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Linear Regression
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What affects most computational growth?Ridge Regression computational cost grow primarily as a function of:

A. Number of datapoints

B. Dimension of the datapoints

Ridge Regression: computational costs
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In linear ridge regression, the complexity is 

,  :  dimension of datapoint

In nonlinear ridge regression, the complexity is:

,  :  number of datapoints
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Solution in nonlinear case:

,

      .
,   ,  =

      .
, ,

,

T

M

XX I

k X x K X X

w X

k x x

y I k X x

k x x






−

−

=



 
   
   

= +   
    
   

 

+ y

y



4

MACHINE LEARNING – 2012MACHINE LEARNING II

Is the Ridge Regression optimum unique?

A. Yes

B. No

Ridge Regression: optimality
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always invertible for 0.

Solution in nonlinear case:

,

      .
,   ,  =

      .
, ,

,

T

M

XX I

k X x K X X

w X

k x x

y I k X x

k x x






−

−

=



 
   
   

= +   
    
   

 

+ y

y It is unique if  is fixed but 

optimality depends on .



MACHINE LEARNING – 2012MACHINE LEARNING IIMACHINE LEARNING – 2012MACHINE LEARNING II

Which is true?

A. PR only has a closed-form solution

B. GPR only has a closed-form solution

C. Both have closed-form solutions

Linear Probabilistic Regression (PR) vs GPR
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Which is computationally most costly?

A. PR is the most costly.

B. GPR is the most costly.

C. Both are as costly.

Linear Probabilistic Regression (PR) vs GPR
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In both the complexity is:

O(M 3), M : number of datapoints
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GPR requires to compute a series
of exponentials which is somewhat
more demanding
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GPR and Probabilistic Regression
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Nonlinear case:
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Ridge regression and GPR end up with similar expression for the nonlinear regressor.
GPR provides a model of the full density (with variance) and has a method to 
estimate the hyperparameters.
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GPR and Probabilistic Regression
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In the special case when the distribution is zero mean and   , 
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Gaussian Process Regression (GPR)

Kernel function

Linear: k (x,x) = xT x + c where c is the intercept


|| x − x ||2

l

RBF: k (x,x )= exp− where l is the kernel width (lengthscale)

Polynomial: k (x,x) = (xTx + c)p
where p is the degree of polynomial

139

 where T is the period.
2sin2 ( || x − x || /T )

l
Periodic: k(x, x ) = exp−
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Draw estimate of the effect of the kernel
What is the inference away from the data?

GPR – RBF Kernel - Inference

10
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Draw estimate of the effect of the kernel

Linear: k (x,x)= xTx+ c

Linear kernel

Inference away from the data – RBF kernel
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MACHINE LEARNING II
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Draw estimate of the effect of the kernel

Linear: k (x,x)= xTx+ c

Linear kernel

Inference away from the data – RBF kernel

12
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Variance → +/-1
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Inference away from the data – RBF kernel

13

MACHINE LEARNING II

Variance for =0.05
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Variance versus Likelihood

Variance increases while the likelihood decreases as 

both depend on the distance to datapoints; the size of 

the growth of the variance in between datapoints is

dictated primarily by the noise parameter.
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Kernel width = 0.1 Kernel width = 1

Which plot corresponds to the smallest kernel width? A. 2

B. 1

GPR with RBF – Effect of kernel width

15

A B
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Draw estimate of the effect of the kernel

A good result with a well-chosen kernel width

What would be the effect of reducing the kernel width to an extremely 

small value?

GPR – RBF Kernel – kernel width
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Too small a kernel width

GPR – RBF Kernel – kernel width

17
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Gaussian Process Regression (GPR)
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Kernel function

( )Linear: ,  where c is the interceptTk c = +x x x x

( ) ( )Polynomial: , where  is the degree of polynomial
p

Tk c p = +x x x x

22sin ( || || / )
Periodic: ( , ) exp  where  is the period.
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GPR - Kernels

Draw estimate of the effect of the kernel for polynomial kernel

19

Polynomial: k (x,x) = (xTx)p
where p is the degree of polynomial

MACHINE LEARNING II
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GPR - Kernels

P=1

23

MACHINE LEARNING II
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GPR - Kernels

P=2

24
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GPR - Kernels

Polynomial: k (x,x)= (xTx+ c)p
where p is the degree of polynomial

Draw estimate of the effect of the kernelP=3
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No longer converges 

to zero but follows the 

polynomial function. ( )
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Variance grows again as 
a function of the noise 
and of being far from
datapoints.

Rate of growth
follows the order of the 
polynomial.
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Which has the highest period? A. 1

B. 2

GPR with periodic kernel

A B

T = 1 T = 2



25

 where T is the period.
)

( 2sin2 ( || x − x || /T ) 
Periodic: k(x, x ) = exp −

22sin ( || || / )
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T
k T

  −
 = − 

 

x x
x x

MACHINE LEARNING II



26

ADVANCED MACHINE LEARNING

26

Kernel is usually Gaussian kernel with stationary covariance function

→ Non-Stationary Covariance Functions can encapsulate local variations in 

the density of the datapoints.

Gibbs’ non stationary covariance function (length-scale a function of x)
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GPR: nonstationary kernel

Heinonen, Markus, et al. "Non-stationary gaussian process regression with hamiltonian monte carlo." Artificial Intelligence and 

Statistics. PMLR, 2016.

The parameters can be learned automatically (Heinonen et al. 2016).
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GPR: nonstationary kernel

Heinonen, Markus, et al. "Non-stationary gaussian process regression with hamiltonian monte carlo." Artificial Intelligence and 
Statistics. PMLR, 2016.
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Ridge Regression: Kernel

Large kernel width

Small kernel width
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Ridge Regression: kernel

P=2

P=5
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Ridge regressionRidge Regression versus GPR with RBF kernel

GPR

The regressive line of ridge regression has similar properties to that of Gaussian
Process Regression. GPR adds a notion of variance.

3

0

Ridge regression

MACHINE LEARNING II
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Ridge regressionRidge Regression versus GPR with polynomial kernel

GPR

Ridge regression

3

1
MACHINE LEARNING II

The regressive line of ridge regression has similar properties to that of Gaussian
Process Regression. GPR adds a notion of variance.
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Gaussian Process Extension

for

Classification and Manifold Learning
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Gaussian Process for Classification
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Gaussian Process for Classification
GPs from the Bayesian perspective
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Gaussian Process for Classification
GPs from the Bayesian perspective
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Gaussian Process for Classification
GPs from the Bayesian perspective

( )*
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Class predictions for class l
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( )* * *How can one compute the posterior estimate, 1| , , ?p y = x X Y
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Gaussian Process for Classification
GPs from the Bayesian perspective

( ) ( ) ( )* * *

*

* * *

* *

*

Class predictions for class label 1:

| , , ( | , ) ,   | ,  1 1y yp xfp p fd== = =x X ffY x X Y f

Bayes rule for GPs:
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Prior: ( ) ( )( )~ 0, ,p k x xf

Likelihood: ( )| ,p y f X

Posterior: ( ) ( )( )post post| , ~ , ,p m k x xf X y

Posterior predictive distribution of class label:
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* *( | , , ) | , , , | ,p p p d= f x X Y f x X Y f f X Y f

No closed form predictions. It must be approximated. 
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Gaussian Process for Classification
Approximation methods

Many methods exist to approximate the posterior:

• Laplace Approximation

• Expectation propagation

• Markov Chain Monte Carlo 
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Gaussian Process for Classification
Impact of RBF kernel width

Width =0.1

GP classification of a XOR dataset with various RBF widths.

Width = 1
Width = 2 
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Gaussian Process for Classification
Toy examples

2nd degree polynomial

GP classification of a XOR dataset with different kernels

RBF Periodic
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Gaussian Process for Manifold Learning
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Gaussian Process Latent Variable Models - GPLVM

GPLVM:

▪ extends the concept of Gaussian Process to determine latent manifold,

▪ is a manifold learning technique, 

▪ is an unsupervised variant on Gaussian Process. 

▪ can be seen as a probabilistic dimensionality reduction technique.

▪ Derivation

o PCA to Probabilistic PCA

o Dual formulation of Probabilistic PCA

o GPLVM through kernel trick 

(omitted from these slides, see supplement)
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PCA: principle

PRINCIPLE:

❑ Define a low dimensional manifold in the original space.

❑ Represent each data point X by its projection Y onto this manifold.

FORMALISM:

 
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1

Consider a data set of  -dimensional data points
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PCA aims at finding a linear map ,s.t
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Standard PCA: Variance Maximization through Eigenvalue Decomposition

 

( )

1

1) Zero mean: ' -

2) Compute Correlation matrix: C= ' '

3) Compute eigenvalues using 0,  1...

4) Compute eigenvectors 

Al

using 

5) Choose first  eigenvectors: ,..

gori

..  

thm:

wi

T

i

i i i

q

X X X E X

X X
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Ce e

q N e e





→ =

− = =

=

 1 2

1 1

1

1
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6) Project data onto new basis: ' '' ',  ..

......

q

N

q q

q q

e e

X X W X W

e e

   

 
 

→ = =  
 
 
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LIMITATION OF STANDARD and MSQ PCA:

The variance-covariance matrix needs to be calculated:

❑ Can be very computation-intensive for large datasets with a high # of 

dimensions

❑ Does not deal properly with missing data

❑ Incomplete data must either be discarded or imputed using ad-hoc 

methods

❑ Outlying data observations can unduly affect the analysis

→ Probabilistic PCA addresses the above limitation
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PCA with Latent variable models

Latent variables correspond to unobserved variables. They offer a 

lower dimensional representation of the data and their dependencies.

In PCA, the latent variable model consists then of:

– X: observed variables (Dimension N)

– z: latent variables (Dimension q)

with q<N

Less dimensions results in more parsimonious models
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Probabilistic PCA

Idea: Assume that the data X were generated by a Gaussian latent variable 
model, Probabilistic PCA (PPCA) consists then in estimating the density of 
the latent variable through maximum likelihood.

Probabilistic PCA is then PCA through projection on a latent space.

Advantages of expressing PCA in probabilistic form:

❑ It can easily be extended to estimation from mixtures of PCA models.

❑ The estimated density can easily be used for classification and other 
Bayesian computation afterwards. 
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Probabilistic PCA

( )

The latent variables z generate the observables x following:

- The latent variable z are centered and white, i.e. z 0,

-  is a parameter (usually the mean of the data )

-  the noise follows

Tx W z

I

x

 





= + +

= 

( )2 a zero mean Gaussian distribution 0,  

-  is a  matrix.TW N q

 =  



If the variance of the noise is diagonal 

→ conditional independence on the observables 

given the latent variables

→ z encapsulate the correlations.
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Probabilistic PCA

( )

2

2

Assuming further an isotropic Gaussian noise model N (0, I) 

implies that the conditional probability distribution of the observables given

the latent variables ( | ) is given by:

( | ) ,T

p x z

p x z W z I







 =  +

( ) ( )2

The marginal distribution can be computed by integrating out 

the latent variable and is then:

, T

zp x W W I =  +
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Probabilistic PCA

( ) ( ) ( ) 

 1

2

1

If we set ,  one can then compute the log-likelihood:

L , , ln 2 ln
2

where  is the sample covariance matrix of the complete set of M 

datapoints X= ,..., .

T

M

B W W I

M
B N B tr B C

C

x x







   −

= +

= − + +

The maximum likelihood estimate of  is the mean of the dataset X.

The parameters  and  are estimated through E-M.B 




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Probabilistic PCA

( )

( )

2

1
* 2 2

2
*

1

The maximum-likelihood estimate of B and  is:

1

where  is the matrix of eigenvectors of C and 

the  are the associated eigenvalues.

T

q q

N

j

j q

T

q

j

B W I R

N q

W







 







= +

=  −

=
−


Residuals
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Probabilistic PCA: Dimensionality Reduction

Reduction of the dimensionality is obtained by looking at the latent variable 
and estimating their distribution.

( ) ( )( )

( )( ) ( )

1 1 2

2

1

The conditional distribution of the latent variable over the data 

is given by:

| ,

In the absence of noise, one recovers standard PCA, as 

 is an orthogonal projecti

q q

T

T

p z x B W x B

B W W I

W W W x





 





− −

−

=  −

= +

− on of x onto

the latent space.

Is again Gaussian!
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Probabilistic PCA

Assumptions:

– underlying latent variable has a Gaussian distribution

– linear relationship between latent and observed variables

– isotropic Gaussian noise in observed dimensions
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Probabilistic PCA: reconstruction

( )( )
1

2 2

ˆNote that projection of the data through  is no longer

optimal in a mean-square sense because of the noise parameter, 

i.e. when 0,  the projection through 

is no longer orthogonal.

N

T

q

T

x W z

W W I W  
−

=

 +

( )( )* * * 2

evertheless, optimal reconstruction of the observed data from 

the conditional latent mean z may still be obtained through 

x̂ .T TB B B BB I z = + +
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From Linear Probabilistic PCA

To Probabilistic Kernel PCA

→ GPLVM
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Probabilistic PCA: Advantages

Probabilistic PCA can be applied as a simple covariance model, using 

W and 

Reduces computation of full covariance matrix through projection to 

dimension q.

PPCA offers a natural approach to the estimation of the principal axes 

in cases where some, or indeed all, of the data vectors X exhibit one or 

more missing (at random) values.

→ Exploit E-M approach to estimating the latent variables
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Two-side projection:   what if we need to manipulate data in the 

projected space and then reconstruct them back to the original?

kPCA: From Feature to Original Space

kPCA -> does not define the projection sending back from 

feature space to the original data-space.

= i ii cykwx ),(

Easy

Hard
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2

,: ,:

1

( | , ) ( | , )
M

i i

i

p N 
=

=Y X W y Wx I

Define Gaussian prior

over the parameter, 

Integrate out the parameters:

Latent Variables Optimization:

2

,:

1

( | ) ( | 0, )
M

T

i

i

p N 
=

= +Y X y XX I

,:

1

( ) ( | , )i

i

p N


=

=W w 0 I

:W

Dual Probabilistic PCA II
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2

1

( | , ) ( | 0, )
M

T

i

i

p  
=

=  +Y X y XX I

11
ln 2 ln ( )

2 2 2

TM
L tr − 
= − − −K K YY IXXK 2+= T

1 1 1TL
N− − −

= −


K YY K X K X
X

The marginalized likelihood takes the form:

To find the latent variables, optimize the log-likelihood:

The gradient of      w.r.t. the latent variables:L

Dual Probabilistic PCA II
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Dual Probabilistic PCA II

0XKXSKK
X

=−=


 −−− 111L
XXXXIS =+ −12 )( T

1 T−= S YYIntroducing the substitution:

We rewrite the gradient of the likelihood as:

or

K
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Dual Probabilistic PCA II

0XKXSKK
X

=−=


 −−− 111L
XXXXIS =+ −12 )( T

1 T−= S YY

TT ULVVLLSU =+ −− 112 ][ 

TULVX =

)( 22 LIUSU += 

Introducing the substitution:

We rewrite the gradient of the likelihood as:

or

Let us consider the single value decomposition of                      ,

therefore,  we can rewrite the equation for the latent      :X

The solution is invariant to      :V
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Dual Probabilistic PCA II

)( 22 LIUSU += The covariance matrix of 

the observable data

Eigenvectors of S

Λ is the matrix 

of eigenvalues of S

This implies that the elements from the diagonal of     are given byL

2

1

2 )(  −= iil

TULVX =Need to find matrices in the decomposition of 



7777

MACHINE LEARNING – 2012MACHINE LEARNING II

Dual Probabilistic PCA II

Solution for PPCA:

Solution for Dual PPCA:

Equivalence is of the form:

ΛUYUY WW

T = T

W LVUW =

UΛUYY =T TULVX =

2

1
−

= UΛYU T

W

If one knows a solution of PPCA then the solution of Dual PPCA  can 

be computed directly through the equivalence form.

Marginalization over the latent variables and parameters is 

equivalent. But marginalization over the parameters allows for 

interesting extensions; see next.
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2

1

( | ) ( | 0, )
M

T

i

i

p N 
=

= +Y X y XX I

Gaussian Processes I

To recall, the marginal likelihood in Dual PPCA is given by:

The following distribution is known as the Gaussian Process:

))(,0|()|( XKyXy Np =

Hence the marginal likelihood in dual PPCA is the combination 

of M independent Gaussian Processes.
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2

1

( | ) ( | 0, )
M

T

i

i

p N 
=

= +Y X y XX I

Gaussian Processes I

To recall, the marginal likelihood in Dual PPCA is given by:

The following distribution is known as the Gaussian Process:

))(,0|()|( XKyXy Np =

Hence the marginal likelihood in dual PPCA is the combination 

of M independent Gaussian Processes.

Gaussian Processes have many 

useful properties (e.g. for modeling 

nonLinear functional dependencies).  

For now, we just need to pay attention 

to the covariance function
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2

,:

1

( | ) ( | 0, )
M

T

i

i

p N 
=

= +Y X y XX I

In the marginal likelihood of Dual PPCA:

Linear Covariance function

with the noise term

What if we use a non-linear covariance function (e.g. RBF)?

Non-linear Latent Variables Model
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Non-linear Latent Variables Model

o Consider a Gaussian kernel:

o No longer possible to find a closed-form solution when optimizing 

for X. No longer possible to simple proceed to a single value 

decomposition

o Instead find gradient  w.r.t. and optimize using 

conjugate gradients









−−= '

2
exp)',( 2

1 xxxx


k

2

21 ,,, X

We get a non-linear mapping into a low dimension manifold:

Gaussian Process Latent Variables Model
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Computationally heavy → sparse technique: pick a subset of 

datapoints according to how much they reduce the posterior process 

entropy.

1 1 1

2
1

Optimization of the non-linear model is done by gradient descent on:

,          

with each element of K given by ( , ') exp '
2

TL
K YY K K

K

k




− − −
= − 



 
= − − 

 
x x x x

We get a non-linear mapping into a low dimension manifold:

Gaussian Process Latent Variables Model

Non-linear Latent Variables Model
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In contrast to linear models  such as PCA and PPCA,  which 

allow for a closed-form solution to determine the latent variables 

(or projections in feature space), GP-LVM requires to proceed 

iteratively  through gradient-based optimization. 

Therefore, a smart initialization is important.

Usually initialization with PCA works fine…

GPLVM: Optimization
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But not always…

We have already seen the ‘swiss roll’ dataset, when discussed kPCA.

For this data the true structure is known: the manifold is a two-dimensional 

square twisted into a spiral along one of its dimensions and living in a 

three-dimensional space.

GPLVM: Initialization
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GP-LVM with PCA initialization gives poor results.

Initialization with Isomap allows to restore the original structure 

of the data.

GPLVM: Initialization
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Locality Preservation

Most dimensionality reduction techniques preserve local distances

kPCA maps smoothly from data in original space to latent 
space and points close in the data space are close in the latent 
space but points close in the latent space may be not close in the 
data space 

GP LVM does not  preserve local distances but points close in 
the latent space are close in the data space
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Motion capture data of human walking. The paths of the sequences in 
the latent space are shown as solid lines. The dimension of the original 
data is 102 (34 markers  x 3 coordinates).
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The data obtained from a subject breaking into a run 
from standing – cyclic motion. 

neighbors in time are 

connected with lines



9797

MACHINE LEARNING – 2012MACHINE LEARNING II

We are supposed to see a smooth periodic pattern in the 
latent space. But, instead …

Non-smooth  

mapping
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Lowe and Tipping [1997] made latent positions a function of 

the data.

Function was either a multi-layer perceptron or a radial 

basis function network.

),( wyijij fx =
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The same idea can be used to force the GP-LVM 

to respect local distances [Lawrence and Candela, 2006].

By constraining each       to be a smooth mapping from      

local distances can be respected

This works because in GP-LVM, one maximizes w.r.t. 

the latent variables and does not integrate these out.

ix

iy
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GP-LVM normally proceeds by optimizing

with respect to       using

The back constraints are of the form

where       are a set of unknown parameters

We can compute            via the chain rule and optimize 

)|(log)( XYX pL =

X
X

L

),( :, Qfx ijij y= Q

Q
L



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GP-LVM with the back constraints applied to the runner dataset , 

that we have seen before.

Smooth cyclical 

patter
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Gaussian Process Latent Variable Models
From PCA to Probabilistic PCA

M datapoints. Notation: Y data in original space and X projections in latent space
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Missing Data
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Recovered
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Gaussian Process
Discussion

Advantages:

❑ Generalizations

❑ Accuracy

❑ Estimation of predictions’ uncertainty

❑ Auto-tuning of hyper-parameters

Disadvantages:

❑ Computational complexity 

Implementations in Python:

• Gpy

• Scikit-learn
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Comparison Across Ridge Regression, GPR and RVR



130

MACHINE LEARNING – 2012MACHINE LEARNING IIADVANCED MACHINE LEARNING

Closing words on Regression
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Quick Recap of Relevance Vector Regression
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Marginal likelihood derivation

Follows from (1)
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Quick Recap of Gaussian Process Regression

(2)

133



MACHINE LEARNING – 2012MACHINE LEARNING IIMACHINE LEARNING – 2012MACHINE LEARNING II

Discussion on GPR
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RVR converted to GP
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Comparison of RVR and GPR

RVR GPR
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Recap of GP-LVM
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Kernels in GP-LVM

138



139139

MACHINE LEARNING – 2012MACHINE LEARNING II

Comparison across non-linear regression techniques seen in class

( ) ( ) ( )
1

The regressive solution has the same form:

,
M

i

i

i

y x f x k x x
=

= =

All techniques estimate the .

SVR, RVR and GPR are based on the same regressive model.

While GPR uses all datapoints, SVR/RVR select 

a subset of datapoints with non-zero . 

Optimization for GPR can

estimate the kernel parameters.

Different optimization functions  Different results



□ The techniques differ not only in their algorithm, but also in the 

number of hyperparameters and how easy it is to define them.

► Some have bounded hyperparameters, others not.
► Some hyperparameters have a geometrical interpretation, others not.

□ Some techniques (GPR, RVR) provide a metric of uncertainty of the 

model, which can be used to determine when inference is trustable.

□ Some techniques (-SVR, RVR) are designed to be computationally 

cheap at retrieval (very few support vectors, few models).

□ Other techniques (GPR) are meant to provide very accurate estimate 

of the data, at the cost of retaining all datapoints for retrieval.

140
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Comparison

No easy way to determine which regression technique fits best your problem. Here are

only a few metrics. Other aspects matters, e.g. precision of estimate, ease to determine

the hyperparameters, availability of code.

Computational Costs at Training

SVR / -SVR
Convex optimization 

(SMO solver)

Parameters grow O(M*N)

GMR
EM, iterative technique, 

needs several runs 

Parameters grow 

O(K*N2)

M: number of datapoints; N: Dimension of data; K: Number of basis functions

GPR
Inversion of huge matrix O(NM3) 

Iterative technique for learning 

parameters, but done once only

Boosting/Bagging
Iterative technique, speed at 

training depends on complexity 
of basic models, usuall O(NM2)

Growth of costs with size of data

C
o
m

p
u

ta
ti

o
n

a
l
st

ep
s RVR

Iterative optimization 

Memory: O(NM2) 

Computation: O(NM3)
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Comparison

Computational Costs at Testing

M: number of datapoints; N: Dimension of data; K: Number of Gauss Functions in GMM model / of RBF in LWPR

GPR
O(M3)

Boosting/Bagging
Fast if model simple

C
o
m

p
u

ta
ti

o
n

a
l
st

ep
s

SVR
Growths with

O (number of SV) ~ O(M)
SV - Small fraction of original

data, very small with RVR)
GMR

O(N2K), K small

RVR / -SVR
Growths with

O (M) but very small 
number of SV-s)

Comparison
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Growth of costs with size of data
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