EXERCISE SESSION Nonlinear Regression: ADVANCED MACHINE
LEARNING COURSE — EPFL — Lecturer A. Billard

Question 1: Support Vector Regression

1) Show with a 2-dimensional schematic (where the first coordinate is used to predict the

M
second coordinate, i.e. X, = f(Xl):Z(ai*_ai )k(xl',xl)+b, that you can fit any
=
combination of points when using SVR with the Gaussian kernel. How many data-points
at minimum do you need as support vectors? Can the e-tube have an effect on this
minimum number of points?

Solution:

By changing the magnitude of the kernel width, one can fit arbitrarily small fluctuations
of the curve. The cost is an increase in the number of SVs (and over-fitting). At worst, all
datapoints become support vectors. Inference in-between datapoints will be extremely
poor. The example below shows such a poor fit. The points on the far right are almost
superposed, hence vyielding very poor prediction as this is no longer a function.
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You need at minimum two SVs to satisfy the constraints thatZ(ai* —ai):O(see
i=1

derivation of the Dual in the slides of the class).
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If the epsilon tube is large enough and encapsulates all points, none of the points will
become SVs and hence, you will end up with zero support vectors. If the epsilon tube
encompasses all points, the solution is simply a horizontal line at coordinate y =b.
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The inferred function f below was fit with Gaussian kernel and a kernel width of 0.8.
What is the effect of increasing the kernel width on the function?
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Solution:

Recall that f (X)Zi(% —ai*)k(x,xi)+b. We can then compute b, by averaging over the
value of f on each ofi;;e datapoints, i.e.:

yi= 1 (x1) =3 (e — e k(X ) b, j=1..M

M
=1

3b:$2(yj R (a _a:)k(xj’xi)J

j i=1

Decreasing the kernel width reduces the extent to which the SV-s influences the modulation (the
1st term on the right handside of the equation for f(x)). Hence, far from the data-points, the

termsk(xi,x), i=1,2,3, are almost zero and the algorithm predicts a value equal to the

intercept. The intercept is in this case equal to the average between all the y’, as the second term
on the right handside of the equation for b vanishes as well. Hence, remember that by default the
algorithm will infer simply that f (x) =b away from the data.



@ Class E

0.375
v p
-0.25 7. it
y N,
0.125 '

0,125

0.25

0.375

-0.875 :0.75 -0.625 -0.5 -0.375 +0.25 -0.125 D 125 0D.25 375 0.5 .625  0.75 .875

0.375

0.25

0.125

-0.125

-0.25

-0.375

-0.875 -0.75 -0.625 -0.5 -0.375 -0.25 -0.125 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

0.375

0.25

0125

-0.125
-0.25

-0.375

-0.875 075 -0.625 -0.5 -0.375 -0.25 -0,125 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Figure 1: from top to bottom kernel width of 0.1, 0.01 and 0.001
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3) What minimum order of a homogeneous polynomial kernel do you need to achieve good

regression on the set of 3 points below? And how many support vectors do you need at
minimum?
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Solution:

We first identify the form of solutions that can be achieved with a degree homogeneous
polynomial kernel of degree p. For a 1 dimensional input as we have here, the support

vectors are just scalarszj € R, where the lower index represents the coordinate of the
point on the first axis. Dot products 27z are then reduced to just scalar multiplications
resulting in the following functional form

y = Z(al — al*)(x{x)p + b : single term scaled & shifted polynomial

Such polynomials are easily characterized geometrically depending on whether the
degree is odd or even. The following graphic shows the two possibilities.
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A similar effect is seen if the scaling term is increased, i.e., the function becomes steeper
with the same geometrical shape. Also, having many support vectors will not change the

shape since all the z; are absorbed as coefficients of the testing pointz .

Data sets that are distributed according to these profiles can be perfectly fitted using the
corresponding kernels. For the current problem, it is immediately clear that the linear
kernel will not work. Also, it is clear from the arrangement of the points that any even
power kernel is suitable, minimum being the 2" order kernel.

Since the number of support vectors does not affect the shape of the function, the
minimum number of support vectors required is 2.
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4) The dataset below cannot be fitted with polynomial kernel of order 3. Why not? Does
increasing the order of the polynomial help fit these points?
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5) Give examples of datasets you can fit with polynomial kernel of order 3.

Solution:
4) and 5) Polynomial kernel of order 3 (and any odd order) can fit solely these type of
distributions:
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As already shown above, elevating the power has no influence. Using even power does not help
either since these can fit only quadratic functions.

However, inhomogeneous polynomials can produce fit of arbitrary complexity. This is due to the
existence of terms raised to many powers (not just p, as in the homogeneous case).

y= Z(O‘z‘ - Oé:)(m{ +1P +b=aqa,z" + apflxp’l +..4a, +b
i

For some scalar constants @, .

Exercise 2: Gaussian Process Regression and Gaussian Mixture Regression

Show analytically that GPR and GMR can become equivalent under certain restrictions.
Solution:
The expression found through GPR
M -
y - £ =E[ XX,y ] = Y ak(x,X)
i=1
with & =[ K(X,X)+o%1 ]y

is somewhat very similar to the one found for Gaussian Mixture Regression

¥ =E{p(y ) = o (¢t () = Do (o 22 (25, (-t
=1 =1
The non-linear term k(x*,xi)is equivalent to the non-linear Weightswk(x*), whereas the

parameters ;; somewhat correspond to the linear terms stemming from local PCA projections
through the cross-covariance matrices of each Gaussian in GMM given by

e () (x-t).



The difference between GPR and GMR lies primarily in the fact that GP uses all the datapoints to
do inference, whereas GMM performs some local clustering and uses a much smaller number of
points (the centers of the Gaussians) to do inference. However, the two methods may become
equivalent under certain conditions.

Assume a normalized Gaussian kernel for the functionk(x*,x')and a noise free model,
i.e.o0=0. Let us further assume that for a well-chosen kernel width, k(xj , x‘) is non-zero only

for data points deemed close to one another according to the metric k() and is (almost) zero

for all other pairs. As a result, the matrix K is sparse. We can hence define a partitioning of the
datapoints  through a set of m<<M (not  necessarily  disjoint)  clusters

C' :{xi e X, sit. k(x‘,x')>5}, I=1..m, centered on m datapoints X' € X. 6 >0 is an
arbitrary threshold that determines the closeness of the datapoints.
Rearranging the ordering of the datapoints so that points belonging to each cluster are located on

adjacent columns and duplicating each column of datapoints for points that belong to more than
one cluster one can create the following block diagonal Gram matrix:

where the elements K Z[k(x"‘,x'*j)] of the K'matrix are composed of the kernel function
ij

applied on each pair of datapoints (x” , x"j) belonging to the associated cluster.

Using properties for the inverse of a block diagonal matrix, we obtain a simplified expression for:

. [(SHEE o] .yl

O~ — | i,

li[‘Ki‘ 0 oo [(Km)ll .y”‘

i=1

Where yI is composed of the output values associated to the datapoints X' .

For each cluster C', one can then compute the centroid z' :{yi,y;}of the cluster and a
measure of the dispersion of the datapoints associated to this cluster around the centroid, given by



the covariance matrix X) :E{(X' —,u'xl)(X' —,uiI)T}of the matrix X' of datapoints

associated to the cluster. Furthermore, for each set of datapoints X', one can use the associated
set of output value yI and compute the cross-covariance matrix

s =((0'] -t )X

If we further assume that each of local kernel matrix is approximatively a measure of the
~ -1
covariance, i.e. [K'] ' ~[(X' —,u'xl)T (X' —,u'xl)} andk(x*,x')T ~(X' —,u'xl)T X"

Replacing in the original equation (GPR) shown above yields:

ot Zm:[K']_l yk(x", X")

_Zm:‘Ki‘ 1=1
i=1

Observe that our prediction is now a non-linear combination of m linear projections of the

-1
datapoints through[K'} yI . If the number of cluster m is composed of a single datapoint, we
obtain a degenerate Gaussian Mixture Model with a unitary covariance matrix for each Gaussian.

Similarly, when the clusters are disjoint, the prediction f can be expressed as the product of the
conditional on each cluster separately and the equivalence with GMM is immediate. In the more
general case, when the clusters contain an arbitrary number of datapoints and are not disjoint, the
full Gaussian Process takes into account the influence from all datapoints. In a GMM the
interactions across all datapoints are conveyed in part through the weighting of the effect of each
Gaussian. Note also that the centers of the Gaussians are chosen so as to best balance the effect
of the different datapoints through E-M.

Exercise 3: Equivalence between GPR and SVR
a) Using an rbf kernel, for what value of the parameter b in SVR, the regression value far
away from the data would be the same as the mean GPR value.

b) How would the formulation in SVR change if it is required to learn the SVR function
with a fixed value of b = 0 (Hint: What is the effect of b in the dual).

c) Show that if noise is not considered in both GPR and SVR, the modified SVR above
(fixed b) and the GP mean regression values are equivalent.

Solution:
a) The GPR mean regression function is of the form Ziaik(x, x'), i.e., there is no bias
term as it is in the SVR. For an RBF kernel, the kernel function vanishes far away from

the data and the function value is onlyb . Hence, SVR with b =0 would give the same
value as GPR far from the data (which is equal to zero as well).



b) In general, bis a variable which is optimized for in the primal, resulting in a linear

. . L « L
constraint on ¢, i.e. Z—b: Zi(ai —a;)=0.If bis a fixed value, then we do not set

% =0and hence do not get the corresponding linear constraint in the dual. The dual

optimization then becomes:

minimize %Z(ai —a; ), —Ot}k)k(xi,xj)+(9Z:(05i +ai*)—Zyi (a,—a;)

subject to a;,e; >0
In effect, the resulting values of the Lagrange multipliers ¢; have larger magnitudes as

compared to the general SVR case, where bis set to the average function value and
subsequent errors due to non-linearity are accounted for by the term Ziaik(x, x'). The

attached figure illustrates this fact.
In the absence of noise, we would want the SVR function to pass through all the data

points exactly, i.e., £ =0. In this case, the optimization problem above simplifies further
to:

minimize %Z(ai ), k(% %) - 3 (e~ )

subject to ¢, cr, >0
Note that the only terms appearing in the objective are (¢, —ai*) . Also, since there are
only positivity constraints on the Lagrange multipliers, the quantity (ai—ai*) is
unconstrained. We rewritt o, =, —q; and the resulting optimization is thus
unconstrained:

minimize %aTKa—yTa
T i i T .
where o =[a;, ...y ] K=[k(x,x’)]ij and  y=[Y,Y,... Yy ] is the
vectorized notation.

Minimizing this objective by taking derivative with respect to « and setting to zero we
get

Ka=y=>a=Ky

In GPR, with no noise, i.e., o =0, we get
a=(K+o’l)'y=Ky

Hence, with no noise in the data and b forced to zero with the modification in part b),
GPR and SVR are equivalent.
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