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Question 1: Support Vector Regression 

 

1) Show with a 2-dimensional schematic (where the first coordinate is used to predict the 

second coordinate, i.e.      *
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combination of points when using SVR with the Gaussian kernel. How many data-points 

at minimum do you need as support vectors? Can the ε-tube have an effect on this 

minimum number of points? 

 

Solution: 

 

By changing the magnitude of the kernel width, one can fit arbitrarily small fluctuations 

of the curve. The cost is an increase in the number of SVs (and over-fitting). At worst, all 

datapoints become support vectors. Inference in-between datapoints will be extremely 

poor. The example below shows such a poor fit. The points on the far right are almost 

superposed, hence yielding very poor prediction as this is no longer a function. 

 

You need at minimum two SVs to satisfy the constraints that  *
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derivation of the Dual in the slides of the class).  



 
If the epsilon tube is large enough and encapsulates all points, none of the points will 

become SVs and hence, you will end up with zero support vectors. If the epsilon tube 

encompasses all points, the solution is simply a horizontal line at coordinate y b . 

 
 
 

2) The inferred function f below was fit with Gaussian kernel and a kernel width of 0.8. 

What is the effect of increasing the kernel width on the function? 

 

 
 



Solution: 

Recall that      *

1

,
M

i

i i

i

f x k x x b 


   . We can then compute b, by averaging over the 

value of f on each of the datapoints, i.e.: 
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Decreasing the kernel width reduces the extent to which the SV-s influences the modulation (the 

1st term on the right handside of the equation for f(x)). Hence, far from the data-points, the 

terms  , ,  1,2,3ik x x i  , are almost zero and the algorithm predicts a value equal to the 

intercept. The intercept is in this case equal to the average between all the
jy , as the second term 

on the right handside of the equation for b vanishes as well. Hence, remember that by default the 

algorithm will infer simply that  f x b  away from the data.  

 

 



 

 

 
Figure 1: from top to bottom kernel width of 0.1, 0.01 and 0.001 



 

 

3) What minimum order of a homogeneous polynomial kernel do you need to achieve good 

regression on the set of 3 points below? And how many support vectors do you need at 

minimum? 

 

 
 

Solution:  

We first identify the form of solutions that can be achieved with a degree homogeneous 

polynomial kernel of degree p. For a 1 dimensional input as we have here, the support 

vectors are just scalars 1
ix , where the lower index represents the coordinate of the 

point on the first axis. Dot products T ix x are then reduced to just scalar multiplications 

resulting in the following functional form 

*
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Such polynomials are easily characterized geometrically depending on whether the 

degree is odd or even. The following graphic shows the two possibilities. 

 
 

 



A similar effect is seen if the scaling term is increased, i.e., the function becomes steeper 

with the same geometrical shape. Also, having many support vectors will not change the 

shape since all the 1
ix are absorbed as coefficients of the testing pointx . 

Data sets that are distributed according to these profiles can be perfectly fitted using the 

corresponding kernels. For the current problem, it is immediately clear that the linear 

kernel will not work. Also, it is clear from the arrangement of the points that any even 

power kernel is suitable, minimum being the 2nd order kernel.  

 

Since the number of support vectors does not affect the shape of the function, the 

minimum number of support vectors required is 2.  

 

 
 

4) The dataset below cannot be fitted with polynomial kernel of order 3. Why not? Does 

increasing the order of the polynomial help fit these points? 

 

 
 

 

5) Give examples of datasets you can fit with polynomial kernel of order 3. 

 

 

Solution: 

4) and 5) Polynomial kernel of order 3 (and any odd order) can fit solely these type of 

distributions: 



 
As already shown above, elevating the power has no influence. Using even power does not help 

either since these can fit only quadratic functions.  

 

However, inhomogeneous polynomials can produce fit of arbitrary complexity. This is due to the 

existence of terms raised to many powers (not just p, as in the homogeneous case). 
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For some scalar constants ia . 

 

 

Exercise 2: Gaussian Process Regression and Gaussian Mixture Regression  

 
Show analytically that GPR and GMR can become equivalent under certain restrictions. 

 

Solution:  

 
The expression found through GPR 
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is somewhat very similar to the one found for Gaussian Mixture Regression 
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The non-linear term  *, ik x x is equivalent to the non-linear weights  *

kw x , whereas the 

parameters i  somewhat correspond to the linear terms stemming from local PCA projections 

through the cross-covariance matrices of each Gaussian in GMM given by 
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The difference between GPR and GMR lies primarily in the fact that GP uses all the datapoints to 

do inference, whereas GMM performs some local clustering and uses a much smaller number of 

points (the centers of the Gaussians) to do inference. However, the two methods may become 

equivalent under certain conditions. 

Assume a normalized Gaussian kernel for the function  *, ik x x and a noise free model, 

i.e. 0  . Let us further assume that for a well-chosen kernel width,  ,j ik x x  is non-zero only 

for data points deemed close to one another according to the metric  .,.k  and is (almost) zero 

for all other pairs. As a result, the matrix K  is sparse. We can hence define a partitioning of the 

datapoints through a set of m M  (not necessarily disjoint) clusters 

  : ,  . . , ,   l 1...i i llC x X s t k x x m   , centered on m datapoints lx X . 0   is an 

arbitrary threshold that determines the closeness of the datapoints.  

 

Rearranging the ordering of the datapoints so that points belonging to each cluster are located on 

adjacent columns and duplicating each column of datapoints for points that belong to more than 

one cluster one can create the following block diagonal Gram matrix: 
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where the elements  , ,,ij

l l i l j
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lK matrix are composed of the kernel function 

applied on each pair of datapoints  , ,,l i l jx x  belonging to the associated cluster. 

 

Using properties for the inverse of a block diagonal matrix, we obtain a simplified expression for: 
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Where 
ly  is composed of the output values associated to the datapoints

lX . 

 

 

For each cluster 
lC , one can then compute the centroid  ,l

x

l l

y   of the cluster and a 

measure of the dispersion of the datapoints associated to this cluster around the centroid, given by 



the covariance matrix    xx x x

T
j l l l lE X I X I     of the matrix 

lX  of datapoints 

associated to the cluster. Furthermore, for each set of datapoints 
lX , one can use the associated 

set of output value
ly  and compute the cross-covariance matrix 
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If we further assume that each of local kernel matrix is approximatively a measure of the 

covariance, i.e.    
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Replacing in the original equation (GPR) shown above yields: 
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Observe that our prediction is now a non-linear combination of m linear projections of the 

datapoints through
1

l lK y


   . If the number of cluster m is composed of a single datapoint, we 

obtain a degenerate Gaussian Mixture Model with a unitary covariance matrix for each Gaussian. 

 

Similarly, when the clusters are disjoint, the prediction 
*f can be expressed as the product of the 

conditional on each cluster separately and the equivalence with GMM is immediate. In the more 

general case, when the clusters contain an arbitrary number of datapoints and are not disjoint, the 

full Gaussian Process takes into account the influence from all datapoints. In a GMM the 

interactions across all datapoints are conveyed in part through the weighting of the effect of each 

Gaussian. Note also that the centers of the Gaussians are chosen so as to best balance the effect 

of the different datapoints through E-M. 

 
Exercise 3: Equivalence between GPR and SVR 

a) Using an rbf kernel, for what value of the parameter b in SVR, the regression value far 

away from the data would be the same as the mean GPR value. 

 

b) How would the formulation in SVR change if it is required to learn the SVR function 

with a fixed value of b = 0 (Hint: What is the effect of b in the dual). 

 

c) Show that if noise is not considered in both GPR and SVR, the modified SVR above 

(fixed b) and the GP mean regression values are equivalent. 

 

Solution:  

a) The GPR mean regression function is of the form ( , )i

ii
k x x , i.e., there is no bias 

term as it is in the SVR. For an RBF kernel, the kernel function vanishes far away from 

the data and the function value is only b . Hence, SVR with 0b   would give the same 

value as GPR far from the data (which is equal to zero as well). 



b) In general, b is a variable which is optimized for in the primal, resulting in a linear 

constraint on 
i , i.e. 
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optimization then becomes: 
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In effect, the resulting values of the Lagrange multipliers 
i  have larger magnitudes as 

compared to the general SVR case, where b is set to the average function value and 

subsequent errors due to non-linearity are accounted for by the term ( , )i

ii
k x x . The 

attached figure illustrates this fact. 

 

c) In the absence of noise, we would want the SVR function to pass through all the data 

points exactly, i.e., 0  . In this case, the optimization problem above simplifies further 

to: 
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Note that the only terms appearing in the objective are 
*( )i i  . Also, since there are 

only positivity constraints on the Lagrange multipliers, the quantity 
*( )i i   is 

unconstrained. We rewrite 
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unconstrained: 
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Minimizing this objective by taking derivative with respect to  and setting to zero we 

get 
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In GPR, with no noise, i.e., 0  , we get  
2 1 1( )K I y K y       

 

Hence, with no noise in the data and b forced to zero with the modification in part b), 

GPR and SVR are equivalent. 

 

 

 



 


