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Spectral Clustering & Nonlinear Embeddings

Interactive exercise session
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Manifold Learning

Data on torus
Swiss roll Torus sectioned by a plane

h' Meila M, Zhang H. 2024
A\ @ Annu. Rev. Stat, Appl. 11:393-417

Figure 2 Examples of manifolds with intrinsic dimension d = 2. (Left) A Swiss roll. (Middle) A torus (hollow). (Right) 1,000 points sampled from a torus sectioned by a plane.

Dataset resides on an unknown nonlinear manifold.
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Manifold Learning

Principle:

Dataset resides on an unknown nonlinear
manifold.

|dentify the manifold and construct a
new representation.

Project the data onto this representation
to simplify further computations.
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Manifold Learning

Coordinates in R*for points in U

Coordinate change

poo”

Coordinates in R? for points in V*

h. Meila M, Zhang H. 2024
Al Annu. Rev. Stat. Appl. 11:393-417
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml|2020

&« c @ © & G https/participant.turningtechnologies.eu/en/join 110% e @ Y vy o & =

TurningPoint Nsignin @

Hello Guest!

appliedmI2020 ’

Join Session
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Embed Data in a Graph

Original dataset Graph representation of the dataset

« Build a similarity graph
Each vertex on the graph is a datapoint
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Measure Distances in Graph

Construct the similarity matrix (adjacency matrix) S to denote whether
points are close or far away to weight the edges of the graph.
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Connected Components in a Graph

If all blue connections have value zero in the similarity matrix, then the graph
has 2 (i.e. two disconnected blocks of datapoints;
all datapoints within a block are connected).
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Spectral Clustering: example

0o 0 o0 O 10 01 01 01
o 0 O O 01 10 01 01
O 0 O O 01 01 10 01
c 0 0 0O 01 01 01 10

Looking at the similarity matrix, what can you say
about the distribution of points?
A. There are 4 datapoints.
B. There are 8 datapoints.
C. 1do not know.
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Spectral Clustering: example
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Looking at the similarity matrix, what can you say
about the distribution of points?

A. There are 4 datapoints. 100.00%
B. There are 8 datapoints. \/
C. 1donot know.
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Spectral Clustering: example

1.0 09 09 09 O
09 10 09 09 O
09 09 10 09 O
09 09 09 10 O
o o0 o0 O 10 01 01 01

O 0 o0 O
o 0 O O 01 01 10 01
O 0 0 O

Looking at the similarity matrix, what can you say
about the distribution of points?

The points are grouped in one cluster.

The points are grouped in 2 clusters.

The distribution of the points is uniform in each cluster.
| do not know.

o w>
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Spectral Clustering: example

1.0 09 09 09 O
09 10 09 09 O
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Looking at the similarity matrix, what can you say
about the distribution of points?

The points are grouped in one cluster.

The points are grouped in 2 clusters. \/

The distribution of the points is uniform in each cluster. \/
| do not know.

80.00%

20.00%

o w>
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Disconnected Graphs

| '-' %
’
Example:

A disconnected Graph with binary entries for S S =

Two data-points are connected S (X', x’ ) =1
If a) the similarity between them is higher than a threshold;

or b) if they are k-nearest neighbors (according to the similarity metric).
el
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Graph Laplacian

Eigenvalue decomposition of the Graph Laplacian matrix:
L=UAU'

All eigenvalues of L are positive and the smallest eigenvalue of L is zero:
= If we order the eigenvalues by increasing order:
A =0<4, 2.5 4,.

Theorem (see annexes):
If the graph has k connected components, then the

eigenvalue A=0 has multiplicity k.

1A
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Spectral Clustering

Let us do exercise |

OGSO
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Spectral Clustering: Exercise |

Consider a two-dimensional dataset composed of two points.

a) Build a similarity matrix using a threshold function on Euclidean (norm-2)
distance. The metric outputs 1 if the points are close enough according to a
threshold and zero otherwise. Consider two cases: when the two datapoints
are close or far.

b) For each of the two cases above, build the Laplacian matrix, perform an
eigenvalue decomposition and discuss the eigenvalues. L =D —S
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Role of the eigenvalues in spectral clustering

= The multiplicity of the eigenvalue O determines the number of connected
components in a graph.

- ldentifying the number of clusters using the eigenvalue decomposition
of the Laplacian matrix is then immediate (using above) when the
similarity matrix is sparse.

- What happens when the similarity matrix is full?
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Spectral Clustering

Similarity map S: R" xR" >R S=|...

Assume S is composed of continuous values; each entry L
Is computed using the Gaussian kernel (Gram matrix)

; 112
|

2

S(x‘,xj)ze 20

g
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Spectral Clustering: exercise |l

Consider a two-dimensional dataset composed of two points (assume again
two cases — points are close to one another or are far apart).

a) Build a similarity matrix using a RBF kernel. Build the Laplacian matrix,
perform an eigenvalue decomposition and discuss the eigenvalues and
eigenvectors, for each of the two cases above.

b) Repeat (a) using a homogeneous polynomial kernel with p=2.
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1.0 09 09 09 O
09 10 09 09 O
09 09 10 09 O
09 09 09 10 O

0O 0 O 10 01 01 01

0
0 0 0 O

0 0 0 0 01 01 1.0 01
0 0 0 O |

What can you say about the eigenvalues of the
associated Laplacian matrix?

Only one eigenvalue is zero.
Two eigenvalues are zero.
Four eigenvalues are zero.

| do not know.

OO0 wm»
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1.0 09 09 09
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What can you say of the non zero eigenvalues of the
associated Laplacian matrix?

100.00%

A. They will all be equal.
B. One group will be much larger than another group.
C. |do not know.
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Spectral Clustering: finding the clusters

This provides an indication of the number of clusters K
(K: # of groups of eigenvalues with similar values).

We do not yet know how the points are partitioned in the clusters!
Let us see now how we can infer the clusters from the eigenvalue decomposition.

90
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Spectral Clustering: finding the clusters

To find the clusters:
Project points on the K eigenvectors with largest eigenvalues.
Project points on the K eigenvectors with associated eigenvalue zero.
Project points on the K eigenvectors with smallest eigenvalues.
| do not know.

COow>
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Spectral Clustering: finding the clusters

To find the clusters:

Apply K-means on points in original space.

Apply K-means on points in projected space.

Apply K-means on points in both original and projected space.
| do not know.

COow>
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Finding the clusters: example

Example: 3 datapoints in a graph composed of 2 partitions

110] 1 -1 0] X
The similarity matrixisS={110|,L=|-1 1 0 Q\O 2
001 |0 0 0] ®
L has eigenvalue 1=0 with multiplicity two. X
The eigenvectors of L are:
o [=1] (0] : [=1]
e =—f -1 e’=|0 ef=—| 1
Va5 . 2

2/1
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The images y*, y* of the datapoints are superposed
(when considering the first two dimensions only)

yl and orthogonal to the image y* of the 3rd point.

The coordinates of the images y*, y* of the datapoints

x", x* for the first two eigenvectors are equal.

The images of the points are given by:

0L
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The images y*, y* of the datapoints are superposed
(when considering the first two dimensions only)

and orthogonal to the image y* of the 3rd point.

To discover the clusters, run K-means in image space (y-space).

LEREGOGGGGEEHEHHHIIIIIISHISY



MACHINE LEARNING I

Finding the clusters: example

Example: 3 datapoints in a fully connected graph

1 09
S=/09 1

| 0.02 0.02

0.02 |
0.02

1

0.92 -0.90 -0.02 | @
0.90 0.92 -0.02
-0.02 -0.02 0.04 |

L has eigenvalue 4, =0 with multiplicity 1.

The second eigenvalue is small 4, =0.06,
whereas the 3rd one is large, 4, =1.82.

with associated eigenvectors :

1
1(, e

L

(0.4
—0.4

L 0.8_

0.7
0.7

The coordinates of the images y*, y* of the datapoints
x", x* for the first two eigenvectors are again equal.

| 0.0]

The images of the points are given by:
13 ] (uB | [1/43]
y1: _04 ’y2: _04 I,y3: 08
—0.7 0.7 0.0

It makes sense to group eigenvectors with smallest eigenvalues.

PrL

2/
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The images y*, y* of the datapoints are superposed
(when considering the first two dimensions only)

and orthogonal to the image y* of the 3rd point.

o \/§_

0.8

y
i The images of the points are given by:
13 | |13 ]
y'o| -04 |,y?=| 04|y’ =
—0.7 0.7

0.0

To discover the clusters, run K-means in image space (y-space).

PrL

Jou
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The 3" point is now
closer to the two other
points

Example: 3 datapoints in a fully connected graph
1 0.9 / \ .
The similarity matrixisS =09 1 gb
1 O

L has eigenvalue A=0 with multiplicity 1. The second
and third eigenvalues are both large 4, =2.23, A, =2.57.

with associated eigenvectors : / Entries are no longer equal!

L] < -0.21 }/ —0.78 |
1 % 11 e2=21-05 e =| 057 The images of the points are given by:
3 _ - _ - _ -
1 0.79 | 0.21 1/43 1/43 1/4/3
_\

| 3 y'={=0.21 |,y*=|-057hy*=|0.79
0.78 0.57 0.21

20
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Equivalency to other non-linear Embeddings

What about kernel PCA?

The eigenvalue decomposition of S (equiv. to kPCA ‘
on Gram matrix) yields the set of dual eigenvectors: Q\O %
. 4L | (0 . (1] .X3

at=—11], a°=|0|,|a’=—=| -1

V2 10 1L V2 | 0]
A=2,1,=1 4, =0.
With spectral clustering, the eigenvectors of L are:

| =1L (0 (-1 — The dual eigenvectors with non-zero

SO ,e’=|01, g°= 1 eigenvalues are aligned with the set of

V2 0 | Ky V2 | 0 eigenvectors of the Laplacian matrix!
4=04,=0 4,=2

Careful: this is not true in arbitrary cases!
A()
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Kernel PCA as preprocessing before K-means?

AT
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KPCA as pre-processing before kernel K-means

The choice of parameters in kernel K-Means can be initialized by doing a
readout of the Gram matrix after kernel PCA.

The number of large eigenvalues = number of clusters (here 3)

Il'w'w-w

J 1
| 2: 22062 |
Widt 3:163.86 ]
0.005 &1 |4:2241¢]

< '

eigenvalues

Projections on dual eigenvectors 1 to 4 (from left to right)

A°)
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KPCA as pre-processing before kernel K-means

The choice of kernel and kernel’s hyperparameters determines the

number of clusters

The number of large eigenvalues =
number of clusters (here 2)

jected Dims 10 - I

1
show Eigenvector Isn—Line.‘

REF 7

sigenvalues

E I5 17 18

1: 989713 »
2:138.80
30850 =

k

eigenvalues
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Looking at eigenvalue distribution in Kernel PCA projections

can help determine the tightness of the clusters.

The smallest eigenvalues entail information about dispersion within clusters

The smaller, the tighter the cluster.

alues

/

2 13 |
2: 14867 »
Widt 3:1.50 0.7
0.001 [2] |#0940. <
1 k

Widt
0.091

w

alues

I

2245824 C »
3:1561C)
4:9.0200 -

1 F

/

Vi
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Non-linear embeddings

CCCCEEEGGEGLHEEEE————————~—| >
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Non-linear embeddings

Points close to one another are actually far apart on the manifold

Source: DOI: 10.5772/65903

(a) (b) (c)

If one could flatten the manifold, this would be advantageous for:
o Visualizing the data

o Reducing the dimensionality

o linearly separating the group of data

A
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Laplacian Eigenmaps

Similarity Matrix:
(1 05 0 O
05 1 0
0O 0 1.....

Sample datapoints Construct graph
from datapoints

Adjacency graph:

We put an edge (rbf kernel) between nodes i and j if:
« Xx'is among k nearest neighbors of x/ or

 if xJis among k nearest neighbors of x'

(the relation is symmetric)

A/
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Laplacian Eigenmaps

Similarity Matrix:

Solve the generalized eigenvalue problem:

Le' = ADe' <:>(I

e': M eigenvectors

If D not invertible, solve:

mine' Le such that e'De =1.

y

1 05 0 0]
<[085 1 0 0

0 0 1 03

0 0 03 1

Symetrized and normalized form of the Graph Laplacian

Ensures minimal distorsion while offering a rescaling.

/

Similarity Matrix:

(0.33 -0.33
-0.33 0.33
0O O
0O O

| -D'S =

0
0
0.23
0.23

) -
0
0.23
0.23

Reflected in the eigenvalues
Eigenvalues of L : 0 0 0.46 0.66

Eigenvaluesof | -D'S: 0 0 0.6 1.0

PrL

[Q
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Laplacian Eigenmaps

Swissroll

Data used in the practice session

Loa

h o onhoudh o ohhoondhhooadh o v dovsad o o Alon

™ ~ T o
B \‘, 4/

, LLomem e, .
(™ ], [ » I
-l = | =~ |
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£ > .4"_-‘ | .‘:?)“)N
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*.4. . & , "A NS S N 7
B e | s
‘r|b-\," /.‘Q; | ,"'§9. =
\ (\ T \\ . (éi
| { < ™ . i
AN LD

A —— = T [ o

Gl | e | oS e 3
I _adB - M) W w

\ 4 ' \ & |4 6 | SRR |

¢/ | r."fx/f' T | P RS || g e | e b

42024 5 0 5 0 2-4-202W 5 0 5 5 0 5 -5 0 5 -5 0 5 5 0 5 -5 0 5
107 <1073 103 %1073 <107 <1073 <1073 <1073 <1073

The projections on the pair e*,e° generate
a flat embedding that enables a piece-wise
linear partitioning.

A0
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Broken Swissroll

How to determine the best embedding?

N()
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Comparison of eigenvalues

0.1

0.09

0.08 -

o o
o o
> N

Eigenvalues
.
o
(&)

Decomposition of the Laplacian

Laplacian eigenvalues
T T T T

Eigenvector index

Eigenvalues

160

140

120 |

-
o
o

(o]
o
T

60 [

40 -

20

Decomposition of the Gram Matrix

kPCA eigenvalues

1 2 3 4
Eigenvector index

Looking at the Laplacian eigenvalues eases the identification of the number of clusters.

D CSCCCBBBBRLLLLHEE————]9OOOS DY
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Comparison of projections

Projected data with Laplacian Eigenmaps (3D) Projected data with Kernel PCA (3D)

0.02

0.01

-0.005
€1 €2

001 002 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 €1

Clusters are better separated in the Laplacian projections.

~0
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Tightly embedded clusters

15 Double Helix

10 —

0 —

x3

-10 —|

-15

-2-1.5 -1 -0.5 0 0.5 1 15

When the groups of datapoints are intermingled along different dimensions.

EBBBGOGGGGEEEEEEEHIIIIIIHHHSSS
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Double Helix kKPCA Projection

140

120 [

100

80 -

60 -

€9

40+ §

20

0_

-20

_40 1 1 Il 1 1 Il
-40 -20 0 20 40 60 80 100
€1

Projection after kernel PCA with inhomogeneous polynomial kernel

.
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Double Helix Laplacian Projections

%107

€3
o

X Z(()X(I(()I)X))X(II)I()((() )

-6 -4 -2 0 2 4 6 8
€9 %1073

Projection using Laplacian eigenmaps

™RSS
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Comparison of eigenvalues

Laplacian eigenvalues
T T T T

kPCA eigenvalues

0.16

0.14 -

012

©
—

Eigenvalues
o
o
oo

12

7’
0.06 -,
4
7/
0.04 7
4
7/
0.02 - P
-
-
-
0 1 1
1 2 3 4 5

Eigenvector index

2

Eigenvector index

KPCA does a better job at extracting the number of clusters and projections

Laplacian projections are best suited when the clusters are well separated spatially

(disconnected graph)

- KAl
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Isomap embedding

Projected data with Isometric Mapping (2D)

20
Swissroll

-20 : ' : :
-40 -20 0 20 40 60
€1
Compute pairwise distances: Isomap is an extension of Multidimensional scaling.
2
S; = min d (x',x’)
k—nearest neighbours

Do an eigendecomposition of the
centered similarity matrix.

SSCSSSSSSEEEHGEE———HES
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Multi-Dimensional Scaling (MDS)

1) Build similarity matrix from Gram Matrix, using linear kernel

S, = <x‘ , xj> ~ squared pairwise distance ||xi —x! ||

M M M
2) Center the similarity matrix: S; =S, — ﬁz S, —%Z Sy + % > S
k=1 k=1 k,1=1

3) Decompose S' to obtain eigenvectors €', i =1..M.

4) Generate scaled projections y, = \/Z e!

Swissroll Projected data with MDS (3D)

MDS

-10
30

Flattens and normalizes but does not separate.
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Multi-Dimensional Scaling (MDS)

Projected data with MDS (2D)

15 19
10 ¢ : 10
5 -
5| |
g}
o Or
8 of *
5F
-5r 7
-10 1
-10 1
-15
-20
_15 I i I 1 1 1 1
20 15 10 5 0 5 10 15 Ppffected data with MDS (2D)

The embeddings do not separate the two groups.
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Manifold Learning Methods: Caveats

o Knowing the intrinsic dimension of the manifold can help recovering the projections

o The result of the algorithm heavily depends on setting well the hyperparameters such as the
type of neighborhood graph (k-NN or radius neighbor) and neighborhood scale

o The algorithms heavily depend on the sampling method, that can affect measure of local
density (and hence of relative scaling). Non uniform sampling can lead to undersired local
deformation of the space.

Laplacian Eigenmap use: L=1—-D"'S
Diffusion mapsuse:L=1—-| DS + SD™
Rows Column

Ny " normalization  normalization
W Laplacian Eigenmaps

Effects of graph construction and
renormalization, when the sampling
density is highly nonuniform
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Summary: techniques to generate non-linear embeddings

We have seen how to use decomposition of the following set of matrices:
Gram matrix: KPCA, kCCA, MDS
Graph Laplacian: Laplacian Eigenmaps

See also supplement on moodle for other techniques:

- Maximum variance unfolding
- Local Linear Embeddings (LLE)

CEEHEEEE————OD
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Manifold Learning
Methods: Trade-offs

Sensitivity and properties of
learned representations
depending on parameters’
and algorithmic choices.

h. Meila M, Zhang H. 2024
il Annu. Rev. Stat. Appl. 11:393-417

()
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