ‘see’ the relative positions of the data in the
feature space plays an important role in guiding the intuition of the data
analyst.

Using the first few principal components, as conmiputed by the PCA al-
gorithm of Chapter 6. is a well-known method of visualisation forming the
core of the classical multidimensional scaling algorithm. As already demon-
strated in Proposition 6.12 PCA minimises the sum-squared norms of the
residuals between the subspace representation and the actual data.

Naturally if one wants to look at the data from an angle that emphasises a
certain property. such as a given dichotomy. other projections can be better
suited, for example using the first two partial least squares features. In this
section we will assume that the feature space has already been adapted to
best capture the view of the data we are concerned with but typically using
a high-dimensional kernel representation. Our main concern will therefore
be to develop algorithms that can find low-dimensional representations of
high-dimensional data.

Multidimensional scaling This problem has received considerable atten-
tion in multivariate statistics under the heading of multidimensional scal-
ing (MDS). This is a series of techniques directly aimed at finding optimal
low-dimensional embeddings of data mostly for visualisation purposes. The
starting point for MDS is traditionally a matrix of distances or similarities
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rather than a Gram matrix of inner products or even a Euclidean embed-
ding. Indeed the first stages of the MDS process aim to convert the matrix
of similarities into a matrix of inner products. For metric MDS it is assumed
that the distances correspond to embeddings in a Euclidean space. while for
non-metric MDS these similarities can be measured in any way. Once an
approximate inner prodlict matrix has been formed, classical MDS then uses
the first two or three eigenvectors of the eigen-decomposition of the resulting
Gram matrix to define two- or three-dimensional projections of the points
for visualisation. Hence. if we make use of a kernel-defined feature space the
first stages are no longer required and MDS reduces to computing the first
* two or three kernel PCA projections.

Algorithm 8.29 [MDS for kernel-embedded data] The MDS algorithm for
data in a kernel-defined feature space is as follows:

input | Data S = {x1,...; x;} . dimension k = 2.3.

process | Kij = K (xi,X5)s 6] = TG {
K- 1K - IKGi + = (K3) i’
[V.A] = eig(K
aJ = ﬁvj. J = Lissns k.

output \ Display transformed data S = {X1... .- Xe}

Visualisation quality We will consider a further method of visualisation
strongly related to MDS. but which is motivated by different criteria for
assessing the quality of the representation of the data.

We can define the problem of visualisation as follows. Given a set of points

in a kernel-defined feature space F with
¢p:X —F,
find a projection 7 from X into R*. for small k such that

HT (xi) = T(Xj)“ =~ ”¢(Xl) — (ﬁ(XJ)H for 4,7 = L L

We will use T to denote the pro jection onto the sth component of 7 and with
a slight abuse of notation. as a vector of these projection values indexed by

the training examples. As mentioned above it follows from Proposition 6.12

o iAo
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that the embedding determined by kernel PCA minimises the sum-squared
residuals

(

S Jir (i) = @ I

i=1
where we make 7 an embedding into a k-dimensional subspace of the feature
space F. Our next method aims to control more directly the relationship
between the original and projection distances by solving the following com-
putation.

Computation 8.30 [Visualisation quality] The quality of a visualisation
can be optimsed as follows

Il

[ |
T (6 x0) . (i) ) = o)

miny; E(T)

ij=1
£
= 3 wlxixg) Im(xi) = ()| -
ij=1
subject to |75l = 1. Ts 13 s=1..., k, (8.14)
and Ts L T& -0 o— i PPN k.

Observe that it follows from the constraints that

/4 £ k
S Jrtx) =Tl = 20 2 (o) - 7o(x))*

ij=1 ij=1s=1
koL
= 30 (o) = k)
s=11ij=1
ko[t ‘
= 23 | 6D Tax) - S roxi)Ts(x))
g=1 i=1 i.j=1
koL ‘
= 20k — QZZTS(Xi)ZTS(Xj) = 20k,
s=1 i=1 j=1

It therefore follows that. if the data is normalised. solving Computation 8.30
corresponds to minimising :

£
B = 3 (1-03l96) o 6)IF) I (i) = 7)1

i.j=1
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£
= k- Y 05]o(xi)—¢ (o) 12 I aei) = T eI
ij=1

hence optimising the correlation between the original and projected squared
distances. More generally we can see minimisation as aiming to put large
distances between points with small inner products and small distances be-
tween points having large inner products. The constraints ensure equal
scaling in all dimensions centred around the origin, while the different di-
mensions are required to be mutually orthogonal to ensure no structure is
unnecessarily reproduced. :

Our next theorem will characterise the solution of the above optimisation
using the eigenvectors of the so-called Laplacian matrix. This matrix can
also be used in clustering as it frequently possesses more balanced properties
than the kernel matrix. It is defined as follows.

Definition 8.31 [Laplacian matrix] The Laplacian matriz L (K) of a kernel
matrix K is defined by

L(K)=D-K.

where D is the diagonal matrix with entries

£
Dy = Z K.ij.
=1

Observe the following simple property of the Laplacian matrix. Given any
real vector v = (v1,...,v¢) € R

¢ £ £
Z Kvij ('v.i —'l'j)2 = 2 Z Kijv;-‘) -2 Z Kij'v,-vj
i,5=1 i =1 £,5=1
— 2v'Dv - 2vVKv = 2v'L(K) v.

It follows that the all 1s vector j is an eigenvector of L (K) with eigenvalue 0
since the sum is zero if v; = v; = 1. It also implies that if the kernel matrix
has positive entries then L (K) is positive semi-definite. In the statement of
the following theorem we separate out )\ as the eigenvalué 0, while ordering
the remaining eigenvalues in ascending order.

Theorem 8.32 Let
S = {x1,.... %X}
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be a set of points with kernel matriz K. The visualisation problem given

in Computation 8.30 is solved by computing the eigenvectors viv2,...,
with corresponding eigenvalues 0 = M. A2 £ oo S N of the Laplacian
matriz L (K). An optimal embedding T is given by Ti = vitl j=1,...,k

and the minimal value of E(7) s

k+1

QZAE.

£=2

If A1 < Ak42 then the optimal embedding is unique up to orthonormal
transformations in RE

Proof The criterion to be minimised is

£ k
S (i xg) I (i) = )l = YD) sxix) (r(xi) = T5(%))’
ig=1 s=1ij=1
k
= QZTISL (K) 7s.
g=1

Taking into account the normalisation and orthogonality constraints gives
the solution as the eigenvectors of L (K) by the usual characterisation of
the Raleigh quotients. The uniqueness again follows from the invariance
under orthonormal transformations together with the need to restrict to the

subspace spanned by the first k eigenvectors. O

The implementation of this visualisation technique is very straightforward.

Algorithm 8.33 [Data visualisation] Matlab code for the data visualisation
algorithm is given in Code Fragment 8.4. ]

7 original kernel matrix stored in variable K
%, tau gives the embedding in k dimensions

D = diag(sum(K));

L=D-K;

[V,Lambda] = eig(L);

Lambda = diag(Lambda);

I = find(abs(Lambda) > 0.00001)

objective = 2xsum(Lambda(I(1:k))) .

Tan = V(:,I(1:k));

plot(Tau(: ,1), Tau(:,2), ’x’)

Code Fragment 8.4. Matlab code to implementing low-dimensional visualisation.



