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Linear Regression

y=f(xw)=w'x

yA

It has an exact solution w'=( XX ' )_1 Xy if:

a) XX is not singular (it is singular with not enough datapoints)

b) Data is not noisy (otherwise no single match to y' = (w, x'))
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Ridge Regression: computational costs

Ridge Regression computational cost grow primarily as a function of:

A. Number of datapoints
B. Dimension of the datapoints

Solution in linear case:
w'=(XXT+21)" Xy
always invertible for 4 > 0.

Solution in nonlinear case:
-1

y=k(X,x)| K(X,X)+4l

Gram Matrix in
feature space

y, k(X,x) =

In linear ridge regression, the complexity is
O(N?), N : dimension of datapoint

In nonlinear ridge regression, the complexity is:
O(M?), M : number of datapoints
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Ridge Regression: optimality

Is the Ridge Regression optimum unique?

A. Yes
B. NO

Solution in linear case:
w'=(XXT+ A1) Xy

always invertible for A4 > 0.

Solution in nonlinear case:

4 k(x,x)
y=K(X,x)| K(X,X)+Al |y, k(X,x) = It is unique if A is fixed but
Gram Nitrx i ' optimality depends on A
feature space k(XM ,X) )



MACHINE LEARNING I -

Linear Probabilistic Regression (PR) vs GPR

Which Is true?

A. PR only has a closed-form solution
B. GPR only has a closed-form solution
C. Both have closed-form solutions

PR estimates y given a test point X : GPR estimates y given a testing point X"

y*=E{p(y|x*,X,y}}=§x*TA1Xy y:iaik(x*,x‘)
i=1

with & =[ K (X, X)+0,%1 |y
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Linear Probabilistic Regression (PR) vs GPR

Which is computationally most costly?

A. PR s the most costly.
B. GPR isthe most costly.
C. Both are as costly.

PR estimates y given a test point X : GPR estimates y given a testing point X"

y*=E{p(y|x*,X,y}}=%x*TA1><y y:iaik(x*,x‘)
i=1

with & =[ K (X, X)+0,%1 |y

GPR requires to compute a series
of exponentials which is somewhat
more demanding

In both the complexity is:
O(M3), M : number of datapoints
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WACHMNELEARMNGH S
GPR and Probabilistic Regression

Probabilistic Regression

Ridge Regression

_ Linear case:

Linear case: 1
. . w=AZTlu +—A'X
w =A 1xy w Hw f y
-1
A=(XXT+21) A=t xxT 43
G&'

Nonlinear case: Nonlinear case (GPR):

=3 ak(x.x) =3 ak(xx)

a=[K(X, X))+ "y with o =[ K (X, X)+o?1 |y

Ridge regression and GPR end up with similar expression for the nonlinear regressor.
GPR provides a model of the full density (with variance) and has a method to

| actimate the hvnernarametrarc
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GPR and Probabilistic Regression

Probabilistic Regression

Ridge Regression

_ Linear case:
Linear case: 1
. Al w=AZTlu +—A'X
w =A 1Xy w Hw 62 y
-1
A=(XXT+21) A=t xxT 43
06’
Nonlinear case: Nonlinear case (GPR):

yziaik(xi,x) yziaik(x,x')

a=[K(X, X))+ "y with o =[ K (X, X)+o?1 |y

In the special case when the distribution is zero meanand X, =71 ,
2

probabilistic regression reduces to ridge regression with A4 = I
T
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Gaussian Process Regression (GPR)

Kernel function

y=Ely X’X,Y}=%:aik(x,xi)

with & =[ K (X, X)+o°1] y

Linear: k (x,x) = x"x’+ ¢ where c is the intercept

X ="

4

RBF: k (x,x")=exp— where Jis the kernel width (lengthscale)

Polynomial: k (x,x’) = (xTx’ + c)p where p is the degree of polynomial

- o
Periodic: k(x,x") =exp— 2sin (V|I|£X X/T) where T is the period.

GGG
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Inference away from the data — RBF kernel

5~ can be modified to introduce a prior on the mean:
M |
E{p(y|x,X,y)}:m(x)+Zaik(x‘,x) . . . . .
T = S R R

--------------------------------------------------------------------------------------------------------------------------------

________________________________________________________________________________________________________________________________
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Inference away from the data — RBF kernel

A5 !

var(p(y 1)) =K (6 )=K (% X)[K (X, X)+ 0,21 'K (X, X) > K (x,x) =1 (RBF)
I I I I I """""""""" | -------- Vari;':mce > -;-/-1
25 20 L5 1.0 0.5 99 _________________ 05 _________________ 10 _________________ 1 52025 -----------



MACHINE LEARNING I -

var(p(y|x))=K(xx)=K(xX)[ K(X,X)+c. 1| K(X,x)

Vafiance for c=0.05. ,,,,, |
Variance for =0.01

7 /
SN \
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Variance increases while the likelihood decreases as
both depend on the distance to datapoints; the size of
the growth of the variance in between datapoints is
dictated primarily by the noise parameter.




GPR with RBF — Effect of kernel width

Which plot corresponds to the smallest kernel width? A2
B. 1
A B
] . gz‘:ﬁdence 1 _:- [C):z?idence

1.0 0.5 0.0 05 10 15 =10 e 0.0 0.5 10 L5

Kernel width =0.1 Kernel width =1
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A good result W|th aweII chosen kernel W|dth

I: lengthscale parameter
~ Kernel Width '

4&45 What v'vo'ul'd be the effect of reduci'ng the kernel width to an extremely |

~ small value?

-0.9 oia 057 -0§.6 05 -04 -03 -02 01 00 01 02 03 04 05 06 07 08 09



GPR - RBF Kernel — kernel width

Too small a kernel width

N ||
SAVAY |
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Gaussian Process Regression (GPR)

Kernel function

y=E{y x,X,y}ziaik(x,xi)

with & =[ K (X, X)+o°1] y

Other kernels

Linear: k (x,x") = x"x’+c where c is the intercept

Polynomial: k (x,X") = (xTx' + c)ID where p is the degree of polynomial

- 9 o
2sin”(7 || Xx—x ”/T)j where T is the period.

Periodic: k(x,x") = exp(— y
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GPR - Kernels

Polynomial: k (x,x") = (x_Tx’ )p_wher_e p is the degree of polynomial
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GPR - Kernels
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No longer converges

to zero but follows the
polynomial function.

Q K&\ 4

M
i\ P
> o, (x"x')" —Homogeneous

i=1
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Variance grows again as

a function of the noise
and of being far from

datapoints.

Rate of growth

follows the order of the
polynomial.

[ Wy | =

U.aJ

(el = al
V. IV

-0.7!

—var(p(y|x))=ax" - Ax*"

-0.75

-125 -1.00

-0.50

-0.25

____________________________________________________________
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GPR with periodic kernel

Which has the highest period? A 1
B. 2
22 ’
Periodic: k(x,x") :exp(—ZSIn (””2(_)( ”/T)j where T is the period.
A B
14 : (?;t;idence 14 = EZE?idence

-5 . . , ; ; =5

1.5 -1.0 ~0.5 0.0 0.5 1.0 1.5
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GPR: nonstationary kernel

Kernel is usually Gaussian kernel with stationary covariance function
—> Non-Stationary Covariance Functions can encapsulate local variations in
the density of the datapoints.

L T
x) 2l (x") )2 N(x—x)(x—x)
k(x,x")= E L J exp Z '
1505100 S0+ ()
Gibbs’ non stationary covariance function (length-scale a function of x)

The parameters can be learned automatically (Heinonen et al. 2016).

Heinonen, Markus, et al. "Non-stationary gaussian process regression with hamiltonian monte carlo." Artificial Intelligence and
Statistics. PMLR, 2016.
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GPR: nonstationary kernel

Stationary function 95% posterior
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Heinonen, Markus, et al. "Non-stationary gaussian process regression with hamiltonian monte carlo.” Artificial Intelligence and
Statistics. PMLR, 2016.
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Ridge Regression: Kernel

Ridge Regression with RBF kernel

80
Q mmmmm Qutput of Model Using Validation Data
60 - ° o Training Samples
40 Large kernel width
o

20

0 -
_20 | | | 1 | | | | | |

-5 -4 -3 -2 -1 0 1 2 3 4 5

Ridge Regression with RBF kernel

1

40

0 s Output of Model Using Validation Data
30r ° Training Samples

Small kernel width
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100

80

40

20

Ridge Regression: kernel

Ridge Regression with Polynomial Kernel

mmmmmm Output of Model Using Validation Data
o Training Samples

P=2

200

100

-100

P=5
Ridge Regression with Polynomial Kernel

s Output of Model Using Validation Data
° Training Samples

-200 :



Ridge Regression versus GPR with RBF kernel

GPR

| Ridge regression

The regressive line of ridge regression has similar properties to that of Gaussian
Process Regression. GPR adds a notion of variance.
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Ridge Regression versus GPR with polynomial kernel

GPR

Ridge regression

The regressive line of ridge regression has similar properties to that of Gaussian
Process Regression. GPR adds a notion of variance.
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Gaussian Process Extension
for
Classification and Manifold Learning
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Gaussian Process for Classification
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Gaussian Process for Classification

GPs from the Bayesian perspective

Recall that GPR takes a bayesian approach to estimating f (), where:
y=f(x)+e where: e~ N (0,07)

An alternative approch to interpret derivation of GP is to say that

it models a collection of variables { fi=f(x )}i“i1 that jointly follow a
Gauss distribution (same approach as that seen for RVM/RVR).

This generates a distribution of functions p( f ):

p(1)~GP(m(x).k(xX))
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Gaussian Process for Classification

GPs from the Bayesian perspective

Under a GP, each estimate y is an instance function from the distribution p(f)

yi~/\/([m(xi)],K), yi:E{fi(x)}

v, ] _m(x1)_ _k(x1,x1)+02 k(x,x) ... k(x1,XM) ]

y:z N m(xz) | k(xz.,x1) k(XZ,X.2)+G2 k(XZ.,XM)

| Yu _m(XM)_ i k(XM,x1) k(XM,XZ) k(XM,XM)+02_
K

The predictiony, = f (x*)for a novel input X™ can be obtained
by computing the conditional p(y* | X7, X ,Y),
Set of training pairs of datapoints: X =[x"..x"1,Y =[y,...y,, I’
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Gaussian Process for Classification

GPs from the Bayesian perspective

Class predictions for class label 1:
p(y. =1|x",X.,Y)

Naive approch. Applies a threshold on output of GPR, e.g.
y. =+1 if y > threshold

How can one compute the posterior estimate, p( y. =1|x., X.,Y)?

p(y.=1)
%%%%% &ﬁ%é%‘
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Gaussian Process for Classification

GPs from the Bayesian perspective

Class predictions for class label 1:
p(v. =11X . X, Y) = [ p(y. =LIf.) p. X, X, Y)df., f.=f(x')

p(yIf,X)p(f
/ Bayes rule for GPs: p(f | X,y) = ( ) p(f) \

p(y1X)
Prior: p(f) ~ QP(O, k(x, X'))
Likelihood: p(y|f,X)
\ Posterior: p(f | X, y) = QP(mpost, Kipost (X, X’))/

Posterior predictive distribution of class label:

p(F. X", X, Y) = [ p(f. X XY, F) p(F| X, Y)df

No closed form predictions. It must be approximated.
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Gaussian Process for Classification

Approximation methods

Many methods exist to approximate the posterior:
« Laplace Approximation
« EXpectation propagation
« Markov Chain Monte Carlo
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Gaussian Process for Classification
Impact of RBF kernel width

Width =0.1

0.9
0.8
0.7

Width = 1 Width = 2

GP classification of a XOR dataset with various RBF widths.
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Gaussian Process for Classification

Toy examples

Periodic

GP classification of a XOR dataset with different kernels




MACHINE LEARNING I -

Gaussian Process for Manifold Learning
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Gaussian Process Latent Variable Models - GPLVM

GPLVM:

= extends the concept of Gaussian Process to determine latent manifold,
* isa manifold learning technique,

= jsan unsupervised variant on Gaussian Process.

= can be seen as a probabilistic dimensionality reduction technique.

= Derivation
o PCAto Probabilistic PCA
o Dual formulation of Probabilistic PCA
o GPLVM through kernel trick

(omitted from these slides, see supplement)



PCA: principle

PRINCIPLE:

U Define a low dimensional manifold in the original space.

U Represent each data point X by its projection Y onto this manifold.

FORMALISM:

Consider a data set of M N-dimensional data points

X={x1"" and x'eR",i=1..,M:

j=1,..N

PCA aims at finding a linear map A,s.t
ARY—5RY g<N
Y=AX, Y :{yl,,,,_, y“"} and each y' e R®
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Standard PCA: variance Maximization through Eigenvalue Decomposition

Algorithm:

1) Zero mean: X — X '= X -E{X}

2) Compute Correlation matrix: C=X"( X ')T

3) Compute eigenvalues using [C - 41/=0, i=1...N

4) Compute eigenvectors using Ce, = A&,

5) Choose first g < N eigenvectors: e,,....e, with 4, 2 4, >...4,

(eh....6" )
6) Project data onto new basis: X '— X "=W X", W, =] ..
1
G-
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LIMITATION OF STANDARD and MSQ PCA:

The variance-covariance matrix needs to be calculated:

L Can be very computation-intensive for large datasets with a high # of
dimensions

(J Does not deal properly with missing data

L Incomplete data must either be discarded or imputed using ad-hoc
methods

 Outlying data observations can unduly affect the analysis

—> Probabilistic PCA addresses the above limitation
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PCA with Latent variable models

Latent variables correspond to unobserved variables. They offer a
lower dimensional representation of the data and their dependencies.

In PCA, the latent variable model consists then of:
— X: observed variables (Dimension N)

— z: latent variables (Dimension q)

with g<N

Less dimensions results in more parsimonious models
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Probabilistic PCA

Idea: Assume that the data X were generated by a Gaussian latent variable
model, Probabilistic PCA (PPCA) consists then in estimating the density of
the latent variable through maximum likelihood.

Probabilistic PCA is then PCA through projection on a latent space.

Advantages of expressing PCA in probabilistic form:

It can easily be extended to estimation from mixtures of PCA models.

1 The estimated density can easily be used for classification and other
Bayesian computation afterwards.
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Probabilistic PCA

The latent variables z generate the observables x following:
X=W'z2+u+¢
- The latent variable z are centered and white, I1.e. z = N(O, I )

- 1 1s a parameter (usually the mean of the data x)

- ¢ the noise follows a zero mean Gaussian distribution ¢ = N(O, Zﬁ)

-W' isaN xqg matrix. /’

If the variance of the noise is diagonal

—> conditional independence on the observables
given the latent variables

—> z encapsulate the correlations.
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Probabilistic PCA

Assuming further an isotropic Gaussian noise model N (0,5°1)
Implies that the conditional probability distribution of the observables given
the latent variables p(x | z) Is given by:

p(X] z):N(WTz+y,afl)

The marginal distribution can be computed by integrating out
the latent variable and is then:

p,(X)=N(,W'W +c21)
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Probabilistic PCA

If we set B=W'W + oI, one can then compute the log-likelihood:

L(B.o,, )= —%{N In(27)+In|B|+tr(B™C)|

where C is the sample covariance matrix of the complete set of M

datapoints X={x',..., x" }.

The maximum likelihood estimate of « is the mean of the dataset X.
The parameters B and o, are estimated through E-M.
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Probabilistic PCA

The maximum-likelihood estimate of B and &~ is:

1

B =W, (A,-0’1)?R

Residuals

where WqT IS the matrix of eigenvectors of C and
the 4, are the associated eigenvalues.
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Probabilistic PCA: Dimensionality Reduction

Reduction of the dimensionality is obtained by looking at the latent variable
and estimating their distribution.

The conditional distribution of the latent variable over the data

IS given by: s again Gaussian!
p(21X)=N(BW (x-p),B67)
B=W,W, +c’I

In the absence of noise, one recovers standard PCA, as

((W )T W) W (x— ) is an orthogonal projection of x onto

the latent space.
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Probabilistic PCA

Assumptions:

— underlying latent variable has a Gaussian distribution

— linear relationship between latent and observed variables
— isotropic Gaussian noise in observed dimensions

plx)

v
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Probabilistic PCA: reconstruction

Note that projection of the data through X =WqT7 IS no longer
optimal in a mean-square sense because of the noise parameter,

-1
i.e. when & > 0, the projection through ((W )TW +a§|) W

IS no longer orthogonal.

Nevertheless, optimal reconstruction of the observed data from
the conditional latent mean Z may still be obtained through

% =B"(B'B")(BB" +071)z+ .
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From Linear Probabilistic PCA
To Probabilistic Kernel PCA

- GPLVM
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Probabilistic PCA: Advantages

Probabilistic PCA can be applied as a simple covariance model, using
W and o.

Reduces computation of full covariance matrix through projection to
dimension q.

PPCA offers a natural approach to the estimation of the principal axes
In cases where some, or indeed all, of the data vectors X exhibit one or
more missing (at random) values.

- Exploit E-M approach to estimating the latent variables
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KPCA: From Feature to Original Space

Two-side projection: what if we need to manipulate data in the
projected space and then reconstruct them back to the original?

kPCA -> does not define the projection sending back from
feature space to the original data-space.

Hard

>

X:Ziwik(y’ci)

<€

Easy
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Dual Probabilistic PCA I

Latent Variables Optimization:
M
p(Y | X, W) =] [N(y;. | Wx,,o°l)
i=1

Define Gaussian prior
over the parameter, W :

(W) = [N(w, [0.1)

Integrate out the parameters:

p(Y 1) =] [N, 10.XXT + 1)
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Dual Probabilistic PCA I

The marginalized likelihood takes the form:

M
p(Y | X,0) =] [N(y; |0, XX" +5°I)
=1

To find the latent variables, optimize the log-likelihood:

L=—¥In2n—§ln|K|—%tr(K‘lYYT) K=XX"+c°l

The gradient of L w.r.t. the latent variables:

a = KYY' KX - NK™X
oX
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Dual Probabilistic PCA I

Introducing the substitution: S=N"YY'

We rewrite the gradient of the likelihood as:

L _KASKIX-KIX=0 or S(62l+XXT) X=X
oX \ ' J

|

K



Dual Probabilistic PCA I

Introducing the substitution: S=N"YY'

We rewrite the gradient of the likelihood as:

S—; =KISKIX-K*X=0 or S(’l+XX") X=X

Let us consider the single value decomposition of X =ULV' ,
therefore, we can rewrite the equation for the latent X :

SU[L + o’ LTV =uLVv!
The solution is invariantto V:

SU =U(c’l + L)
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Dual Probabilistic PCA I

Need to find matrices in the decomposition of X =ULV’

A is the matrix
of eigfnvalues of S

The covariance matrix ofg) SU = U('Gzl 4 L&)
the observable data '

Eigenvectors of S

‘ This implies that the elements from the diagonal of L are given by

;= (4 _02)%




Dual Probabilistic PCA I

@& Solution for PPCA:
Y'YU, =U, A wW=U,LV’
@& Solution for Dual PPCA:

YY'U=UA X =ULV'
@& Equivalence is of the form: .
U, = YTUA 2

If one knows a solution of PPCA then the solution of Dual PPCA can
be computed directly through the equivalence form.

Marginalization over the latent variables and parameters is
equivalent. But marginalization over the parameters allows for
interesting extensions; see next.
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Gaussian Processes |

To recall, the marginal likelihood in Dual PPCA is given by:

(Y1 X) = NGy, 10K +o71)

1=1

The following distribution is known as the Gaussian Process:

p(y | X) =(N(y]0,K(X)))

Hence the marginal likelihood in dual PPCA is the combination
of M independent Gaussian Processes.
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Gaussian Processes |

To recall, the marginal likelihood in Dual PPCA is given by:

(Y1 X) = NGy, 10K +o71)

1=1

The following distribution is known as the Gaussian Process:

p(y | X) =(N(y]0,K(X)))

Gaussian Processes have many
useful properties (e.g. for modeling
nonLinear functional dependencies). dual PPCA is the combination
For now, we just need to pay attention [::esses.

to the covariance function
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Non-linear Latent Variables Model

In the marginal likelihood of Dual PPCA:

M
p(Y [ X) =] [N(y;, 10, XX" +5°l)
i=1

]

Linear Covariance function
with the noise term

What if we use a non-linear covariance function (e.g. RBF)?
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Non-linear Latent Variables Model

We get a non-linear mapping into a low dimension manifold:
Gaussian Process Latent Variables Model

o Consider a Gaussian kernel:
04
k(x,x') = o exp[—;zux—xﬂ

o No longer possible to find a closed-form solution when optimizing
for X. No longer possible to simple proceed to a single value
decomposition

o Instead find gradient w.r.t. X al,az,gzand optimize using
conjugate gradients
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Non-linear Latent Variables Model

We get a non-linear mapping into a low dimension manifold:
Gaussian Process Latent Variables Model

Optimization of the non-linear model is done by gradient descent on:

a =KYY'K™*=NK™,
oK

with each element of K given by k(x,Xx') = ¢, exp{—%”x — X||}

Computationally heavy - sparse technique: pick a subset of
datapoints according to how much they reduce the posterior process
entropy.
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GPLVM: Optimization

@ In contrast to linear models such as PCA and PPCA, which

allow for a closed-form solution to determine the latent variables
(or projections in feature space), GP-LVM requires to proceed
iteratively through gradient-based optimization.

& Therefore, a smart initialization is important.

& Usually initialization with PCA works fine...
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GPLVM: Initialization

But not always...

We have already seen the ‘swiss roll’ dataset, when discussed kPCA.

For this data the true structure is known: the manifold is a two-dimensional
square twisted into a spiral along one of its dimensions and living in a
three-dimensional space.

3,

.
o
P S
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GPLVM: Initialization

& GP-LVM with PCA initialization gives poor results.

@ Initialization with Isomap allows to restore the original structure
of the data.
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Locality Preservation

Most dimensionality reduction techniques preserve local distances

& kPCA maps smoothly from data in original space to latent
space and points close in the data space are close in the latent
space but points close in the latent space may be not close in the
data space

@ GP LVM does not preserve local distances but points close in
the latent space are close in the data space
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Motion capture data of human walking. The paths of the sequences in
the latent space are shown as solid lines. The dimension of the original
data is 102 (34 markers x 3 coordinates).

1.5
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The data obtained from a subject breaking into a run
from standing — cyclic motion.

1.5
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We are supposed to see a smooth periodic pattern in the
latent space. But, instead ...

1.5

Non-smooth
15 mapping
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@ Lowe and Tipping [1997] made latent positions a function of
the data.

X = fj(yi’W)

& Function was either a multi-layer perceptron or a radial
basis function network.



MACHINE LEARNING I -

@ The same idea can be used to force the GP-LVM
to respect local distances [Lawrence and Candela, 2006].

By constraining each  to beXg smooth mapping from

Yilocal distances can be respected

@ This works because in GP-LVM, one maximizes w.r.t.
the latent variables and does not integrate these out.
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& GP-LVM normally proceeds by optimizing
L(X) =log p(Y| X)

oL
with respect to X using -

& The back constraints are of the form

Xij = fj (yi,: , Q) where Q are a set of unknown parameters

oL
& We can compute 20 via the chain rule and optimize
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GP-LVM with the back constraints applied to the runner dataset ,
that we have seen before.
15

I
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Gaussian Process Latent Variable Models
From PCA to Probabilistic PCA

M datapoints. Notation: Y data in original space and X projections in latent space




MACHINE LEARNING I =P-L

Missing Data




Recovered
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Gaussian Process
Discussion

Advantages:

O Generalizations

O Accuracy

 Estimation of predictions’ uncertainty
O Auto-tuning of hyper-parameters

Disadvantages:
O Computational complexity

Implementations in Python:

« Gpy
e Scikit-learn
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Comparison Across Ridge Regression, GPR and RVR
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Closing words on Regression
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Quick Recap of Relevance Vector Regression

o Considers each y; := y(z;) and y; ~ N (¢i(z;)ci, 0?) and collectively,
p(Y|a,0) = N(®a, 0%)
o The function ® = [¢1, ..., ¢ar] € RMXMFD) where each

¢i = [1 k(zi,z1),..., k(zi,zm)] € R a = [ao,...,am] "

e Considers a; ~ N(0,s; '), k is the kernel function.

@ Prediction likelihood of output is also Gaussian:

p(y|Y) = ‘/‘p(y’a,SA[Ap,O'A[Ap)/) alY, s VAP . O M A da

o p(ylY) ~ N (us, 02), with
o = Oarap®(@)Snar®¢’ (2)Y, 0F =0rap +¢(@)Emard’ (z)
S=("%0®+8)
@ Marginal likelihood of output in RVR (also a convolution integral):
p(Yls,0°) = /p(Y|a,02)p(a|s. o’ )do = N(0,0°T + DS 'd")
T T
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Marginal likelihood derivation

Recall that convolution of two Gaussian distributions is also a Gaussian distribution:

Given p1(z) = N(a,A); p2(x) =N (b, B),

We have, p1 % p2(2) = /p(z — z)p(x)de = N(a+ b, A+ B) (1)

Simplifications:

p(Y|a,0°) = ;exp (— HY i a” ) — p(Y — <I)Ta) = N(O,O'QI) ‘

V2o 202
and since p(c;) = N(0,s; 1),
plo) = N(0,57) —> ) = N(0,85'a")
By definition,

p(Y|s,0%) = ‘/p(Y|a,02)p(as,o*2)da
=p(Y —¢' o) xp(®' )

=N(0,0’ T+ 35S '®") Follows from (1)
-
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Quick Recap of Gaussian Process Regression

e Considers each y; := y(z;) and y; ~ N (0, k(zi, z;))
o k(xz;,x;) is the symmetric positive definite kernel (or covariance) function.
@ All y; are jointly Gaussian:
k(z1,21)...k(x1,2Mm)
p(Y)=N(0,K(X, X)), KX, X)= 1)
k(xi,zm) ... k(xrm,zrm)

o K(X,X) e RM*M js mathematically similar to ® in RVR (which is in
RM X (M-I—l))

@ Covariance function specifies a distribution over functions, each sample of
distribution in (1) is a function!

@ Prediction by maximising marginal likelihood:

p(y(z)|Y) = N(k(z, X)K(X,X)'Y,k(z,2) — k(z, X\)K(X, X) 'k (z,X)) (2)
M::ran Var‘izglce

where k(x, X) is a row vector [k(z,z1) ... k(z,zMm)].
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Discussion on GPR

e If noise is assumed on output y; = y(z;) + &, & ~ N(0, %), change
K(X,X)to K(X,X) + 0°I inEqn (2)

@ Covariance function must be symmetric and lead to a positive semi definite
covariance matrix across all points on the range (satisfy Mercer’s theorem)

@ Covariance function may be decomposed to continuous an orthonormal basis of
Eigen functions e; with eigenvalues \;

K(X,X) =Y Xes(X)ef (X), \i>0
=1
= Ke; = Aie; = e;rK_lei — )\;1

e Eigen functions of square exponential kernel are periodic curves: \; increases
with frequency
@ Prior likelihood on Y prefers Eigen functions with high Eigenvalues (smooth

functions):
p(Y) = (2m)"/*(Det(K)) 2exp(~  Y(K(X,X))'Y )

W
Estimator is biased to its lower values

@ GP can be approximated by retaining Eigen functions corresponding to high
Eigenvalues.

GGGy
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RVR converted to GP

@ RVR can be thought of as a GP with a data dependent prior

@ Marginal likelihood of output in RVR:
p(Y|s,0?) = N(0,6* T+ ®S~'®"), S =diag(so,...,sm)
= N(0,0°T + Q(X, X))
o Q(X, X)=05""1®"

@ Therefore kernel of RVR converted to GP is symmetric, positive definite for any
chosen kernel function k(z, y).

@ Predicted variance is similar to GP: confident close to given data points, high
values of variance away from the data set.
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Comparison of RVR and GPR

RVR GPR

° Based on Bayesian inference o Based on Bayesian inference
@ Prediction is a linear function of Y. e Prediction has the form

has the form: _f2(ac, X)Y, . y(z) = Z;”Zl g(z, X)Y, where

f(@,X) =03 2pd(2)Emap®(X)e () g(z, X) = k(z, X\ )K(X,X)"'Y
¢ Data dependent Prior (arising from SVM) e Prior not necessarily data dependent
o Hyper parameters are s and o . :

@ Hyper parameter is kernel width of output

probability distribution

e Kernel need not satisfy Mercer’s condition o Kernel must satisfy Mercer’s condition

@ Automatically reduces number of basis functions as ¢ Not so useful kernel basis functions are not
some of them are rejected: (low computation cost) automatically rejected
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Recap of GP-LVM

e Given dataset: (X, Y), objective is to find the embedding of X in a lower
dimensional space.

@ Consider a prior on weights: P(W) = N (0, I)

@ Assume X is a latent variable (hidden)

e For starters, assume Y = W' X

@ Assume a prior distribution on Y

P(Y|W,X)=NW'X,BI)
@ Marginalization of parameter W leads to:

P(Y|X) = /P(YlW, X)P(W)dW =N(0, XX +p7'I )

Same as RVR considered as a GP!

e Maximize the log likelihood L(X) to obtain X as:

—1

X =ULVT, UeRM*, [ =diag(l;)eR™, =0 -8

A; is the eigenvalue associated with the jth eigenvector of D™ YY", Visan
arbitrary q X q rotation matrix.
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Kernels in GP-LVM

@ GP LVM Reduces the dimension of input data by treating them as latent
variables

@ Projection to feature space through nonlinear map possible:

XX" 4+ B 'Iisreplaced by K(X,X) + B~ 'I

o L(K(X)) is the modified log likelihood which cannot be optimised to get a
closed form solution
@ Gradients w.r.t kernel parameters must be computed and used to jointly optimise

them along with X In RVR only kernel parameters need to be optimized

o Probabilistic PCA — Assuming a linear kernel K(X, X) = XX '
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Comparison across non-linear regression techniques seen in class

SVR, RVR and GPR are based on the same regressive model.

The regressive solution has the same form:
M -

y(x)=f(x)= Zaik(x, x')
=1

T

Optimization for GPR can
All techniques estimate the a. estimate the kernel parameters.

While GPR uses all datapoints, SVR/RVR select
a subset of datapoints with non-zero «.

Different optimization functions = Different results
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Comparison across non-linear regression techniques seen in class

[1 The techniques differ not only in their algorithm, but also in the
number of hyperparameters and how easy it is to define them.

= Some have bounded hyperparameters, others not.
= Some hyperparameters have a geometrical interpretation, others not.

[1 Some techniques (GPR, RVR) provide a metric of uncertainty of the
model, which can be used to determine when inference is trustable.

[1 Some techniques (»-SVR, RVR) are designed to be computationally
cheap at retrieval (very few support vectors, few models).

[1 Other techniques (GPR) are meant to provide very accurate estimate
of the data, at the cost of retaining all datapoints for retrieval.
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Comparison

No easy way to determine which regression technique fits best your problem. Here are
only a few metrics. Other aspects matters, e.g. precision of estimate, ease to determine
the hyperparameters, availability of code.

Computational Costs at Training

§%

m SVR / wSVR RVR
ol
<) Convex optimization Iterative optimization
< (SMO solver) Memory: O(NM?)
g Parameters grow O(M*N) Computation: O(NM3)
S
dd
g GMR
Q [ ] [ ]
e EM, iterative technique, BOOStlng/Bagg|ng GPR
o needs several runs _ _
O Parameters grow lterative technique, speed at Inversion of huge matrix O(NM?3)
O(K*N?) training depends on complexity Iterative technique for learning
Lo of basic models, usuall O(NM?) parameters, but done once only
v
w Growth of costs with size of data w

M: number of datapoints; N: Dimension of data; K: Number of basis functions
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Comparison

Computational Costs at Testing

§%

Boosting/Bagging
SVR Fast if model simple

Growths with
O (number of SV) ~ O(M)

G M R SV - Small fraction of original

data, very small with RVR)
O(N2K), K small

RVR / »SVR
Growths with GPR

O (M) but very small
number of SV-s)

5, ,ﬁ“:(” o)

w Growth of costs with size of data

M: number of datapoints; N: Dimension of data; K: Number of Gauss Functions in GMM model / of RBF in LWPR

Computational steps
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