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MACHINE LEARNING

Spectral Clustering & Nonlinear Embeddings
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Finding Non-Linear Manifolds

Through Spectral Decomposition

Methods that depend on spectral decomposition of matrices are often referred to

as spectral methods.

PCA/kPCA and CCA/kCCA are spectral methods as they depend on performing

an eigenvalue and eigenvector decomposition of a matrix.

Depending on which matrix we decompose, we get a different set of projections.



ADVANCED MACHINE LEARNING

3

Non-Linear Manifolds  from Spectral Clustering

❑ Spectral clustering proceeds also through spectral decomposition.

❑ It decomposes the Graph Laplacian matrix.

▪ The Graph Laplacian is a matrix representation of a graph.

▪ Its decomposition entails a notion of connectivity across data-points

and, hence, leads naturally to a decomposition by group (clustering).
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Embed Data in a Graph

• Build a similarity graph

• Each vertex on the graph is a datapoint

Original dataset Graph representation of the dataset
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Measure Distances in Graph

Construct the similarity matrix (adjacency matrix) S to denote whether 

points are close or far away to weight the edges of the graph.
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Disconnected Graphs
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Example: 

Build a disconnected Graph with binary entries for S

( )

( )

Two data-points are connected  

if a the similarity between them is higher than a threshold;

or b if they are k-nearest neighbors according to the similar
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Connected Components in a Graph
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If all blue connections have value zero in the similarity matrix, then the matrix

is composed of blocks with each block corresponding to one connected

component (all datapoints within a block are connected).
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Spectral Clustering Properties

▪ Spectral clustering can discover the number of connected components, i.e. 

number of clusters in the dataset.

▪ Knowing this number, it can then identify to which cluster each points belong.

▪ Proper clustering would however depend on choosing well the similarity

matrix.
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Constructing the Graph Laplacian Matrix

Given a similarity matrix .S
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Build the Laplacian matrix: L D S= −
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Constructing the Graph Laplacian Matrix

1  0 0 1

0  1 1 0
   (4x4 example)
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Construct the diagonal matrix  composed of the sum on each line of :
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and then, build the Graph Laplacian matrix : L D S= −
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L is positive semi-definite  spectral decomposition possible→
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Graph Laplacian

1 2

Eigenvalue decomposition of the Graph Laplacian matrix:

All eigenvalues of  are positive and the smallest eigenvalue of  is zero:

If we order increasthe eigenvalues by in  order:

0

g

....

T

M

L U U

L L

  

= 



=    .

Theorem (see annexes):

If the graph has  connected components, then the 

eigenvalue =0 has multiplicity .

k

k
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Role of the eigenvalues in spectral clustering

The multiplicity of the eigenvalue 0 determines the number of connected 

components in a graph. 



→ Identifying the number of clusters using the eigenvalue decomposition of the

Laplacian matrix is then immediate (using above) when the similarity matrix is

sparse.

Idea: the smallest eigenvalues (close to zero) provide also information on the 

partitioning of the graph.

What happens when the similarity matrix is full?
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Role of the eigenvalues in spectral clustering

1 2 2

We order the eigenvalues by  order, removing the first one (zero):

0 .... .

increasing

M       

Select smallest subset.
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Algorithm to determine the number of clusters

1 2

1) Create a similarity matrix .

2) Build the Laplacian matrix .

3) Decompose the Laplacian matrix: 

4) Order the eigenvalues by increasing order:

0 ....

5) Determine the number of clusters

T

M

S

L

L U U

  

= 

=   

 by looking at the multiplicity 

of 0,  or apply a threshold on the eigenvalues, such that small 0. = →

This provides an indication of the number of clusters K.

We do not yet know how the points are partitioned in the clusters!

Let us see now how we can infer the clusters from the eigenvalue decomposition.
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1 2

1 1 1
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Eigenvectors of the Laplacian matrix in :
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Finding the clusters

1

1

1

1

.

.

.

M

e

y

e

 
 
 
 =
 
 
 
 

Construct an embedding for each of the 

M datapoints  through .i ix y

1x
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1 2

1 1 1
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Eigenvectors of the Laplacian matrix in :
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Finding the clusters
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Construct an embedding for each of the 

M datapoints  through .i ix y

ix

   
1 1

This amounts to a non-linear mapping 

M M
i i

i i
X x Y y


= =

= ⎯⎯→ =
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1 2

1 1 1
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Eigenvectors of the Laplacian matrix in :
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Finding the clusters
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Construct an embedding for each of the 

M datapoints  through .i ix y
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This amounts to a non-linear mapping 

M M
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X x Y y


= =

= ⎯⎯→ =

Reduce dimensionality by picking 

 eigenvectors ,  1... ,

with smallest eigenvalues.

iK M e i K

→

 =

2K =
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Finding the clusters
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3y
4y

2y

1y
Hypothesis:

Points well grouped in original space

generate grouped images  .iy

Apply any standard clustering technique on .y
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Complete Spectral Clustering Algorithm

4: Construct an embedding of each of the 

M datapoints  through ,  i-th line of

the eigenvectors.

i ix y

3y
4y

2y

1y

1: Build a graph representation of the data

2: Decompose the Laplacian matrix

3: Pick  smallest eigenvalues and 

associated eigenvectors

K

15: Apply K-Means on the set of ,... .M Ky y 

6: Cluster datapoints in  

according to their 

clustering in y.

x
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Non-linear embeddings

Laplacian Eigenmaps

Isomaps
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Data lives on a 2D manifold folded onto itself in 3D. 

→ The data lives in a latent space which is lower-dimensional.

Non-linear embeddings
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If one could flatten the manifold, this would be advantageous for:

o Visualizing the data

o Reducing the dimensionality

o Linearly separating the group of data

Non-linear embeddings

Source: DOI: 10.5772/65903

Points close to one another are actually far apart on the manifold
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Euclidean distance Geodesic Distance (1-neighbors)

d(1,6) = d(1,8)                                            d(1,6) < d(1,8)

Geodesic distance

Source: DOI: 10.5772/65903
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Isomap embedding

( )( )
2

 neighbours

Compute pairwise distances:

min ,i j

ij
k nearest

S d x x
−

=

Do an eigendecomposition of the

centered similarity matrix.

The smaller the number of neighbours, 

the more local the linkage.

number of neighbours=10

number of neighbours=5
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Construct graph 

from datapoints

Laplacian Eigenmaps

Sample datapoints

Build adjacency or similarity matrix:

We put an edge (rbf kernel) between nodes i and j if:

• x i is among k nearest neighbors of x j or

• if x j is among k nearest neighbors of x i

(the relation is symmetric)
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Laplacian Eigenmaps

Solve the generalized eigenvalue problem: 

:   eigenvectors

i i

i

Le De

e M

=

Projections on each vector e  

generate different embeddings.

i
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The geodesic distances encapsulate 

the fact that datapoints live

on separate manifolds & 

 allow to extract well the 2 main groups.

Isomap versus Laplacian Eigenmaps

Isomap projection

Laplacian eigenmaps projection
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Summary of this lecture

❑ Spectral clustering decomposes the Graph Laplacian matrix: The Graph

Laplacian is a matrix representation of a graph.

❑ Eigenvalue decomposition of this matrix determines relationships across

datapoints induced by the similarity across datapoints embedded in the graph.

❑ The spectral decomposition of the Graph Laplacian matrix can be used to

generate various projections, including scaling of the space, flattening and

clustering.
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Summary of spectral methods

We have seen four spectral methods to determine nonlinear features in the data:

❖ Kernel PCA - appropriate for data that live in a single modality.

❖ Kernel CCA – appropriate to find embeddings across different modalities.

❖ Kernel K-means: finds at once clustering & non-linear embedding.

❖ Spectral clustering & Laplacian embeddings: decomposition of Laplacian

can be used for either finding embeddings or clustering.

Spectral methods are very powerful, if used well!

Their power relies on you choosing well the kernel.

→ Practice session to understand the role of the kernel and its parameters.


