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Non-linear regression techniques

Part – II

Gaussian Process Regression
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PR is a statistical approach to classical linear regression that estimates the 

relationship between zero-mean variables y and x by building a linear model:

Probabilistic Regression (PR)
Creating the model
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If one assumes that the observed values of y differ from f(x) by an additive noise 

that follows a zero-mean Gaussian distribution (such an assumption consists of 

putting a prior distribution over the noise), then: 

Probabilistic Regression (PR)
Creating the model

Where have we seen this before? Answer: RVM / RVR

The addition of a Normal random variable to a constant variable leads y  to become a Normal random variable
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Assume that the data points are independently and identically distributed (i.i.d), 

the likelihood is:  
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Parameters of 

the model.

Probabilistic Linear Regression 
Maximum Likelihood Estimation
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Probabilistic Linear Regression 
Maximum Likelihood Estimation
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 Same with the OLS estimator

1
ˆ  Mean squared prediction error

Closed-form solution:
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w is treated as a random variable.

Set a prior on distribution of w:
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Hyperparameter

set by the user.

Probabilistic Linear Regression 
Maximum a Posteriori (MAP) Estimation
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Prior distribution over the weights: 

Model Likelihood:

Bayes Rule:

Prior and likelihood are conjugate distributions. The posterior has a closed form 

solution:
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Probabilistic Linear Regression 
Maximum a Posteriori (MAP) Estimation



8

ADVANCED MACHINE LEARNING

8

MAP estimates derive from the expected value of the posterior distribution:
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Probabilistic Linear Regression 
Maximum a Posteriori (MAP) Estimation

2

In the special case when the distribution is zero mean and   , 

probabilistic regression reduces  to ridge regression with  .
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Probabilistic Linear Regression 
Posterior Predictive Distribution

The predictive distribution is a distribution over output y. 

The integral has a closed form solution in the case of Normal/Gauss distributions
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Probabilistic Linear Regression 
Posterior Predictive Distribution
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The variance gives a measure of the 

uncertainty of the prediction:
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Bayesian regression depends on hyperparameter for priors on noise and w.

The marginal likelihood provides a metric to evaluate how well our model 

explains the observed data and can be used to select these hyperparameters.
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With a Gaussian prior and Gaussian likelihood, the marginal is also 

Gaussian and has a closed form solution.

Probabilistic Linear Regression 
Marginal Likelihood
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Probabilistic Linear Regression 
Marginal Likelihood

a) 

33.38

b) 

47.19

c) 

67.19
c) 

27.32

Negative Log-Marginal Likelihood for different models

Small noise

Small variance on w Small noise

Large variance on w

Large noise

Large variance on w
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Linear Probabilistic Regression in feature space
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Gaussian Process Regression (GPR)
From linear to nonlinear probabilistic regression

Inner product in feature space
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Gaussian Process Regression (GPR)
From linear to nonlinear probabilistic regression
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Gaussian Process Regression (GPR)
Hyperparameters
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RBF kernel, width = 0.1 RBF kernel, width = 0.5

The choice of kernel and its hyperparameters will strongly influence 

the goodness of the fit. 

( )
'

, '

x x

lk x x e

−
−

=

l: lengthscale parameter

~ Kernel Width



16

MACHINE LEARNING – 2012MACHINE LEARNINGADVANCED MACHINE LEARNING

16

Gaussian Process Regression (GPR)
Hyperparameters
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The value for the noise needs to be pre-set by hand.

It influence estimate of the expectation and variance of the model.
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Low noise:  =0.05

The larger the noise, the more uncertainty. The noise is <=1.

Gaussian Process Regression (GPR)
Hyperparameters

High noise:  =0.2
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Gaussian Process for Regression
Hyper-parameter tuning 

Hyper-parameters: kernel's parameters and noise variance 

One can automatically tune these hyperparameters by either:

o Crossvalidation

o Minimizing marginal Likelihood:
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ComplexityFit
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Automatically provides trade-off between fit and complexity

Gaussian Process Regression (GPR)
Hyperparameters Tuning
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GPR with RBF kernel predicts y=0 away from datapoints!

Contrasts to SVR that predicts y=b away 

from datapoints.

Gaussian Process Regression (GPR)
Prediction away from data
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Gaussian Process Regression (GPR)
Prediction away from data

Instead of assuming zero mean one can add a mean function
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Gaussian Process Regression (GPR)
Confidence

The variance and the likelihood

variance

Covariance across query point and training datapoints

grows as we move away from datapoints

Low likelihood

High likelihood
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Gaussian Process Regression: Summary

Advantages:

❑ Accuracy

❑ Estimation of predictions’ uncertainty

❑ Auto-tuning of hyper-parameters

Disadvantage:

❑ Computational complexity O(M3) 

(but there exist several sparse methods for GP)


