

ADVANCED MACHINE LEARNING

Non-linear regression techniques

Part – II

Gaussian Process Regression

Probabilistic Regression (PR)

Creating the model

PR is a statistical approach to classical linear regression that estimates the relationship between zero-mean variables y and x by building a linear model:

$$y = f(x, w) = w^T x, \quad w, x \in \mathbb{R}^N$$

Probabilistic Regression (PR)

Creating the model

If one assumes that the observed values of y differ from $f(x)$ by an additive noise ε that follows a zero-mean Gaussian distribution (such an assumption consists of putting a *prior distribution* over the noise), then:

$$y = w^T x + \varepsilon, \quad \text{with } \varepsilon = N(0, \sigma_\varepsilon^2)$$

The addition of a Normal random variable to a constant variable leads y to become a Normal random variable

Where have we seen this before?

Answer: RVM / RVR

Probabilistic Linear Regression

Maximum Likelihood Estimation

Training set of M pairs of data points $\{X, y\} = \{x^i, y^i\}_{i=1}^M$.

Likelihood of the regressive model

$$\begin{aligned} y &= \underbrace{w^T X}_{\text{Parameters of the model.}} + \underbrace{N(0, \sigma_\varepsilon^2)}_{\text{Parameters of the model.}} \\ \Rightarrow y &\sim p(y | X, \underbrace{w}_{\text{Parameters of the model.}}, \underbrace{\sigma_\varepsilon}_{\text{Parameters of the model.}}) \end{aligned}$$

Assume that the data points are independently and identically distributed (i.i.d), the likelihood is:

$$\begin{aligned} p(y | X, w, \sigma_\varepsilon) &\sim \prod_{i=1}^M p(y^i | x^i, w, \sigma_\varepsilon) \\ &= \prod_{i=1}^M \frac{1}{\sqrt{2\pi\sigma_\varepsilon^2}} \exp\left(-\frac{(y^i - w^T x^i)^2}{2\sigma_\varepsilon^2}\right) \end{aligned}$$

Probabilistic Linear Regression

Maximum Likelihood Estimation

Training set of M pairs of data points $\{X, \mathbf{y}\} = \{x^i, y^i\}_{i=1}^M$.

Likelihood of the regressive model

$$\begin{aligned} \mathbf{y} &= \mathbf{w}^T \mathbf{X} + N(0, \sigma_\epsilon^2) \\ \Rightarrow \mathbf{y} &\sim p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma_\epsilon) \end{aligned}$$

Fix σ_ϵ

$$\mathbf{w}_{\text{MLE}} = \arg \max_{\mathbf{w}} p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma_\epsilon^2 \mathbf{I}_M)$$

Closed-form solution:

$$\mathbf{w}_{\text{MLE}} = (\mathbf{X} \mathbf{X}^T)^{-1} \mathbf{X} \mathbf{y} \rightarrow \text{Same with the OLS estimator}$$

$$\hat{\sigma}_{\text{MLE}}^2 = \frac{1}{N} \left(\mathbf{w}_{\text{MLE}}^T \mathbf{X} - \mathbf{y} \right)^T \left(\mathbf{w}_{\text{MLE}}^T \mathbf{X} - \mathbf{y} \right) \rightarrow \text{Mean squared prediction error}$$

Probabilistic Linear Regression

Maximum a Posteriori (MAP) Estimation

Training set of M pairs of data points $\{X, y\} = \{x^i, y^i\}_{i=1}^M$.

Likelihood of the regressive model

$$\mathbf{y} = \mathbf{w}^T \mathbf{X} + N(0, \sigma_\varepsilon^2)$$
$$\Rightarrow \mathbf{y} \sim p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma_\varepsilon)$$

\mathbf{w} is treated as a random variable.
Set a prior on distribution of \mathbf{w} :

Hyperparameter set by the user.

$$p(\mathbf{w}) = N(0, \Sigma_w) \propto \exp\left(-\frac{1}{2} \mathbf{w}^T \Sigma_w^{-1} \mathbf{w}\right)$$

Probabilistic Linear Regression

Maximum a Posteriori (MAP) Estimation

Prior distribution over the weights:

$$\mathbf{w} \sim \mathcal{N}(\mu_{\mathbf{w}}, \Sigma_{\mathbf{w}})$$

Model Likelihood:

$$p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma_{\epsilon}^2 \mathbf{I}_M)$$

Bayes Rule:

$$\text{posterior} = \frac{\text{likelihood} \times \text{prior}}{\text{marginal likelihood}}$$

$$p(\mathbf{w} | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma_{\epsilon}^2) p(\mathbf{w})}{p(\mathbf{y} | \mathbf{X})}$$

Prior and likelihood are conjugate distributions. The posterior has a closed form solution:

$$p(\mathbf{w} | \mathbf{X}, \mathbf{y}) \sim \mathcal{N}(\mu_{\mathbf{w}|\mathbf{X},\mathbf{y}}, \mathbf{A}^{-1})$$

Probabilistic Linear Regression

Maximum a Posteriori (MAP) Estimation

MAP estimates derive from the expected value of the posterior distribution:

$$\mathbf{w}_{\text{MAP}} = \mathbb{E} \left\{ p(\mathbf{w} | \mathbf{x}, \mathbf{Y}) \right\}$$

$$\Sigma_{\text{MAP}}^{-1} = \mathbf{A} = \frac{1}{\sigma_\epsilon^2} \mathbf{X} \mathbf{X}^T + \Sigma_{\mathbf{w}}^{-1}$$

$$\mathbf{w}_{\text{MAP}} = \mu_{\mathbf{w}|\mathbf{X},\mathbf{y}} = \mathbf{A}^{-1} \Sigma_{\mathbf{w}}^{-1} \mu_{\mathbf{w}} + \frac{1}{\sigma_\epsilon^2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y}$$

In the special case when the distribution is zero mean and $\Sigma_{\mathbf{w}} = \tau I$,
 probabilistic regression reduces to ridge regression with $\lambda = \frac{\sigma_\epsilon^2}{\tau}$.

Ridge optimal regressor: $\mathbf{w}^* = (\mathbf{X} \mathbf{X}^T + \lambda I)^{-1} \mathbf{X} \mathbf{y}$

Probabilistic Linear Regression

Posterior Predictive Distribution

The predictive distribution is a distribution over output y .

$$p(y | x, X, \mathbf{y}) = \underbrace{\int p(y | x, w)}_{\text{Likelihood}} \underbrace{p(w | X, \mathbf{y})}_{\text{Posterior}} dw$$

The integral has a closed form solution in the case of Normal/Gauss distributions

$$\underbrace{p(y | x, X, \mathbf{y})}_{\text{Likelihood}} \sim N(\mu_y(x), \sigma_y^2(x)),$$

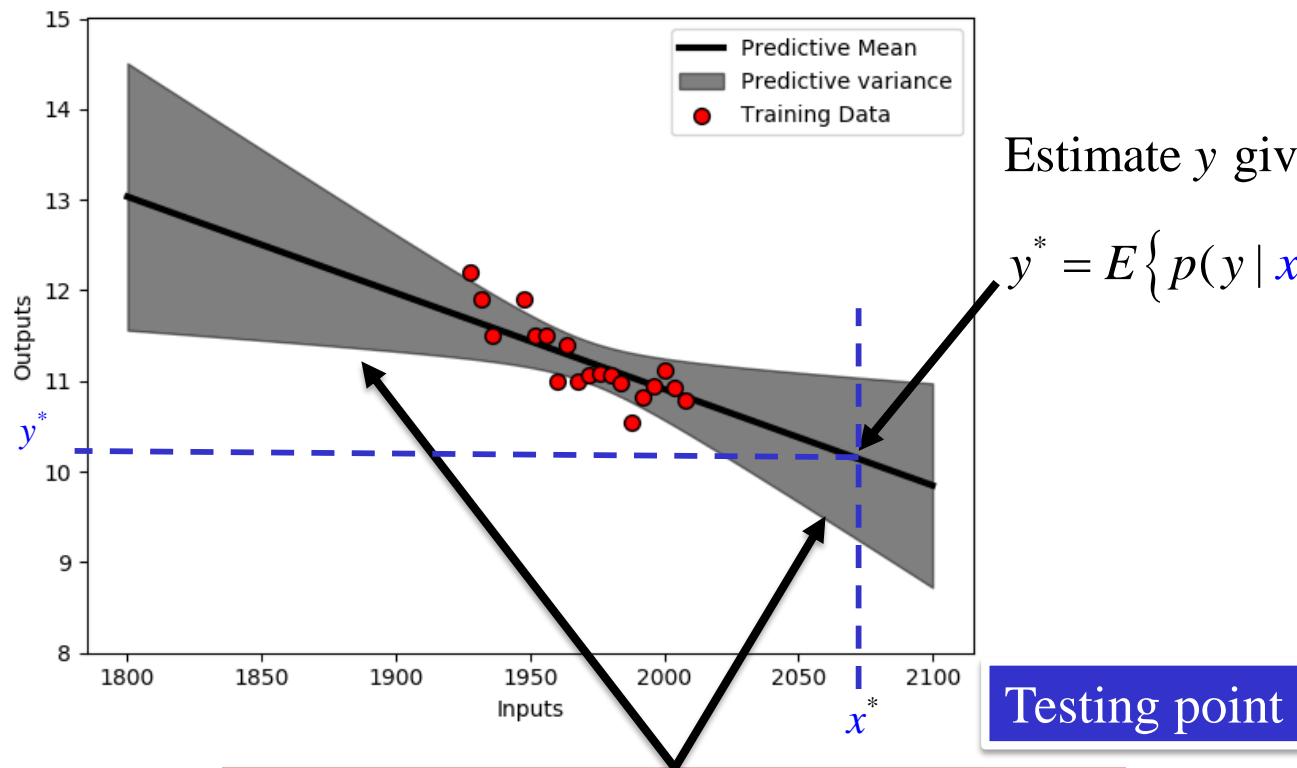
$$\mu_y(x) = x^T \underbrace{\mathbf{w}_{\text{MAP}}}_{\text{Posterior}} = \frac{1}{\sigma^2} x^T A^{-1} X \mathbf{y},$$

$$\sigma_y^2(x) = x^T A^{-1} x$$

$$A = \frac{1}{\sigma^2} X X^T + \Sigma_w^{-1}$$

Probabilistic Linear Regression

Posterior Predictive Distribution



Estimate y given a test point x^* :

$$y^* = E\{p(y | x^*, X, \mathbf{y})\} = \frac{1}{\sigma^2} \mathbf{x}^{*T} A^{-1} \mathbf{Xy}$$

Training datapoints

The variance gives a measure of the uncertainty of the prediction:

$$\text{var}\{p(y | x)\} = x^T A^{-1} x$$

Probabilistic Linear Regression

Marginal Likelihood

Bayesian regression depends on hyperparameter for priors on noise and w .

The marginal likelihood provides a metric to evaluate how well our model explains the observed data and can be used to select these hyperparameters.

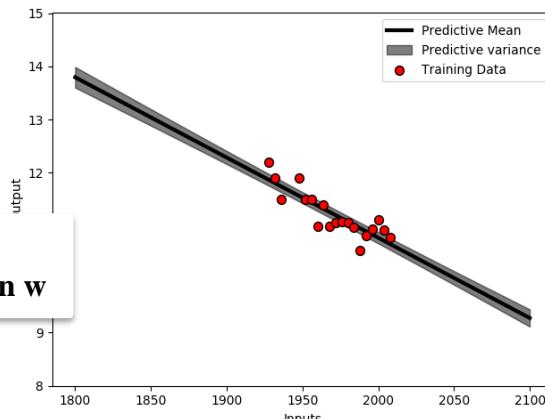
$$p(\mathbf{w} | \mathbf{X}, \mathbf{y}) = \frac{p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma^2_\epsilon) p(\mathbf{w})}{\underbrace{p(\mathbf{y} | \mathbf{X})}_{\text{Marginal Likelihood}}}$$

$$\underbrace{p(\mathbf{y} | \mathbf{X})}_{\text{Marginal Likelihood}} = \int p(\mathbf{y} | \mathbf{X}, \mathbf{w}, \sigma^2_\epsilon) p(\mathbf{w}) d\mathbf{w}$$

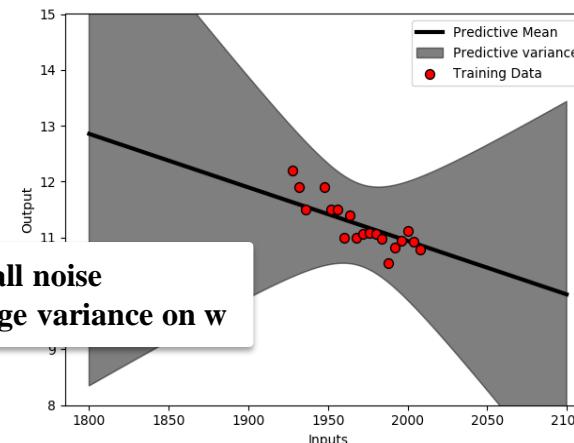
With a Gaussian prior and Gaussian likelihood, the marginal is also Gaussian and has a closed form solution.

Probabilistic Linear Regression

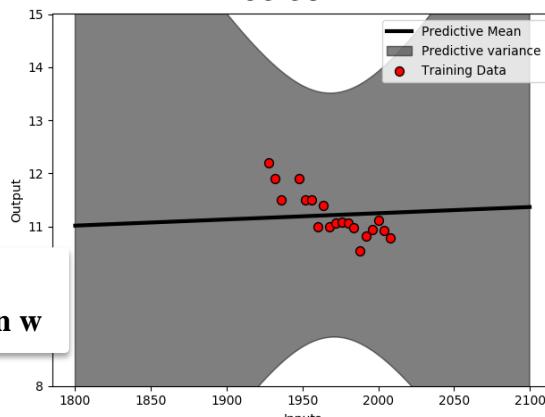
Marginal Likelihood



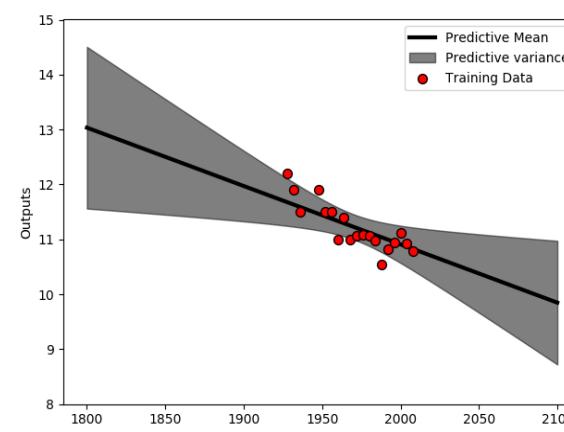
a)
33.38



b)
47.19



c)
67.19



Negative Log-Marginal Likelihood for different models

Gaussian Process Regression (GPR)

From linear to nonlinear probabilistic regression

Linear Probabilistic Regression

$$y = \underline{w^T x} + N\left(0, \sigma_\varepsilon^2\right)$$

$$p(y | x, X, \mathbf{y}) = N\left(\frac{1}{\sigma^2} \underline{x^T A^{-1} X y}, x^T A^{-1} x\right),$$

$$A = \frac{1}{\sigma^2} \underline{X X^T} + \Sigma_w^{-1}$$

Linear Probabilistic Regression in feature space

$$y = \underline{w^T \phi(x)} + \varepsilon, \quad \varepsilon \sim N\left(0, \sigma_\varepsilon^2\right)$$

$$p(y | x, X, \mathbf{y}) = N\left(\frac{1}{\sigma_\varepsilon^2} \underline{\phi(x)^T A^{-1} \Phi(X) y}, \underline{\phi(x)^T A^{-1} \phi(x)}\right)$$

$$\text{with } A = \sigma_\varepsilon^{-2} \underline{\Phi(X) \Phi(X)^T} + \Sigma_w^{-1}$$

Inner product in feature space

Gaussian Process Regression (GPR)

From linear to nonlinear probabilistic regression

Define the kernel as: $k(x, x') = \underline{\phi(x)^T \Sigma_w \phi(x')}$

and apply on the mean and the variance

$$y = \underline{E\{p(y | x, X, \mathbf{y})\}} = \sum_{i=1}^M \underline{\alpha_i k(x, x^i)}$$

$$\text{with } \underline{\alpha} = \left[\underline{K(X, X)} + \underline{\sigma_\varepsilon^2 I} \right]^{-1} \mathbf{y}$$

$$\underline{\alpha_i > 0} \quad \forall i$$

→ All datapoints are used in the computation!

$$\text{var}(p(y | x)) = \underline{k(x, x)} - \underline{K(x, X)} \left[\underline{K(X, X)} + \underline{\sigma_\varepsilon^2 I} \right]^{-1} \underline{K(X, x)}$$

Gaussian Process Regression (GPR)

Hyperparameters

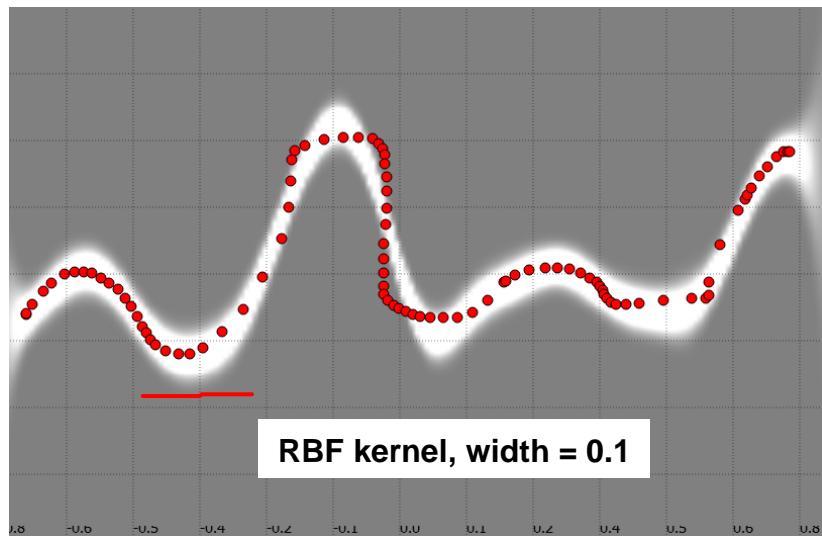
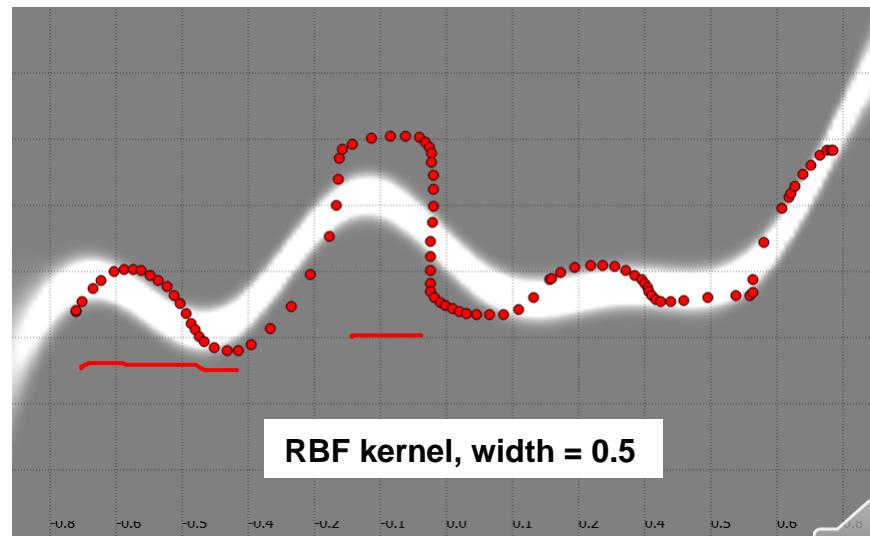
The choice of kernel and its hyperparameters will strongly influence the goodness of the fit.

$$y = \sum_{i=1}^M \alpha_i \underbrace{k(x, x^i)}_{\text{kernel}}$$

$$\text{with } \alpha = \left[K(X, X) + \sigma_\epsilon^2 I \right]^{-1} y$$

$$k(x, x') = e^{-\frac{\|x-x'\|}{l}}$$

l: lengthscale parameter
 \sim Kernel Width



Gaussian Process Regression (GPR)

Hyperparameters

The value for the **noise** needs to be pre-set by hand.
It influence estimate of the expectation and variance of the model.

$$y = \sum_{i=1}^M \alpha_i k(x, x^i)$$

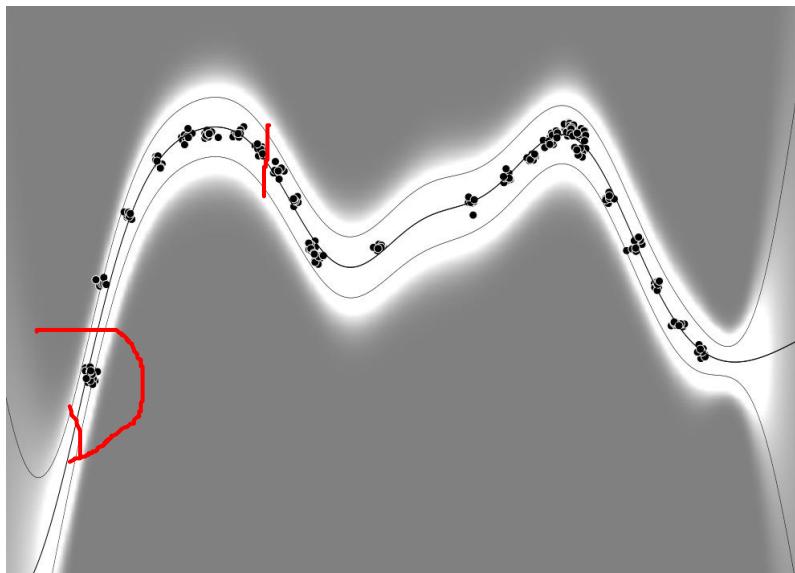
with $\alpha = [K(X, X) + \underline{\sigma_\varepsilon^2} I]^{-1} \mathbf{y}$

$$\text{var}(p(y|x)) = K(x, x) - K(x, X) [K(X, X) + \underline{\sigma_\varepsilon^2} I]^{-1} K(X, x)$$

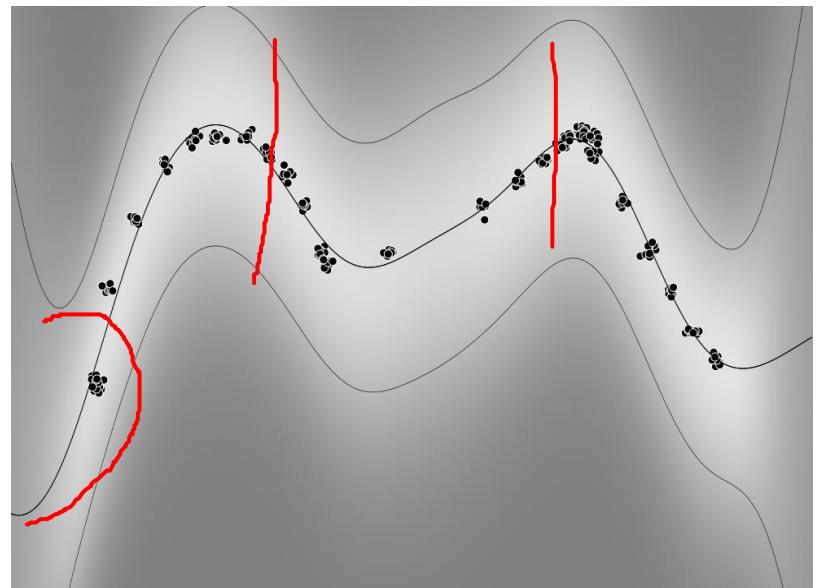
Gaussian Process Regression (GPR)

Hyperparameters

The larger the noise, the more uncertainty. The noise is ≤ 1 .



Low noise: $\sigma=0.05$



High noise: $\sigma=0.2$

Gaussian Process Regression (GPR)

Hyperparameters Tuning

Hyper-parameters: kernel's parameters and noise variance

One can automatically tune these hyperparameters by either:

- Crossvalidation
- Minimizing marginal Likelihood:

$$-\log(\mathbf{y} | \mathbf{X}, \sigma_\varepsilon, l) = 0.5 \underbrace{(\mathbf{y}^T (\mathbf{K} + \sigma_\varepsilon I)^{-1} \mathbf{y})}_{\text{Fit}} + \underbrace{\log |\mathbf{K} + \sigma_\varepsilon I|}_{\text{Complexity}} + \underbrace{\frac{M}{2} \log 2\pi}_{\text{Normalization}}$$

Automatically provides trade-off between fit and complexity

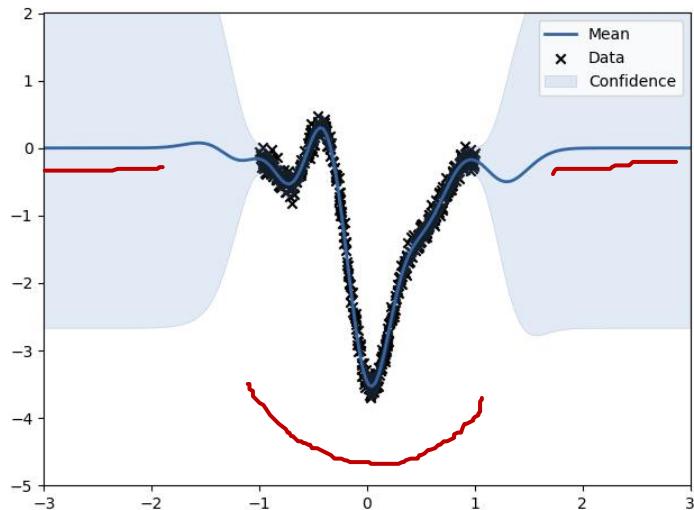
Gaussian Process Regression (GPR)

Prediction away from data

$$y = \sum_{i=1}^M \alpha_i k\left(x, \underline{x^i}\right)$$

with $\alpha = \left[K(X, X) + \sigma_\epsilon^2 I \right]^{-1} y$

GPR with RBF kernel predicts $y=0$ away from datapoints!



Contrasts to SVR that predicts $y=b$ away from datapoints.

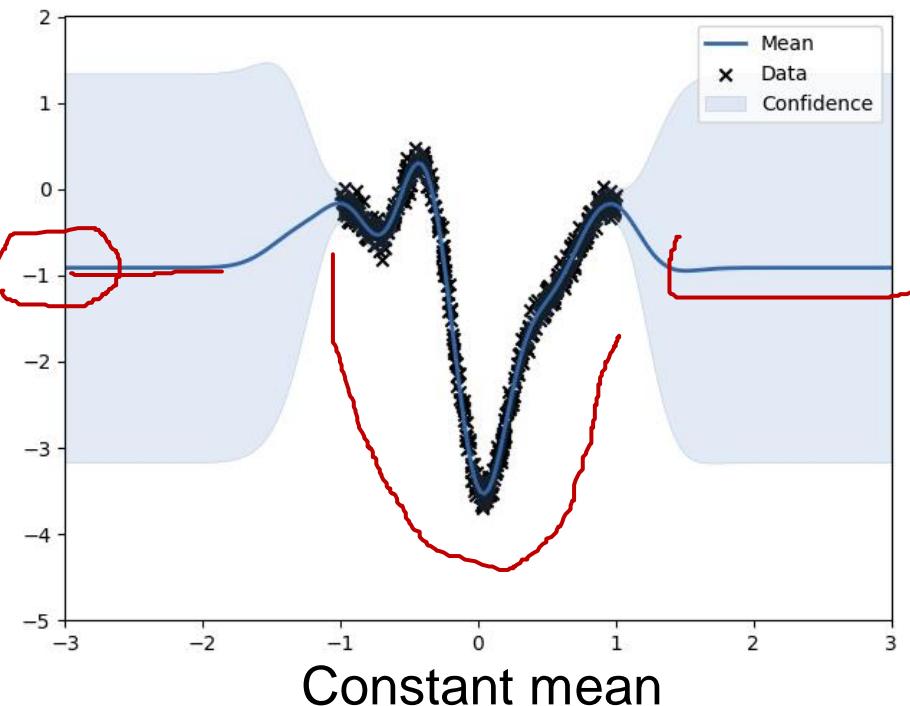
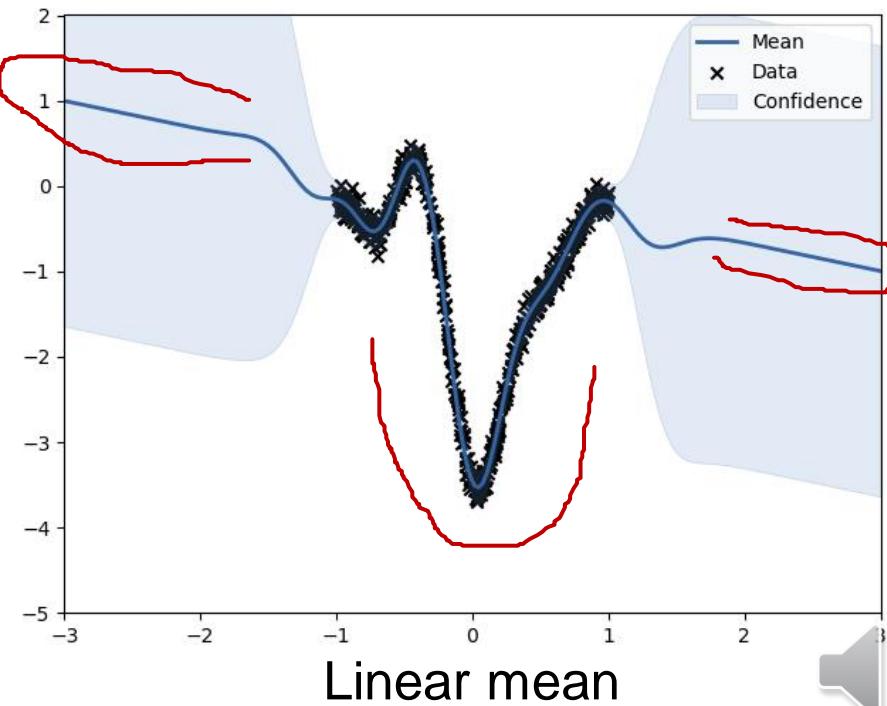
Gaussian Process Regression (GPR)

Prediction away from data

Instead of assuming zero mean one can add a mean function

$$\mathbb{E}\{p(y | x, X, \mathbf{y})\} = \underline{m(x)} + \sum_{i=1}^M \alpha_i k(\mathbf{x}^i, \mathbf{x})$$

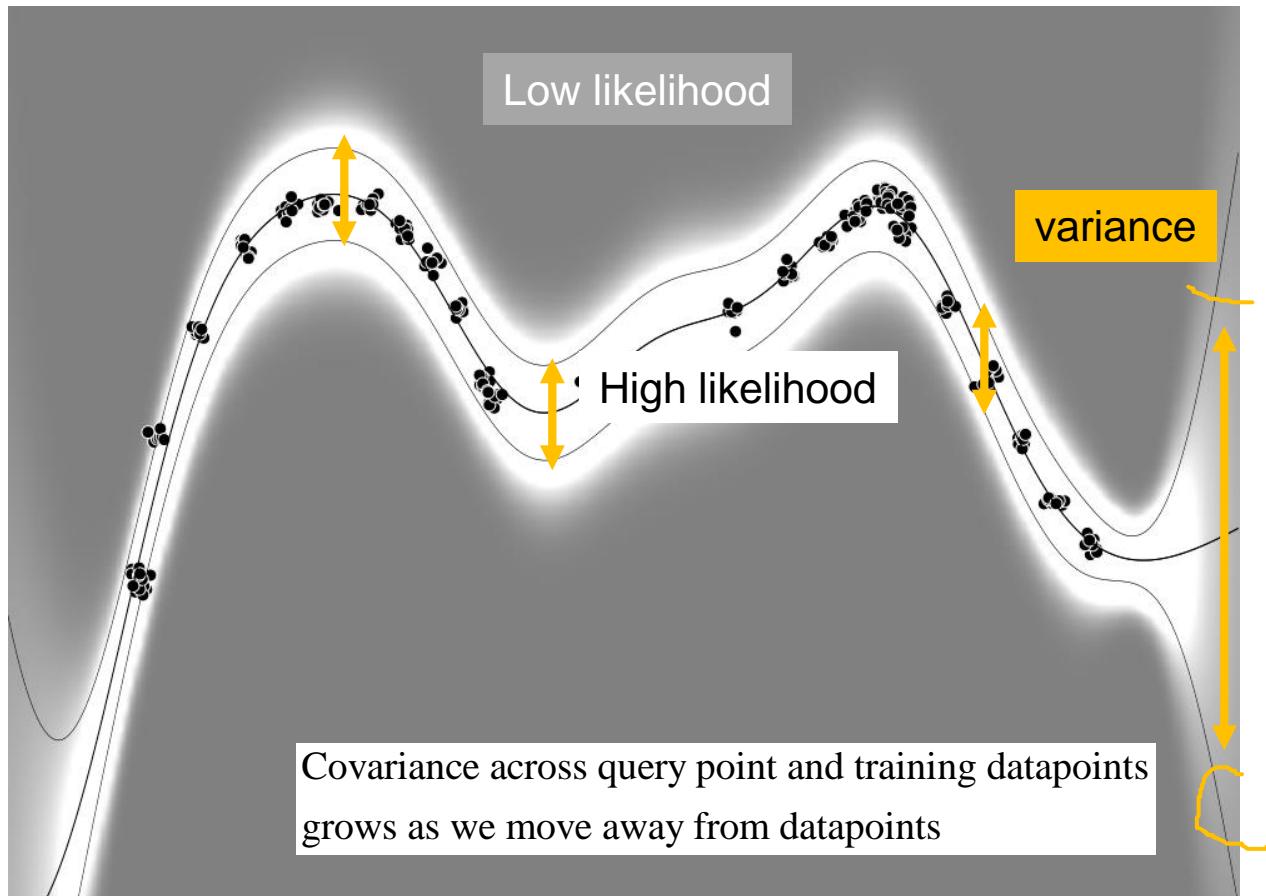
where: $\underline{\alpha} = [\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_y^2 \mathbf{I}]^{-1} (\mathbf{y} - \underline{m(x)})$



Gaussian Process Regression (GPR)

Confidence

The variance and the likelihood



Gaussian Process Regression: Summary

Advantages:

- Accuracy —
- Estimation of predictions' uncertainty —
- Auto-tuning of hyper-parameters —

Disadvantage:

- Computational complexity $O(M^3)$
(but there exist several sparse methods for GP)

