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Learning Outcomes

Probabilistic Linear Regression

Maximum Likelihood and Maximum a posteriori estimations
Bayesian Model Selection

Non-linear regression with GPs

Classification with GPs

Dimensionality reduction with GPLVM
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Probabilistic Linear Regression

Creating the model

Observations y are modeled as linear combination of weights w and inputs
x contaminated with noise €

§=F(x)=wTx+e (1)
The probabilistic regression model is created by handling noise as random
variable (RV):
o e~ N(0,02)
Gaussian properties:

o The addition of a Normal RV to a constant variable yields a Normal
random variable

p(7) =N (#x,0?) (2)
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Probabilistic Linear Regression

Maximum Likelihood Estimation

Given training set:{y, X} = {y;,x;}i’\il and o is assumed known
(Hyperparameter), we can define the likelihood as:

M
1 yi —w'x
X, w,0%) =[] P AR
PP ) =1 ars exp( 202 > ©)

~ 2 ~ 2
WMLE, O¢ = arg Enag( p(y|X, W, 0, I/VI)
w,o

"w

Closed form solution

-1
WMLE = (XXT> Xy — Same with the OLS estimator

2 1

-
TmLe = 3 (vAv,\T,lLEX — y) (vAv,\T,lLEX — y) — Average of squared deviations
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Probabilistic Linear Regression

Maximum a Posteriori (MAP) estimation

Weights are also handled as RVs

Prior distribution over weights: w ~ N (pw, Xw)
Model Likelihood: p(y|X, W, a2l

likelihood X prior

Bayes Rule: pOSterion = o einal fikelihood

p(y|X, W, 02)p (w)
P y/X) )

Prior and Likelihood are conjugate distributions'. The posterior has a
closed form solution

P (W|X7 y) ~N (:u'w\X,yv Ail)

!See Conjugate Bayesian analysis of the Gaussian distribution by Murphy
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Probabilistic Linear Regression

Maximum a Posteriori (MAP) estimation

MAP estimation derives from the expected value of the posterior normal
distribution

wWyap = E {p (w[x,Y)}

o1 1
XMAP — A — ?XXT —I—Z;l

6 1 (5)
WMAP = Hw|X,y = AT + ?Aflxy

€
For the special of u, = 0 and X, = 71 the Bayesian regression reduces to
2
ridge regression with A = Z<

T
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Probabilistic Linear Regression

Posterior Predictive Distribution

The predictive distribution is a distribution over output y and allows to
make predictions given a set of testing data x,

puawaz/hmxw@ﬂmpmmdmw (6)
Likelihood Posterior

The integral has a closed form solution in the case of Normal distributions

p (yilxe X.y) ~ N (s, 02)

~

1 -
Hy* = X WMAP = ﬁXIA Xy
o¢ (7)

0'}2,* = x*TAflx*
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Probabilistic Linear Regression

Posterior Predictive Distribution

— Predictive Mean
W Predictive variance
14 @ Training Data

P (yalxe X.y) ~ N (s 03.)

outputs

N 1 _
fys (x4) = x Wmap = ;x*TA IXy

€

0}2,* (x£) = x*TAflx*

8
1800 1850 1900 1950 2000 2050 2100
Inputs

The variance gives a measure of the uncertainty of the prediction
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Probabilistic Linear Regression
Marginal Likelihood

Bayesian Regression depends on hyper-parameters

The marginal likelihood provides a metric for optimization
Bayes Rule:

A2
p(y|X, W, 02)p (w
p(wlX,y) = bl )E) W)
P (y[X)
——
MarginalLikelihood

p(yX) = / py|X, W, 02)p (w) dw (8)

Measures how well our model explains the observed data. For the current
case, it has a closed form solution
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Probabilistic Linear Regression
Marginal Likelihood

(c) 67.19 (d) ;7.32

Figure: Negative Log-Marginal Likelihood for different models
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Gaussian Process for Regression

From probabilistic linear to nonlinear regression

Starting with the predictive distribution of Bayesian linear regression, Apply
non-linear mapping ¢ (x) to the feature space.

1
My~ (¢:) = ?¢IA_1¢y
P (ysl@s, @,y) ~ N (p1y~,03.) o2 (¢.) = $TA 1S,

A= %¢¢T +x.1

€

The p (y«|@«, ®,y) is a Normal distribution over functions.

¢/A"'® .
Th_1 Inner product n feature space

Gaussian Processes
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Gaussian Process for Regression

From probabilistic linear to nonlinear regression

Define kernel as: k (x,x") = ¢ (x) £,¢ (x') and apply on the mean and
variance?

M
E {p(y:ldpss ®,¥)} = > aik (xi,x:)

i=1
where: a = [K (X, X) +02I] 'y

Var {p (y:|¢«, ®,¥)} = k (xs, xs) + k (x4, X) [K (X, X) + 0'}2,|] 1k (X, x4)

In GPs all the training data are used for predictions!

2See supplement material for steps
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Gaussian Process for Regression

Kernels

Kernel functions:
o Linear
k (x,x") = x"x' 4 ¢ where c the intercept
e Gaussian (RBF)
k (x,x') = exp <”x ”) where £ the kernel width (lengthscale)
@ Polynomial
k(x,x) = (x"x'+ c)d where d is the degree of polynomial
@ Periodic

k(x, x') = exp (—M)

where p is the period.
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Gaussian Process for Regression
Kernels — RBF

—— Mean —— Mean
X Data 11 x Data
! Confidence Confidence

(a) ¢=0.1 (b) £=1
Figure: Impact of the width of RBF kernel
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Gaussian Process for Regression

Kernels — Polynomial

—— Mean
x Data
1 Confidence 1

]
x Data
Confidence
-5 -5
-15 -1.0 -0.5 0.0 0.5 10 15 -1.5 -1.0 —0.5 0.0 0.5 10 15
(a) d=3 (b) d=6

Figure: Impact of the degree of polynomial kernel
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Gaussian Process for Regression

Kernels — Periodic

2 2
—— Mean —— Mean
x Data x Data
1 Confidence 1 Confidence
0 0
-1 -1
-2 x -2
3 -3
-4 -4
s -5
-15 -10 -05 00 05 10 15 -15 -1.0 -0.5 0.0 o5 10 15

Figure: Impact of the period of periodic kernel

A. Polydoros, A. Billard (EPFL) Gaussian Processes 6 May 2020 16 / 43



Gaussian Process for Regression
Construction of new kernels

Not all kernels are appropriate for the all datasets.
There exists many kernels in literature.

As seen in kernel lecture,new kernels can be created by combination of
kernels:
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Gaussian Process for Regression

The noise

The larger the noise, the more uncertainty

2 2
—— Mean —— Mean
x Data x Data
1 Confidence 1 Confidence
0 0
1 -1
-2 -2
= -3
-4 -4
3 -5
-15 -1.0 —0.5 0.0 0.5 10 15 -15 -1.0 —0.5 0.0 0.5 10 15
2 2
(@) oy =0 v

Figure: Impact of noise variance at the confidence interval
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Gaussian Process for Regression

Hyper-parameter tuning

Hyper-parameters: kernel's parameters and noise variance

Tuning:
@ Cross-validation

@ Minimize Marginal-likelihood
s.t. hyper-parameters, where Kgg = [K (X, X) + a)z,l]:

—log (y|X) = 0.5(yTK;§1y+ |og|Kg§] + log 27) 9)
Fit Complexity

Automatically provides trade-off between model fit and complexity?

3See supplement material
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Gaussian Process for Regression

Zero Mean Prior

Prior expectations

Linear Model: Non-Linear Model:
E{y} =E{w x+N(0,62)}  E{y}=E{wT}o(x)+N (0.0
:]E{WT}X—I—O :E{WT}qﬁ(x)—i—O

—— Mean
x Data
1 Confidence

Both models have a zero mean Gaus-
sian prior.

GPs with RBF kernel, predict zero far
from the data

-3 -2 -1 [ 1 2 3
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Gaussian Process for Regression

Mean function

Instead of zero mean one can use a mean function m(+) : x — y.

M
E{p (vl ®,y)} = > m(x:) + ik (xi, %)
i=1

where: a = [K( a2l - (y — m(xy))

The parameters of the mean can be auto-tuned based on the marginal
likelihood
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Gaussian Process for Regression

Impact of mean function

—— Mean —— Mean
x Data x Data
1 Confidence 1 Confidence
o o
-1 -1
- -2
3 -3
-4 -4
=5 =5 T T T T T
-3 -2 -1 0 1 2 3 =3 -2 -1 o 1 2 3
(a) Constatnt mean (b) Linear Mean

Figure: GPs with different mean functions
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Gaussian Process for Regression

Applications — Learning from demonstration

Learning Compliant Manipulation through Kinesthetic and Tactile
Human-Robot Interaction®

b + demonstrated stiffo

1200 Sificss profie.

10004
E w00 The stiffness profile is encoded
7 as a time-varying input using GPR.
- The shaded area corresponds to
2 4 -

: the striking phase.
200 et
GCI 1 2 3 - 5

4Kronander, K. and Billard, A. (2013) Learning Compliant Manipulation through Kinesthetic and Tactile
Human-Robot Interaction. IEEE Transactions on Haptics. 10.1109/TOH.2013.54.
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Gaussian Process for Regression

Applications — Surface models

GPR can be used to model the shape of objects®

() Cylinder (b) Bunny (© Spray (@ Jug

Figure: Top: 3D points sampled either from a camera or from tactile sensing.
Bottom: 3D shape reconstructed by GPR. The arrows represent the predicted
normals at the surface

5EI Khoury, S., Li, M., and Billard, A. (2013). On the generation of a variety of grasps. Robotics and
Autonomous Systems, 61(12):1335-34
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Gaussian Process for Classification

GPs from the Bayesian perspective
Given training data X,y, infer continuous function f such as:
y = f(x) + € where: € ~ N (0,07)

GPs are jointly normal distributions over the outputs of the latent function

p(f) ~ GP (m(x), k(x,x)).

n m(xl) k(Xl,X1)+O'}2, k(X17X2) k(Xl,Xlw)
V2 N m(x2) k (x2,x1) k(x2,X2)+a}2, k (x2, xm)
Ym m(x3) k (xm, x1) k (xpm, x2) ook (xmyxm) + 0}2,

The prediction for f, for a novel input x, can also be made by conditioning
at the joint Normal p (£|f, X,y)
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Gaussian Process for Classification

GPs from the Bayesian perspective

Given training data X,y, infer a continuous function f such as:
y = f(x) + € where: e ~ N (0,07)

GPs are probability distributions over a latent function p (f).
Bayes rule for GPs:

p(ylf, X) p (f)
fIX)y)=—F—3+—"
p(fIX.y) p (y|X)
Prior : pP (f) ~ GP (Oa k (Xa X/))
Likelihood:  p(y|f, X) Normal for regression
Posterior: p (f|X, )’) ~ GP (mposta kpost (X, X/))

For Normal likelihood and a GP prior the posterior has a closed
form solution
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Gaussian Process for Classification

GPs from the Bayesian perspective

Given data X,y € [0; 1], for a binary classification problem, infer a
continuous function f such as:

1
= . ~ 2 g
y = A(f(x) +¢€) ,where: € N(O,ay) andA (f (x) +¢€) 1+ exp (yifi + €)

p(yIf,X)p(f)
p(t[Xy) = —"——5—
X =0 i)
Prior : p(f) ~GP (0, k(x,x"))
Likelihood:  p(y|f,X) ~ A(y;fi + €) if y; = 1 otherwise 1 — X\ (y;f; + €)
Posterior:  p(f|X,y) No closed form solution!!!

The logistic likelihood and the GP prior are not conjugate
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Gaussian Process for Classification

Approximation Methods

Many methods exist to approximate the posterior:

o Laplace approximation
Taylor series expansion about mode of posterior

o Expectation propagation
Minimize divergence between approximated and true distribution

@ Markov Chain Monte Carlo
Take a large amount of samples from posterior

A. Polydoros, A. Billard (EPFL) Gaussian Processes 6 May 2020 28 / 43



Gaussian Process for Classification

Laplace Approximation

Approximate as a Normal distribution:

pEX.y)~ N (f.c)
where: f = arg mfaxp(f|X,y) (11)
C=-Vlogp(FIX,y) ¢
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Gaussian Process for Classification

Laplace approximation of the posterior

Find f by maximizing log-posterior :

log p (f|X,y) = log p (y|f, X) + log p (f)
Differentiating w.r.t f

Vlog p (fIX,y) =V log p (y[f,X) — K~'f
V2 log p (f1X,y) =V?log p (y|f, X) — K™
=-D—-K!

B (F1X, y) NN(F, (D+K*1)_1> (12)
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Gaussian Process for Classification

Making predictions

Posterior predictive distribution:

B(F.[x, X, Y) :/p(f*|x*,x,v,f),3(fx,v)df

M
Es [f| X, Y, x.] = Z aik (x., %) ,where: a = [K (X, X) + o7 ] f
i=1

Vars [f.| X, Y, x.] = k (xax.) — k (Xx.)T (D + K1) k(X x.)

Class predictions:
p(ye = 1%, Xs, Y) = /p(y* = 1/f,) p(fi|x., X, Y)df,

No closed form solution, has to approximated
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Gaussian Process for Classification
Toy Examples

(a) Linear (b) Second degree polynomial

(d) Periodic

Figure: GP classification of a XOR dataset for different kernels
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Gaussian Process for Classification

Impact of kernel width

(b) width =1 (c) width =2

Figure: GP classification of a XOR dataset using RBF kernel with various widths
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|
GPLVM

Outline

@ GPLVM is an unsupervised variation of GPs

@ Probabilistic dimensionality reduction

Derivation:
o PCA to Probabilistic PCA
@ Dual Formulation of Probabilistic PCA
e GPLVM through kernel trick
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GPLVM
From PCA to Probabilistic PCA

M data Y € R9 at the original space and X their projection to the latent
space.
PCA: y = Ax
Propbabilistic PCA
@ Introduce stochasticity by adding noise variable € ~ N/ (O, azl)
y=Ax+e€
@ Likelihood:
p(y|A,x) ~ N (Ax,o?l)
@ Integrate over x to get marginal likelihood
p(YIA) = [ p(yIA,x)p(x)
@ Requires prior over x:

p(x) ~ N (0,1)
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GPLVM
From PCA to Probabilistic PCA

Marginal likelihood has a closed form solution:
p(y|A) =N (07 AAT + 02X>
Assuming Y are i.i.d:

M
p(YIA) =] r(yalA)
i=1

Maximizing marginal likelihood wrt to A yields unique optimal solution®

®Tipping and Bishop. "Probabilistic principal component analysis."
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GPLVM
Dual Probabilistic PCA

Probabilistic PCA: Integrate over x and optimize w.r.t to A

p(ylA) = / P (yIA, %) p (%)

Dual Probabilistic PCA Integrate over A and optimize w.r.t to x

p(ylx) = / p (YA, %) p(A)

Prior over A:

D

p(A) =[] N (a4 0.1)

d=1
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GPLVM
Dual Probabilistic PCA

Marginal likelihood:

D
p(YX) = [TV (y4:0.X7X + o21)

d=1

GPLVM:
o XTX =K (x,x') Inner product allows to apply kernel trick
° N(yd; 0,K(x,x")+ 02|) A Gaussian process on each dimension of Y

@ Minimize negative log-marginal likelihood w.r.t X

—log p(yq4|X) = % (DN log 27 + D log |K| + tr (K_lYTY))
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GPLVM
Comaprison with kPCA

Method ‘ Proximity ‘ Mapping ‘ Non-Linear ‘ Probabilistic

GPLVM YES X=Y YES YES
kPCA YES Y =X YES NO

A. Polydoros, A. Billard (EPFL) Gaussian Processes 6 May 2020 30 /43



|
GPLVM

Examples

<« cass2 > class1

s classo < class2 > class1 s class0

latent dimension 0
latent dimension @

-2.5 -2.0 -15 -1.0 0.5 0.0 05 1.0
latent dimension 1

(a) RBF kernel (b) Linear Kernel
Figure: GPLVM with different kernels

latent dimension 1
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|
GPLVM

Choosing latent dimensions

—2000

—3000 -

—4000 -

-5000

BIC

—6000

—7000

—8000

T T T T T T
2 4 6 8 10 12
Latent Dimensions

Figure: BIC as function of the number of latent dimensions

BIC = Mlog (k) — 2log (p(Y|X)) (13)
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|
GPLVM

Choosing latent dimensions

a4 class0

< class 2 » class1

latent dimension 7

=2.0 =15 -1.0 -0.5 0.0 0.5 L0
latent dimension 1

Figure: Combination of latent dimensions which increase separability
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Gaussian Processes

Discussion

o Advantages

Generalization

Accuracy

Metric of Uncertainty
Auto-tuning of hyper-parameters

o Disadvantages
o Computational complexity
@ Recommended packages

o GPy
o scikit-learn
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