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Learning Outcomes

Probabilistic Linear Regression

Maximum Likelihood and Maximum a posteriori estimations

Bayesian Model Selection

Non-linear regression with GPs

Classi�cation with GPs

Dimensionality reduction with GPLVM
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Probabilistic Linear Regression

Creating the model

Observations y are modeled as linear combination of weights w and inputs
x contaminated with noise ε

ŷ = f (x) = wT x + ε (1)

The probabilistic regression model is created by handling noise as random
variable (RV):

ε ∼ N
(
0, σ2ε

)
Gaussian properties:

The addition of a Normal RV to a constant variable yields a Normal
random variable

p (ŷ) = N
(
ŵT x , σ2ε

)
(2)
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Probabilistic Linear Regression

Maximum Likelihood Estimation

Given training set:{y,X} = {yi , xi}Mi=1 and σε is assumed known
(Hyperparameter), we can de�ne the likelihood as:

p(y|X, ŵ, σ2ε ) =
M∏
i=1

1√
2πσ

exp

(
−yi − ŵTxi

2σ2ε

)
(3)

ŵMLE, σ
2
ε = arg max

ŵ,σ2w

p(y|X, ŵ, σ2ε IM)

Closed form solution

ŵMLE =
(
XXT

)−1
Xy→ Same with the OLS estimator

σ̂2MLE =
1
N

(
ŵT
MLEX− y

)T (
ŵT
MLEX− y

)
→ Average of squared deviations
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Probabilistic Linear Regression

Maximum a Posteriori (MAP) estimation

Weights are also handled as RVs

Prior distribution over weights: w ∼ N (µµµw,ΣΣΣw)
Model Likelihood: p(y|X, ŵ, σ2ε IM)

Bayes Rule: posterion = likelihood×prior
marginal likelihood

p (w|X, y) =
p(y|X, ŵ, σ2ε )p (w)

p (y|X)
(4)

Prior and Likelihood are conjugate distributions1. The posterior has a
closed form solution

p (w|X, y) ∼ N
(
µµµw|X,y,A

−1)
1See Conjugate Bayesian analysis of the Gaussian distribution by Murphy
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Probabilistic Linear Regression

Maximum a Posteriori (MAP) estimation

MAP estimation derives from the expected value of the posterior normal
distribution

ŵMAP = E {p (w|x,Y)}

Σ̂ΣΣ
−1
MAP = A =

1
σ2ε

XXT + ΣΣΣ−1w

ŵMAP = µµµw|X,y = A−1ΣΣΣ−1w µµµw +
1
σ2ε

A−1Xy

(5)

For the special of µwµwµw = 0 and ΣΣΣw = τ I the Bayesian regression reduces to

ridge regression with λ = σ2ε
τ
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Probabilistic Linear Regression

Posterior Predictive Distribution

The predictive distribution is a distribution over output y and allows to
make predictions given a set of testing data x∗

p (y∗|x∗,X, y) =

∫
p(y|X, ŵ, σ2ε IM)︸ ︷︷ ︸

Likelihood

p (w|X, y)︸ ︷︷ ︸
Posterior

∂w (6)

The integral has a closed form solution in the case of Normal distributions

p (y∗|x∗,X, y) ∼ N
(
µy∗ , σ

2
y∗
)

µy∗ = xT∗ ŵMAP =
1
σ2ε

xT∗ A
−1Xy

σ2y∗ = xT∗ A
−1x∗

(7)
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Probabilistic Linear Regression

Posterior Predictive Distribution

p (y∗|x∗,X, y) ∼ N
(
µy∗ , σ

2
y∗
)

µy∗ (x∗) = xT∗ ŵMAP =
1
σ2ε

xT∗ A
−1Xy

σ2y∗ (x∗) = xT∗ A
−1x∗

The variance gives a measure of the uncertainty of the prediction

A. Polydoros, A. Billard (EPFL) Gaussian Processes 6 May 2020 8 / 43



Probabilistic Linear Regression

Marginal Likelihood

Bayesian Regression depends on hyper-parameters
The marginal likelihood provides a metric for optimization
Bayes Rule:

p (w|X, y) =
p(y|X, ŵ, σ2ε )p (w)

p (y|X)︸ ︷︷ ︸
MarginalLikelihood

p (y|X) =

∫
p(y|X, ŵ, σ2ε )p (w) dw (8)

Measures how well our model explains the observed data. For the current
case, it has a closed form solution
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Probabilistic Linear Regression

Marginal Likelihood

(a) 33.38 (b) 47.19

(c) 67.19 (d) 27.32

Figure: Negative Log-Marginal Likelihood for di�erent models
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Gaussian Process for Regression

From probabilistic linear to nonlinear regression

Starting with the predictive distribution of Bayesian linear regression, Apply
non-linear mapping φ (x) to the feature space.

p (y∗|φφφ∗,ΦΦΦ, y) ∼ N
(
µy∗ , σ

2
y∗
) µy∗ (φφφ∗) =

1
σ2ε
φφφT∗ A

−1ΦΦΦy

σ2y∗ (φφφ∗) = φφφT∗ A
−1φφφ∗

A =
1
σ2ε

ΦΦΦΦΦΦT + ΣΣΣ−1w

The p (y∗|φφφ∗,ΦΦΦ, y) is a Normal distribution over functions.

φφφT∗ A
−1ΦΦΦ

φφφT∗ A
−1φφφ∗

}
Inner product in feature space
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Gaussian Process for Regression

From probabilistic linear to nonlinear regression

De�ne kernel as: k (x , x ′) = φφφ (x) ΣΣΣ−1w φφφ (x′) and apply on the mean and
variance2

E {p (y∗|φφφ∗,ΦΦΦ, y)} =
M∑
i=1

αik (xi , x∗)

where: a =
[
K (X,X) + σ2y I

]−1
y

Var {p (y∗|φφφ∗,ΦΦΦ, y)} = k (x∗, x∗) + k (x∗,X)
[
K (X,X) + σ2y I

]−1
k (X, x∗)

In GPs all the training data are used for predictions!

2See supplement material for steps
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Gaussian Process for Regression

Kernels

Kernel functions:

Linear
k (x, x′) = xTx′ + c where c the intercept

Gaussian (RBF)

k (x, x′) = exp
(
||x−x′||

`

)
where ` the kernel width (lengthscale)

Polynomial
k (x, x′) =

(
xTx′ + c

)d
where d is the degree of polynomial

Periodic
k(x, x′) = exp

(
−2 sin2(π||x−x′||/p)

`

)
where p is the period.
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Gaussian Process for Regression

Kernels � RBF

(a) ` = 0.1 (b) ` = 1

Figure: Impact of the width of RBF kernel
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Gaussian Process for Regression

Kernels � Polynomial

(a) d = 3 (b) d = 6

Figure: Impact of the degree of polynomial kernel
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Gaussian Process for Regression

Kernels � Periodic

(a) p = 1 (b) p = 2

Figure: Impact of the period of periodic kernel
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Gaussian Process for Regression

Construction of new kernels

Not all kernels are appropriate for the all datasets.
There exists many kernels in literature.
As seen in kernel lecture,new kernels can be created by combination of
kernels:

k
(
x, x′

)
= ck1

(
x, x′

)
where c > 0

k
(
x, x′

)
= f (x)k1

(
x, x′

)
f (x′) where f (·) any function

k
(
x, x′

)
= k1

(
x, x′

)
+ k2

(
x, x′

)
k
(
x, x′

)
= k1

(
x, x′

)
k2
(
x, x′

)
k
(
x, x′

)
= exp(k1

(
x, x′

)
)

k
(
x, x′

)
= k1

(
xa, x

′
a

)
+ k2

(
xb, x

′
b

)
where a, b dimensions of x

k
(
x, x′

)
= k1

(
xa, x

′
a

)
k2
(
xb, x

′
b

)
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Gaussian Process for Regression

The noise

The larger the noise, the more uncertainty

(a) σ2y = 0.1 (b) σ2y = 1

Figure: Impact of noise variance at the con�dence interval
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Gaussian Process for Regression

Hyper-parameter tuning

Hyper-parameters: kernel's parameters and noise variance

Tuning:

Cross-validation

Minimize Marginal-likelihood
s.t. hyper-parameters, where Kσ2y =

[
K (X,X) + σ2y I

]
:

−log (y|X) = 0.5(yTK−1
σ2y
y︸ ︷︷ ︸

Fit

+ log|Kσ2y |︸ ︷︷ ︸
Complexity

+ log 2π) (9)

Automatically provides trade-o� between model �t and complexity3

3See supplement material
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Gaussian Process for Regression

Zero Mean Prior

Prior expectations

Linear Model:

E {y} = E
{
wT x +N

(
0, σ2y

)}
= E

{
wT
}
x + 0

Non-Linear Model:

E {y} = E
{
wT
}
φ(x) +N

(
0, σ2y

)
= E

{
wT
}
φ(x) + 0

Both models have a zero mean Gaus-
sian prior.
GPs with RBF kernel, predict zero far
from the data
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Gaussian Process for Regression

Mean function

Instead of zero mean one can use a mean function m (·) : x 7→ y .

E {p (y∗|φφφ∗,ΦΦΦ, y)} =
M∑
i=1

m (x∗) + αik (xi , x∗)

where: a =
[
K (X,X) + σ2y I

]−1
(y −m (x∗))

(10)

The parameters of the mean can be auto-tuned based on the marginal
likelihood
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Gaussian Process for Regression

Impact of mean function

(a) Constatnt mean (b) Linear Mean

Figure: GPs with di�erent mean functions
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Gaussian Process for Regression

Applications � Learning from demonstration

Learning Compliant Manipulation through Kinesthetic and Tactile
Human-Robot Interaction4

The sti�ness pro�le is encoded
as a time-varying input using GPR.
The shaded area corresponds to
the striking phase.

4
Kronander, K. and Billard, A. (2013) Learning Compliant Manipulation through Kinesthetic and Tactile

Human-Robot Interaction. IEEE Transactions on Haptics. 10.1109/TOH.2013.54.
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Gaussian Process for Regression

Applications � Surface models

GPR can be used to model the shape of objects5

Figure: Top: 3D points sampled either from a camera or from tactile sensing.
Bottom: 3D shape reconstructed by GPR. The arrows represent the predicted
normals at the surface

5
El Khoury, S., Li, M., and Billard, A. (2013). On the generation of a variety of grasps. Robotics and

Autonomous Systems, 61(12):1335�34
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Gaussian Process for Classi�cation

GPs from the Bayesian perspective

Given training data X, y, infer continuous function f such as:

y = f (x) + ε ,where: ε ∼ N
(
0, σ2y

)
GPs are jointly normal distributions over the outputs of the latent function
p (f ) ∼ GP (m (x) , k (x , x ′)).


y1
y2
...
yM

 = N



m (x1)
m (x2)

...
m (x3)

 ,

k (x1, x1) + σ2y k (x1, x2) . . . k (x1, xM)

k (x2, x1) k (x2, x2) + σ2y . . . k (x2, xM)
...

...
. . .

...
k (xM , x1) k (xM , x2) . . . k (xM , xM) + σ2y




The prediction for f∗ for a novel input x∗ can also be made by conditioning
at the joint Normal p (f∗|f,X, y)
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Gaussian Process for Classi�cation

GPs from the Bayesian perspective

Given training data X, y, infer a continuous function f such as:

y = f (x) + ε ,where: ε ∼ N
(
0, σ2y

)
GPs are probability distributions over a latent function p (f ).
Bayes rule for GPs:

p (f|X, y) =
p (y|f,X) p (f)

p (y|X)

Prior : p (f) ∼ GP (0, k (x , x ′))
Likelihood: p (y|f,X) Normal for regression
Posterior: p (f|X, y) ∼ GP (mpost, kpost (x , x ′))

For Normal likelihood and a GP prior the posterior has a closed

form solution
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Gaussian Process for Classi�cation

GPs from the Bayesian perspective

Given data X, y ∈ [0; 1], for a binary classi�cation problem, infer a
continuous function f such as:

y = λ (f (x) + ε) ,where: ε ∼ N
(
0, σ2y

)
andλ (f (x) + ε) =

1
1 + exp (yi fi + ε)

p (f|X, y) =
p (y|f,X) p (f)

p (y|X)

Prior : p (f) ∼ GP (0, k (x , x ′))
Likelihood: p (y|f,X) ∼ λ (yi fi + ε) if yi = 1 otherwise 1− λ (yi fi + ε)
Posterior: p (f|X, y) No closed form solution!!!

The logistic likelihood and the GP prior are not conjugate
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Gaussian Process for Classi�cation

Approximation Methods

Many methods exist to approximate the posterior:

Laplace approximation
Taylor series expansion about mode of posterior

Expectation propagation
Minimize divergence between approximated and true distribution

Markov Chain Monte Carlo
Take a large amount of samples from posterior
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Gaussian Process for Classi�cation

Laplace Approximation

Approximate as a Normal distribution:

p̃ (f|X, y) ∼ N
(
f̃,C−1

)
where: f̃ = argmax

f
p (f|X, y)

C = −∇2 log p (f|X, y) |
f=f̃

(11)
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Gaussian Process for Classi�cation

Laplace approximation of the posterior

Find f̃ by maximizing log-posterior :

log p (f|X, y) = log p (y|f,X) + log p (f)

Di�erentiating w.r.t f

∇ log p (f|X, y) =∇ log p (y|f,X)−K−1f

∇2 log p (f|X, y) =∇2 log p (y|f,X)−K−1

= −D−K−1

p̃ (f|X, y) ∼ N
(
f̃,
(
D + K−1

)−1)
(12)
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Gaussian Process for Classi�cation

Making predictions

Posterior predictive distribution:

p̃(f∗|x∗,X,Y) =

∫
p (f∗|x∗,X,Y, f) p̃ (f|X,Y) df

Ep̃ [f∗|X,Y, x∗] =
M∑
i=1

αik (x∗, xi ) ,where: a =
[
K (X,X) + σ2y I

]−1
f̃

Varp̃ [f∗|X,Y, x∗] = k (x∗x∗)− k (Xx∗)
T (D + K−1

)−1
k (X, x∗)

Class predictions:

p (y∗ = 1|x∗,X∗,Y) =

∫
p (y∗ = 1|f∗) p̃(f∗|x∗,X,Y)df∗

No closed form solution, has to approximated
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Gaussian Process for Classi�cation

Toy Examples

(a) Linear (b) Second degree polynomial

(c) RBF (d) Periodic

Figure: GP classi�cation of a XOR dataset for di�erent kernels
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Gaussian Process for Classi�cation

Impact of kernel width

(a) width = 0.1

(b) width = 1 (c) width = 2

Figure: GP classi�cation of a XOR dataset using RBF kernel with various widths
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GPLVM

Outline

GPLVM is an unsupervised variation of GPs

Probabilistic dimensionality reduction

Derivation:

PCA to Probabilistic PCA

Dual Formulation of Probabilistic PCA

GPLVM through kernel trick
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GPLVM

From PCA to Probabilistic PCA

M data Y ∈ <d at the original space and X their projection to the latent
space.
PCA: y = Ax

Propbabilistic PCA

Introduce stochasticity by adding noise variable εεε ∼ N
(
0, σ2I

)
y = Ax + εεε

Likelihood:
p (y|A, x) ∼ N

(
Ax, σ2I

)
Integrate over x to get marginal likelihood
p (y|A) =

∫
p (y|A, x) p (x)

Requires prior over x:
p (x) ∼ N (0, I)
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GPLVM

From PCA to Probabilistic PCA

Marginal likelihood has a closed form solution:

p (y|A) = N
(
0,AAT + σ2X

)
Assuming Y are i.i.d:

p (Y|A) =
M∏
i=1

p (yn|A)

Maximizing marginal likelihood wrt to A yields unique optimal solution6

6Tipping and Bishop. "Probabilistic principal component analysis."
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GPLVM

Dual Probabilistic PCA

Probabilistic PCA: Integrate over x and optimize w.r.t to A

p (y|A) =

∫
p (y|A, x) p (x)

Dual Probabilistic PCA Integrate over A and optimize w.r.t to x

p (y|x) =

∫
p (y|A, x) p (A)

Prior over A:

p (A) =
D∏

d=1

N (ad ; 0, I)
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GPLVM

Dual Probabilistic PCA

Marginal likelihood:

p (Y|X) =
D∏

d=1

N
(
yd ; 0,XTX + σ2I

)
GPLVM:

XTX = K (x, x′) Inner product allows to apply kernel trick

N
(
yd ; 0,K (x, x′) + σ2I

)
A Gaussian process on each dimension of Y

Minimize negative log-marginal likelihood w.r.t X

− log p (yd |X) =
1
2

(
DN log 2π + D log |K|+ tr

(
K−1YTY

))
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GPLVM

Comaprison with kPCA

Method Proximity Mapping Non-Linear Probabilistic

GPLVM YES X→ Y YES YES
kPCA YES Y → X YES NO

A. Polydoros, A. Billard (EPFL) Gaussian Processes 6 May 2020 39 / 43



GPLVM

Examples

(a) RBF kernel (b) Linear Kernel

Figure: GPLVM with di�erent kernels
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GPLVM

Choosing latent dimensions

Figure: BIC as function of the number of latent dimensions

BIC = M log (k)− 2 log (p (Y|X)) (13)
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GPLVM

Choosing latent dimensions

Figure: Combination of latent dimensions which increase separability
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Gaussian Processes

Discussion

Advantages
Generalization
Accuracy
Metric of Uncertainty
Auto-tuning of hyper-parameters

Disadvantages
Computational complexity

Recommended packages
GPy
scikit-learn
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