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Finding Non-Linear Manifolds

Through Spectral Decomposition

Methods that depend on spectral decomposition of matrices are often referred to
as spectral methods.

PCA/KPCA and CCA/KCCA are spectral methods as they depend on performing
an eigenvalue and eigenvector decomposition of a matrix.

Depending on which matrix we decompose, we get a different set of projections.



ADVANCED MACHINE LEARNING R P F L

Non-Linear Manifolds from Spectral Clustering

O Spectral clustering proceeds also through spectral decomposition.
O It decomposes the Graph Laplacian matrix.
= The Graph Laplacian is a matrix representation of a graph.

= |ts decomposition entails a notion of connectivity across data-points
and, hence, leads naturally to a decomposition by group (clustering).
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Build a similarity graph
Each vertex on the graph is a datapoint



ADVANCED MACHINE LEARNING R PF L

Measure Distances in Graph

Construct the similarity matrix (adjacency matrix) S to denote whether
points are close or far away to weight the edges of the graph.
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Disconnected Graphs

Example:
Build a disconnected Graph with binary entries forS g —

Two data-points are connected S (xi ' ) =1

If a) the similarity between them is higher than a threshold,;
or b) if they are k-nearest neighbors (according to the similarity metric).
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Connected Components in a Graph

If all blue connections have value zero in the similarity matrix, then the matrix
IS composed of blocks with each block corresponding to one
(all datapoints within a block are connected).
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Spectral Clustering Properties

= Spectral clustering can discover the number of connected components, i.e.
number of clusters in the dataset.

= Knowing this number, it can then identify to which cluster each points belong.

= Proper clustering would however depend on choosing well the similarity
matrix.



ADVANCED MACHINE LEARNING R P F L

Constructing the Graph Laplacian Matrix

Given a similarity matrix S.

Construct the diagonal matrix D composed of the sum on each line of S:

Build the Laplacian matrix: L=D —S
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Constructing the Graph Laplacian Matrix

(1001
0110

S = (4x4 example)

0110

1001

Construct the diagonal matrix D composed of the sum on each line of S:

IR 0 | 2.1 0 0 1]

0 2. 0 0 2-1 -1 0
D: LZD—S:

2 0 -1 2-1 0

Ourvvveerrrne 2 L ! 0 R

L is positive semi-definite — spectral decomposition possible
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Graph Laplacian

Eigenvalue decomposition of the Graph Laplacian matrix:
L=UAU'

All eigenvalues of L are positive and the smallest eigenvalue of L is zero:
= If we order the eigenvalues by increasing order:
A4 =0<A4 <. <4,.

Theorem (see annexes):
If the graph has k connected components, then the

eigenvalue A=0 has multiplicity k.
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Role of the eigenvalues in spectral clustering

= The multiplicity of the eigenvalue 0 determines the number of connected
components in a graph.

- ldentifying the number of clusters using the eigenvalue decomposition of the
Laplacian matrix is then immediate (using above) when the similarity matrix is

Sparse.

What happens when the similarity matrix is full?

Idea: the smallest eigenvalues (close to zero) provide also information on the

partitioning of the graph.
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Role of the eigenvalues in spectral clustering
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We order the eigenvalues by increasing order, removing the first one (zero):
A#0<4, <4, <. 4,.
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Algorithm to determine the number of clusters

1) Create a similarity matrix S.

2) Build the Laplacian matrix L.

3) Decompose the Laplacian matrix: L=UAU"'

4) Order the eigenvalues by increasing order:

A4 =0<4,L..54,

5) Determine the number of clusters by looking at the multiplicity

of 2 =0, or apply a threshold on the eigenvalues, such that small 4 — 0.

This provides an indication of the number of clusters K.

We do not yet know how the points are partitioned in the clusters!
Let us see now how we can infer the clusters from the eigenvalue decomposition.

GBS
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Finding the clusters

Eigenvectors of the Laplacian matrix in U:
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Finding the clusters

Eigenvectors of the Laplacian matrix in U:
1 .2 M Construct an embedding for each of the

e- | M datapoints x' throughy'.
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Finding the clusters

Eigenvectors of the Laplacian matrix in U:
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Finding the clusters

Hypothesis:
Points well grouped in original space

generate grouped images V'

e ol Apply any standard clustering technique on'y.
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Complete Spectral Clustering Algorithm

5: Apply K-Means on the set of y*,...y" e R".

1

4. Construct an embedding of each of the
6: Cluster datapoints in x

M datapoints x' through y', i-th line of
according to their

the eigenvectors.

|

3: Pick K smallest eigenvalues and
associated eigenvectors

1

[\, /% 2: Decompose the Laplacian matrix

1 t

; e 1: Build a graph representation of the data

clustering iny.
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Non-linear embeddings
Laplacian Eigenmaps
Isomaps
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Non-linear embeddings

Data lives on a 2D manifold folded onto itself in 3D.

—> The data lives in a latent space which is lower-dimensional.

)T
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Non-linear embeddings

Points close to one another are actually far apart on the manifold

Source: DOI: 10.5772/65903

(a) (b) (c)

If one could flatten the manifold, this would be advantageous for:
o Visualizing the data

o Reducing the dimensionality

o Linearly separating the group of data

)
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Geodesic distance
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Source: DOI: 10.5772/65903

Euclidean distance Geodesic Distance (1-neighbors)
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Isomap embedding

Projected data with Isometric Mapping (2D)

The smaller the number of neighbours, *°
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Laplacian Eigenmaps

Sample datapoints Construct graph
from datapoints

Build adjacency or similarity matrix:

We put an edge (rbf kernel) between nodes i and | if:
« X'is among k nearest neighbors of x! or

« if xJis among k nearest neighbors of x'!

(the relation is symmetric)

OGS
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Laplacian Eigenmaps

Solve the generalized eigenvalue problem:
_L_.ei :AD_el
e': M eigenvectors

Projections on each vector ¢'

generate different embeddings.

0
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Isomap versus Laplacian Eigenmaps

Broken Swissroll

The geodesic distances encapsulate

the fact that datapoints live

on separate manifolds &

allow to extract well the 2 main groups.
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Summary of this lecture

O Spectral clustering decomposes the Graph Laplacian matrix: The Graph
Laplacian is a matrix representation of a graph.

O Eigenvalue decomposition of this matrix determines relationships across
datapoints induced by the similarity across datapoints embedded in the graph.

O The spectral decomposition of the Graph Laplacian matrix can be used to

generate various projections, including scaling of the space, flattening and
clustering.

)0
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Summary of spectral methods

We have seen four spectral methods to determine nonlinear features in the data:

A/
’0

L)

Kernel PCA - appropriate for data that live in a single modality.

Kernel CCA — appropriate to find embeddings across different modalities.
Kernel K-means: finds at once clustering & non-linear embedding.

Spectral clustering & Laplacian embeddings: decomposition of Laplacian
can be used for either finding embeddings or clustering.
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Spectral methods are very powerful, if used well!

Their power relies on you choosing well the kernel.

—> Practice session to understand the role of the kernel and its parameters.
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