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Support Vector Clustering (SVC)

See supplement (Ben-hur et al, [IJIML 2001)
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Support Vector Clustering

|dea:

« Data points are mapped from data space to a high dimensional feature
space using a Gaussian kernel (RBF kernel)

» |In feature space, we look for the smallest sphere that encloses the image
of the data.

Original dataset X Images ¢(X)
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Support Vector Clustering

|dea:
« Data points are mapped from data space to a high dimensional feature

space using a Gaussian kernel (RBF kernel)
» |In feature space, we look for the smallest sphere that encloses the image

of the data.
« This sphere is mapped back to data space, where it forms a set of contours
which enclose the data points. These contours are interpreted as cluster

boundaries.

Oriainal dataset X Images ¢( X )
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Support Vector Clustering

Requesting that all points x’, j =1..m, be in a sphere in feature space gives the following
constraint:

lp( )= <R% ¥l ieam

u . center of the sphere, R : radius of the sphere

To soften the constraint, one can add some slack variable &'

lo(x)-u <®)+&',  with &' >0

To find the tightest sphere enveloping the points means
that one wants the smallest R.
— This can be formulated as a constrained optimization problem.
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Support Vector Clustering

M
min ( R*> + C) &' )  (C=0: hyperparameter)
j=1

Rie Sphere with

minimal radius ~—V
Penalty for slacks

under the constraints
. 2 . _
H(é(xj)_ﬂu <R*+&', vx),j-1.m

(fi >0, ,j=1.M

The Lagrangian is:
L(R,g,%Rz (Y5 (R2 +& —Hqﬁ(x")—uuz)—inﬁ‘

Lagrange multipliers for all the constraints
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Support Vector Clustering

This problem can be solved as for the standard SVM problem.
It has one global optimum. The quadratic form for the constraint yields

a series of inner product of the form <¢(x‘ ). é(x’ )> which we can

replace by the kernel form: k (x',x’ ) = <¢(x‘),¢(xj )>

(see Ben-Hur et al, IJIML 2001 - supplementary material for the derivation)

The Lagrangian is:

L(R,g,%RZ (Y5 (R2 +& —Hqé(x")—qu)—in,-éi

Lagrange multipliers for all the constraints
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Support Vector Clustering

For a query point x, we can write the distance of its image in feature
space from the center of the sphere as:

Rz(x)zk(x,x)—Zéﬁk(x,xj)+:Azj,%k(xi,xj)

23 k(x.x) > k(x!,x')

d (x,C")z k(x,x)— << + X’VX'GC(k ; Kernel K-means metric!
m, m,

The coefficients S, are non zero

for the support vectors.

In Kernel K-means, the cluster boundaries are determined by considering all the datapoints.
Each datapoint has "equal weight" within one cluster. Each cluster's influence is weighted by
the number of datapoints in the cluster.

In SVC, only a selected subset of datapoints are used to compute the cluster boundaries.
The influence of each datapoint is weighted by its £.

The optimization process of SVC determines the influence of the datapoints

(the S. are variables in the optimization).

— SVC is a sparse version of Kernel K-means
I A
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For a query point x, we can write the distance of its image in feature
space from the center of the sphere as:

M oM . |The coefficients £ are non zero
2 _ _ j iy '
RE(x) =k (x.x) Zéﬁk <X’ X )+ ;%k (X X ) for the support vectors.

Cluster assignment is then determined:
1) either by looking at the isolines solution of R(x)=cst.

2) or one can build a binary similarity matrix S for each pair of datapoints
S; =1if R?(x',x}) < cst
0 otherwise

— we are back to spectral clustering. The clusters are found through a

spectral decomposition of the Laplacian.
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Support Vector Clustering

4 clusters nicely separated o =0.015
: 2 clusters start merging

=002

o=0.04
The 4 clusters have merged

...........................

As the kernel width is decreased, the number of disconnected contours in

data space increases, leading to an increasing number of clusters.
Y
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