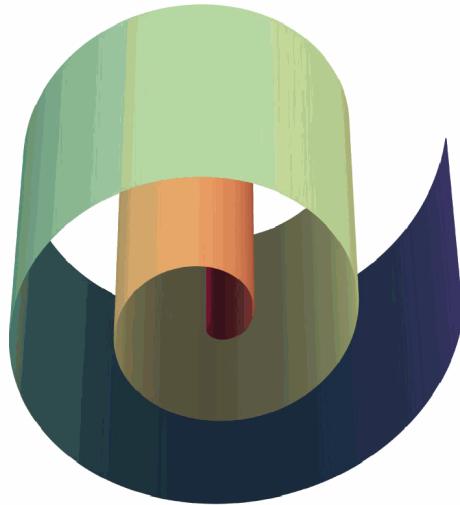


MACHINE LEARNING

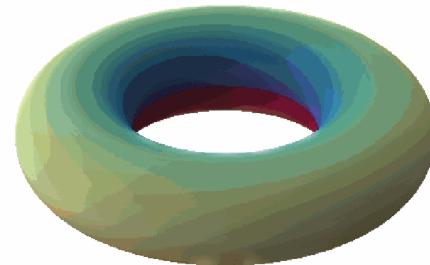
Spectral Clustering & Nonlinear Embeddings

Interactive exercise session

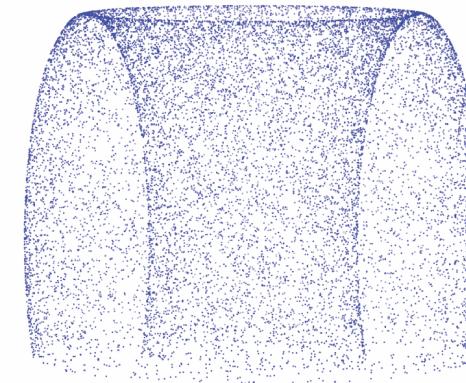
Manifold Learning



Swiss roll



Torus



Data on torus
sectioned by a plane

Meilă M, Zhang H. 2024
Annu. Rev. Stat. Appl. 11:393–417

Figure 2 Examples of manifolds with intrinsic dimension $d = 2$. (Left) A Swiss roll. (Middle) A torus (hollow). (Right) 1,000 points sampled from a torus sectioned by a plane.

Dataset resides on an unknown nonlinear manifold.

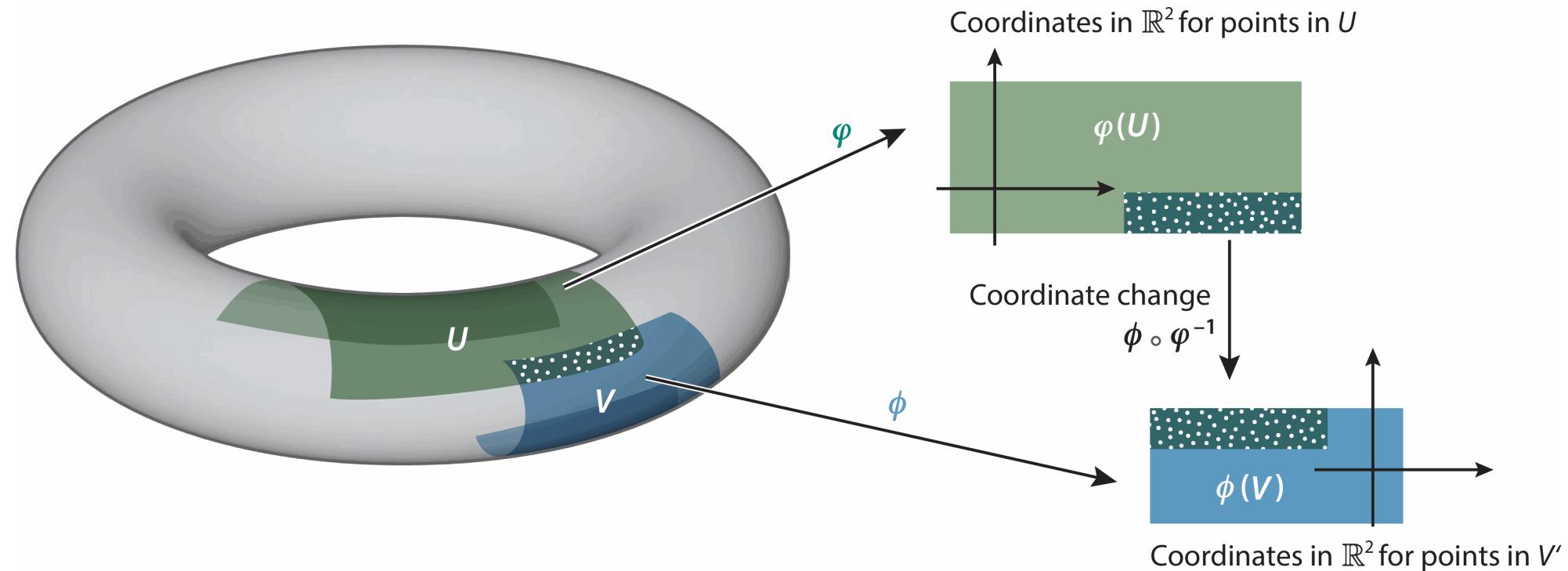
Manifold Learning

Principle: Dataset resides on an unknown nonlinear manifold.

Identify the manifold and construct a new representation.

Project the data onto this representation to simplify further computations.

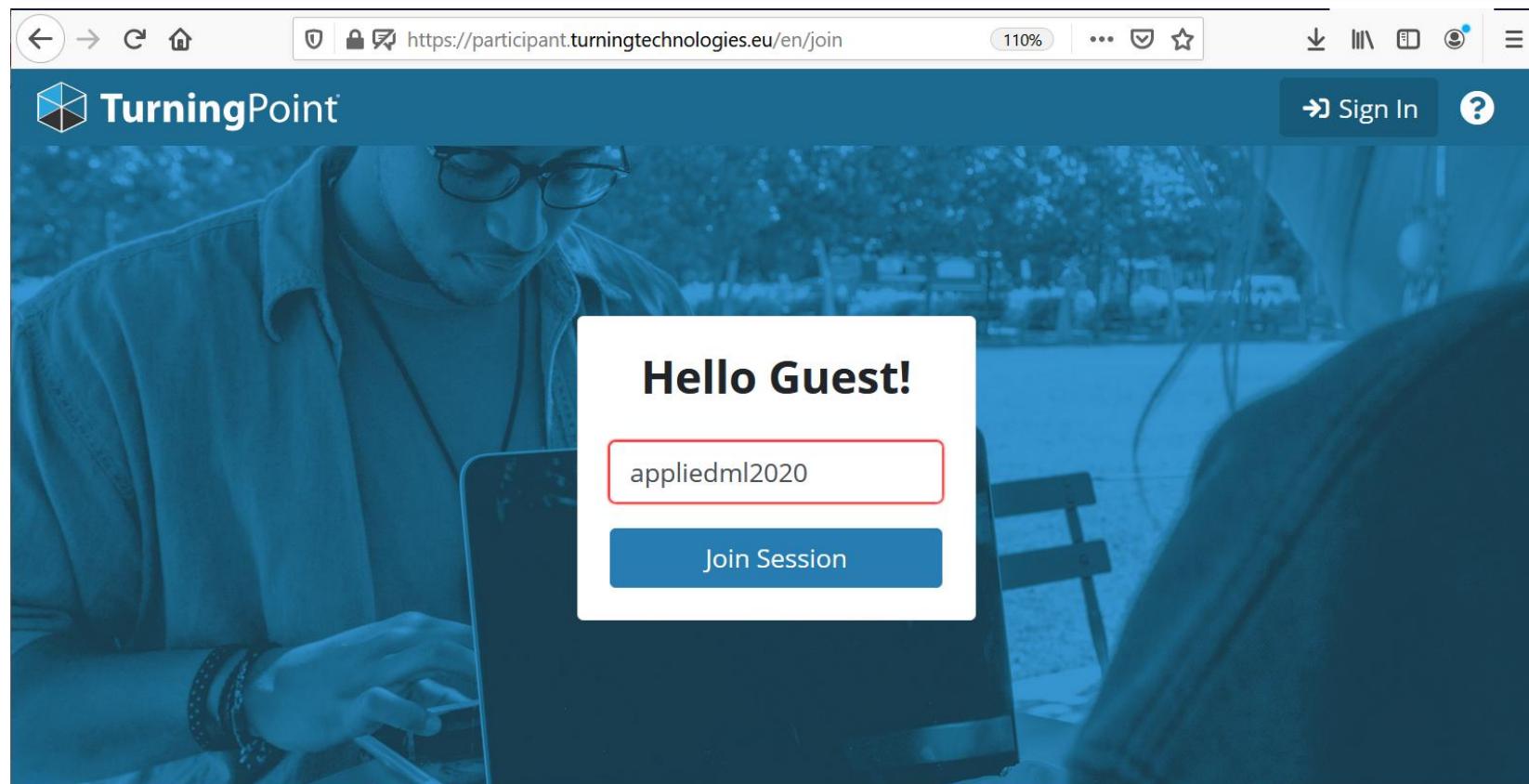
Manifold Learning



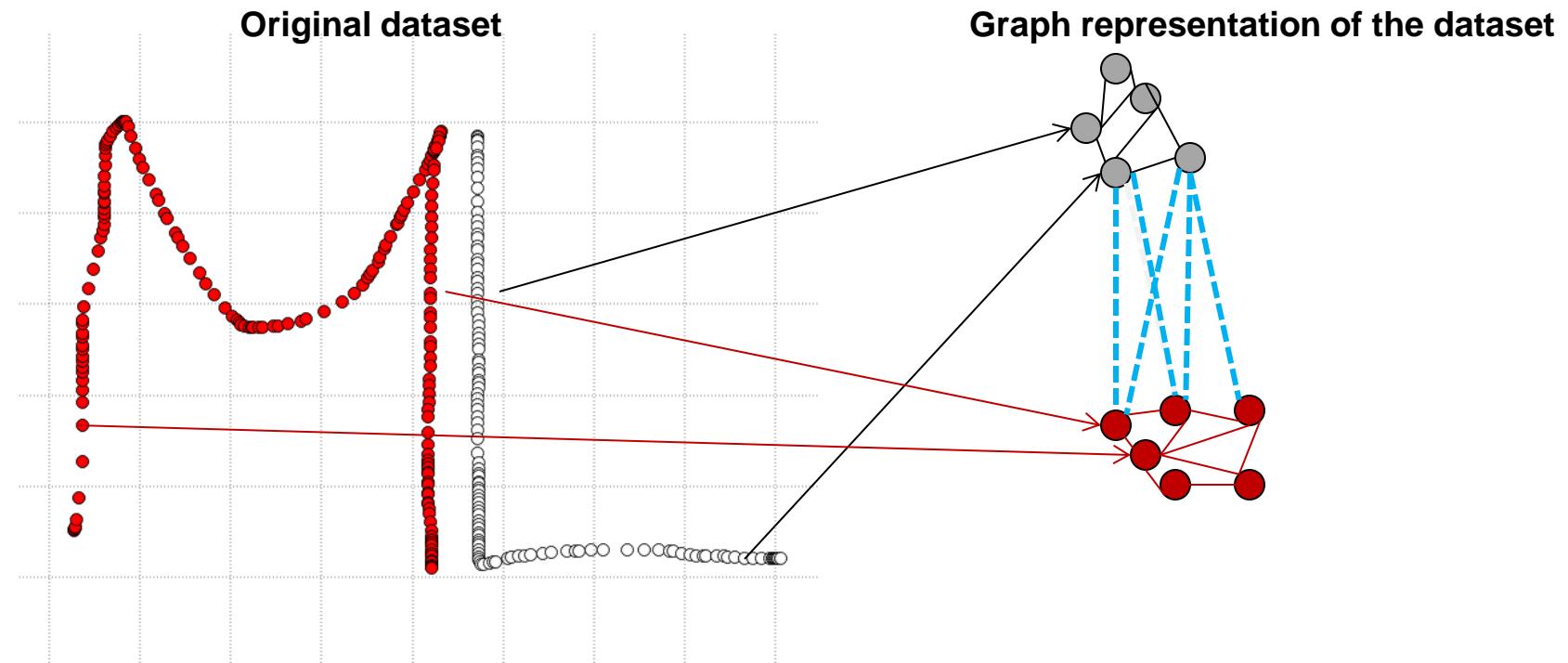
Launch polling system

<https://participant.turningtechnologies.eu/en/join>

Access as GUEST and enter the session id: *appliedml2020*

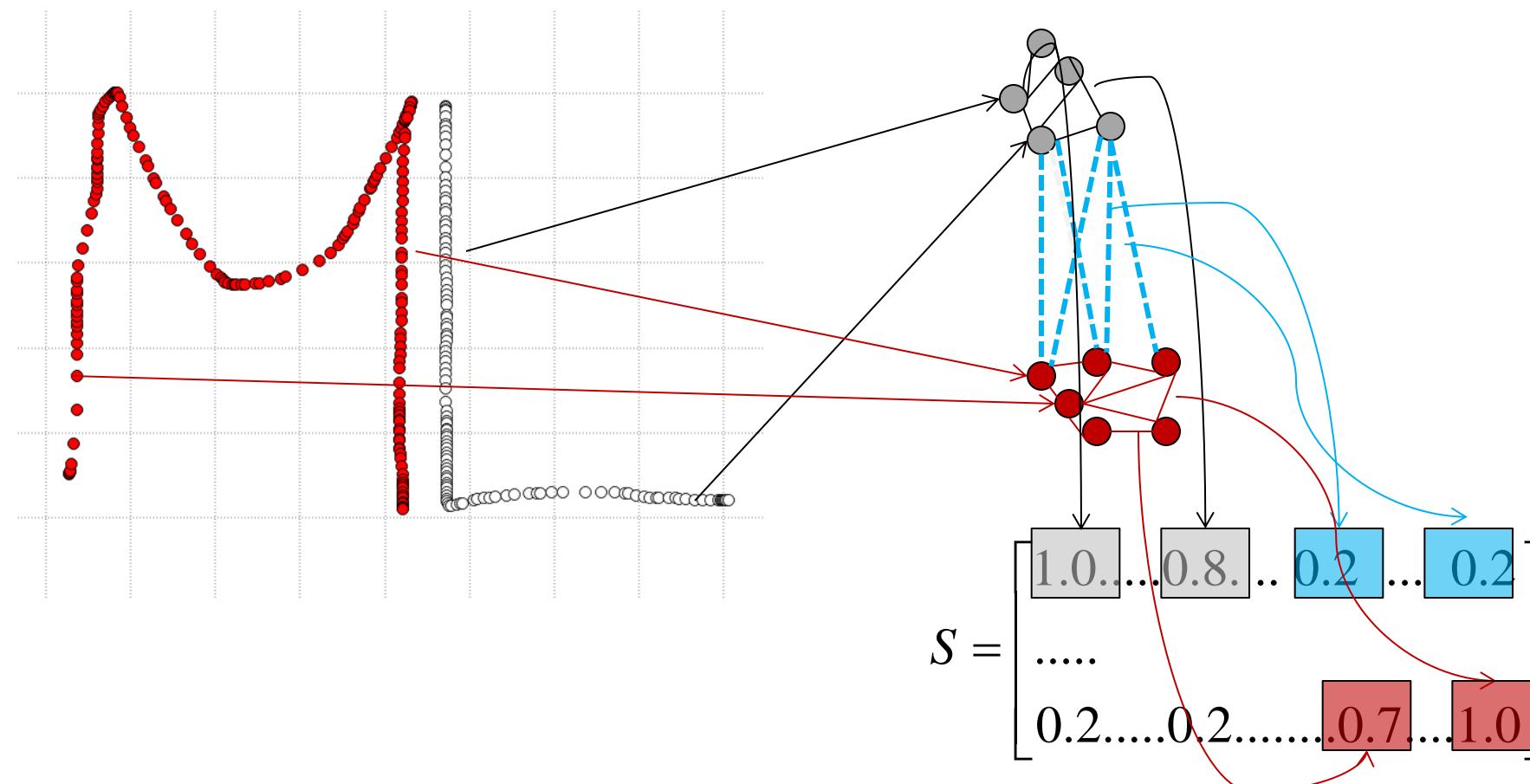


Embed Data in a Graph



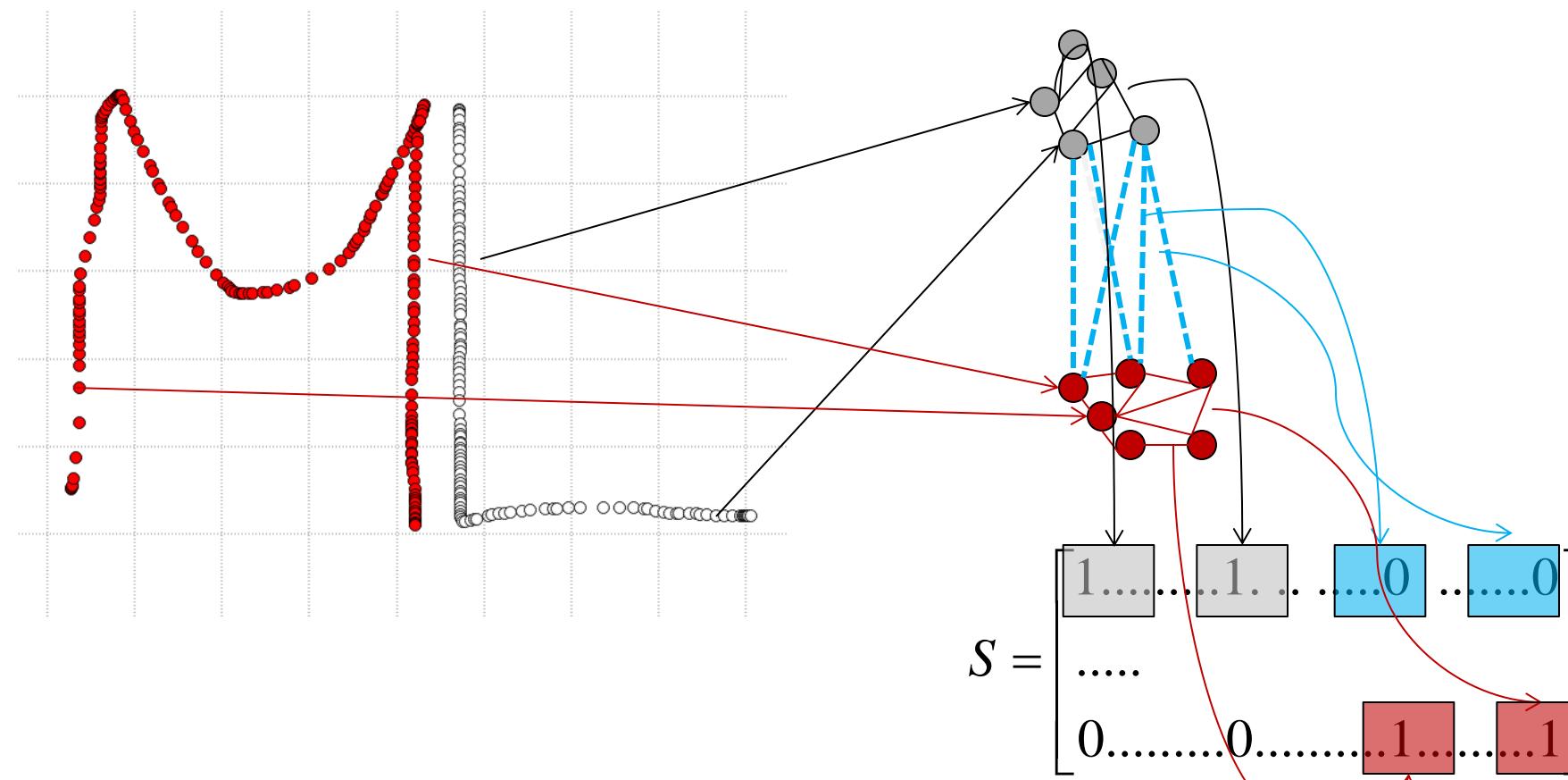
- Build a *similarity graph*
- Each vertex on the graph is a datapoint

Measure Distances in Graph



Construct the similarity matrix (adjacency matrix) S to denote whether points are close or far away to weight the edges of the graph.

Connected Components in a Graph



If all blue connections have value zero in the similarity matrix, then the graph has 2 **connected components** (i.e. two disconnected blocks of datapoints; all datapoints within a block are connected).

Spectral Clustering: example

$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 \end{bmatrix}$$

Looking at the similarity matrix, what can you say about the distribution of points?

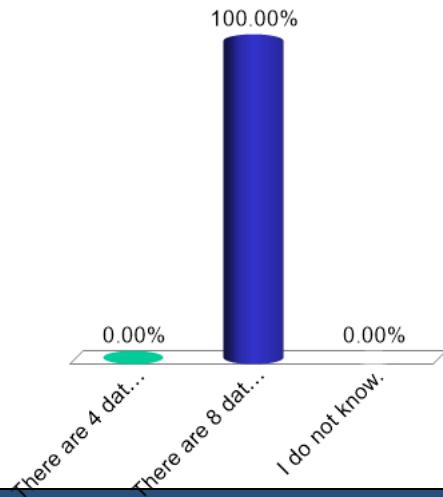
- A. There are 4 datapoints.
- B. There are 8 datapoints.
- C. I do not know.

Spectral Clustering: example

$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 \end{bmatrix}$$

Looking at the similarity matrix, what can you say about the distribution of points?

- A. There are 4 datapoints.
- B. There are 8 datapoints.
- C. I do not know.



Spectral Clustering: example

$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 & 0.1 \end{bmatrix}$$

Looking at the similarity matrix, what can you say about the distribution of points?

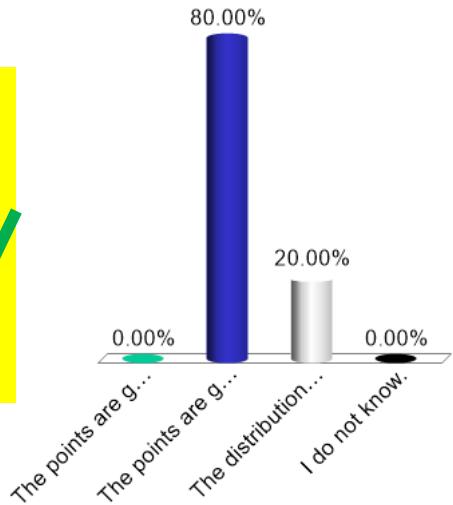
- A. The points are grouped in one cluster.
- B. The points are grouped in 2 clusters.
- C. The distribution of the points is uniform in each cluster.
- D. I do not know.

Spectral Clustering: example

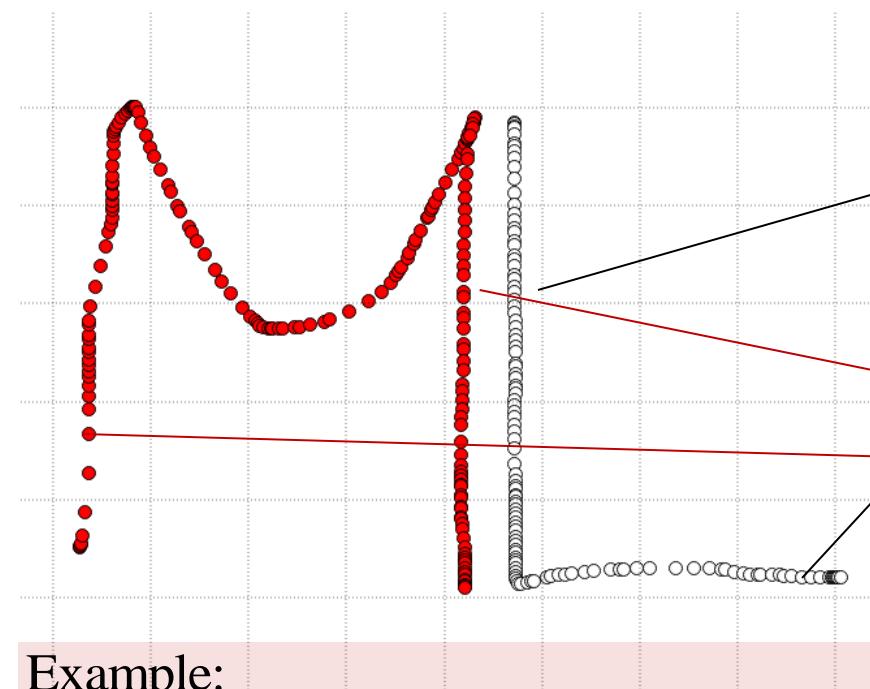
$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 & 0 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 & 0 \end{bmatrix}$$

Looking at the similarity matrix, what can you say about the distribution of points?

- A. The points are grouped in one cluster.
- B. The points are grouped in 2 clusters. ✓
- C. The distribution of the points is uniform in each cluster. ✓
- D. I do not know.

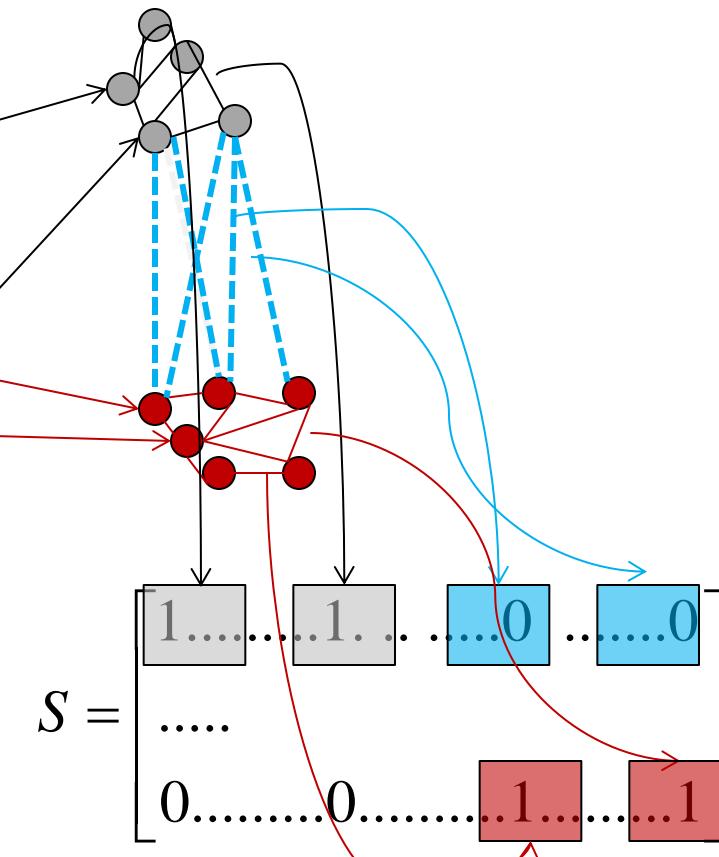


Disconnected Graphs



Example:

A disconnected Graph with binary entries for S



Two data-points are connected $S(x^i, x^j) = 1$

- if a) the similarity between them is higher than a threshold;
- or b) if they are k -nearest neighbors (according to the similarity metric).

Graph Laplacian

Eigenvalue decomposition of the Graph Laplacian matrix:

$$L = U \Lambda U^T$$

All eigenvalues of L are positive and the smallest eigenvalue of L is zero:

⇒ If we order the eigenvalues by **increasing** order:

$$\lambda_1 = 0 \leq \lambda_2 \leq \dots \leq \lambda_M.$$

Theorem (see annexes):

If the graph has k connected components, then the eigenvalue $\lambda=0$ has multiplicity k .

Spectral Clustering

Let us do exercise I

Spectral Clustering: Exercise I

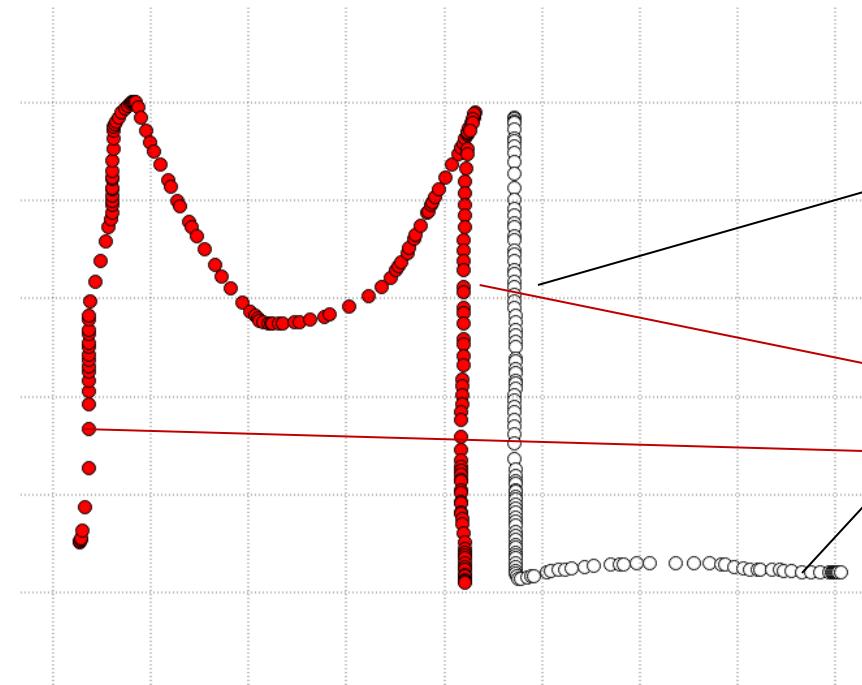
Consider a two-dimensional dataset composed of two points.

- a) Build a similarity matrix using a threshold function on Euclidean (norm-2) distance. The metric outputs 1 if the points are close enough according to a threshold and zero otherwise. **Consider two cases: when the two datapoints are close or far.**
- b) For each of the two cases above, build the Laplacian matrix, perform an eigenvalue decomposition and discuss the eigenvalues. $L = D - S$

Role of the eigenvalues in spectral clustering

- ⇒ The multiplicity of the eigenvalue 0 determines the number of connected components in a graph.
- Identifying the number of clusters using the eigenvalue decomposition of the Laplacian matrix is then immediate (using above) *when* the similarity matrix is sparse.
- What happens when the similarity matrix is full?

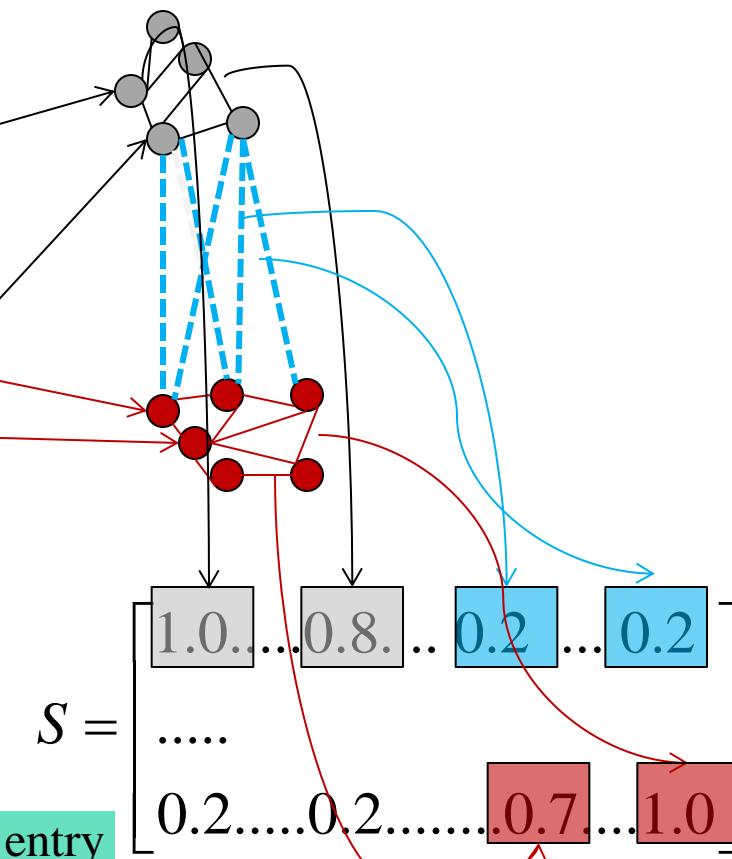
Spectral Clustering



Similarity map $S : \mathbb{R}^N \times \mathbb{R}^N \rightarrow \mathbb{R}$

Assume S is composed of continuous values; each entry is computed using the Gaussian kernel (Gram matrix)

$$S(x^i, x^j) = e^{-\frac{\|x^i - x^j\|^2}{2\sigma^2}}$$



Spectral Clustering: exercise II

Consider a two-dimensional dataset composed of two points (assume again two cases – points are close to one another or are far apart).

- a) Build a similarity matrix using a RBF kernel. Build the Laplacian matrix, perform an eigenvalue decomposition and discuss the eigenvalues and eigenvectors, for each of the two cases above.
- b) Repeat (a) using a homogeneous polynomial kernel with $p=2$.

Information entailed in the eigenvalues

$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 \end{bmatrix}$$

What can you say about the eigenvalues of the associated Laplacian matrix?

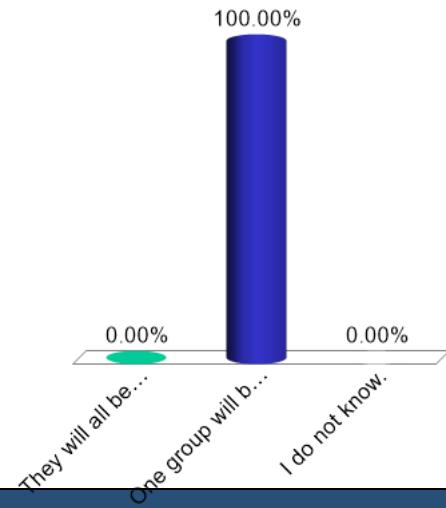
- A. Only one eigenvalue is zero.
- B. Two eigenvalues are zero.
- C. Four eigenvalues are zero.
- D. I do not know.

Information entailed in the eigenvalues

$$S = \begin{bmatrix} 1.0 & 0.9 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 1.0 & 0.9 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 1.0 & 0.9 & 0 & 0 & 0 & 0 \\ 0.9 & 0.9 & 0.9 & 1.0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.0 & 0.1 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 1.0 & 0.1 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 1.0 & 0.1 \\ 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0.1 & 1.0 \end{bmatrix}$$

What can you say of the **non zero** eigenvalues of the associated Laplacian matrix?

- A. They will all be equal.
- B. One group will be much larger than another group.
- C. I do not know.



Spectral Clustering: finding the clusters

This provides an indication of the number of clusters K
(K : *# of groups of eigenvalues with similar values*).

We do not yet know how the points are partitioned in the clusters!
Let us see now how we can infer the clusters from the eigenvalue decomposition.

Spectral Clustering: finding the clusters

To find the clusters:

- A. Project points on the K eigenvectors with largest eigenvalues.
- B. Project points on the K eigenvectors with associated eigenvalue zero.
- C. Project points on the K eigenvectors with smallest eigenvalues.
- D. I do not know.

Spectral Clustering: finding the clusters

To find the clusters:

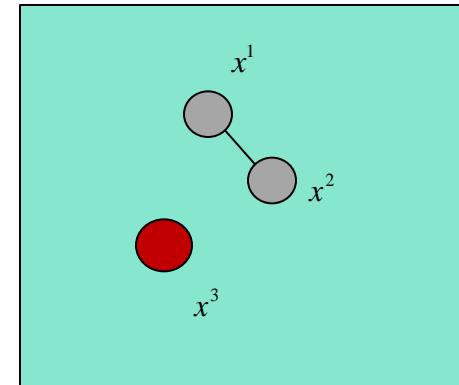
- A. Apply K-means on points in original space.
- B. Apply K-means on points in projected space.
- C. Apply K-means on points in both original and projected space.
- D. I do not know.

Finding the clusters: example

Example: 3 datapoints in a graph composed of 2 partitions

The similarity matrix is $S = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $L = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

L has eigenvalue $\lambda=0$ with multiplicity two.



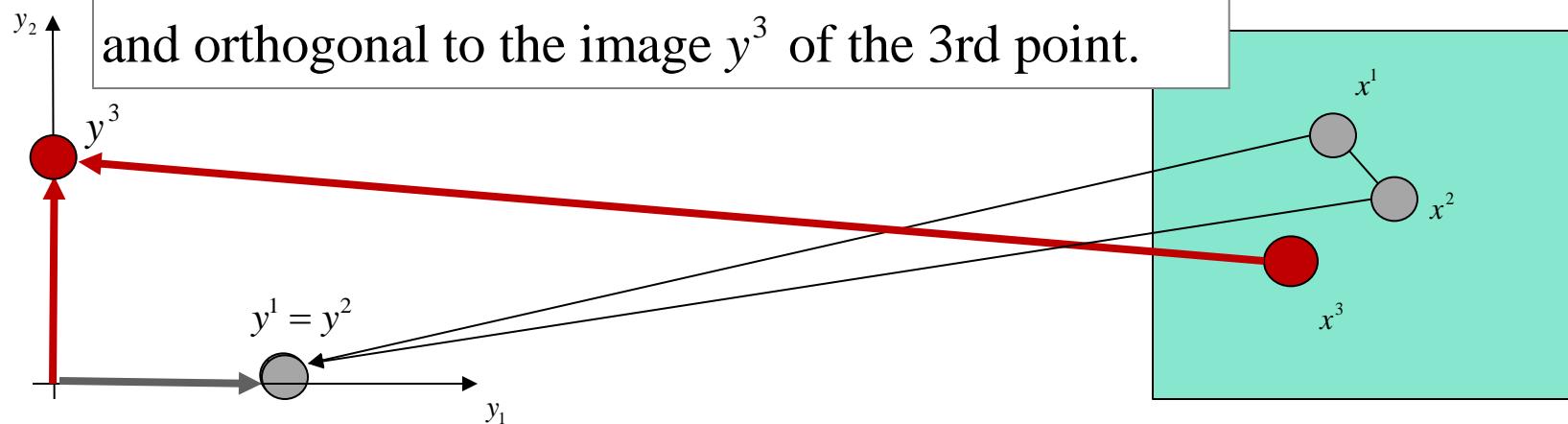
The eigenvectors of L are:

$$e^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix} \quad e^2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \quad e^3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

The images of the points are given by:

$$y^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \quad y^2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad y^3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The images y^1, y^2 of the datapoints are superposed (when considering the first two dimensions only) and orthogonal to the image y^3 of the 3rd point.

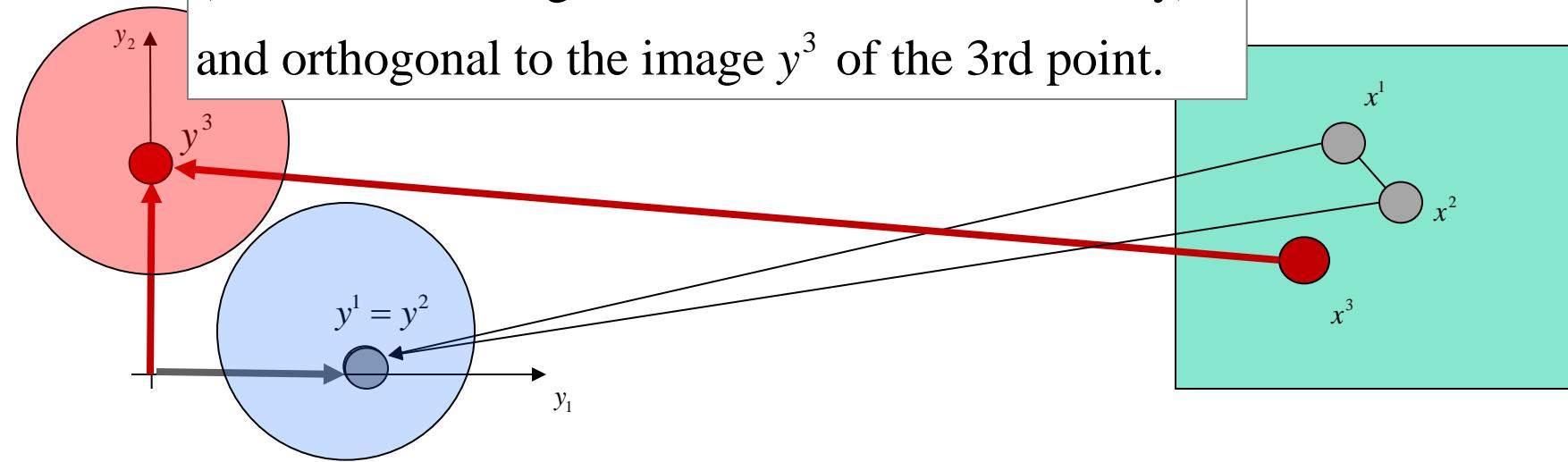


The coordinates of the images y^1, y^2 of the datapoints x^1, x^2 for the first two eigenvectors are equal.

The images of the points are given by:

$$y^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix} \quad y^2 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \quad y^3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

The images y^1, y^2 of the datapoints are superposed (when considering the first two dimensions only) and orthogonal to the image y^3 of the 3rd point.



To discover the clusters, run K-means in image space (y-space).

Finding the clusters: example

Example: 3 datapoints in a fully connected graph

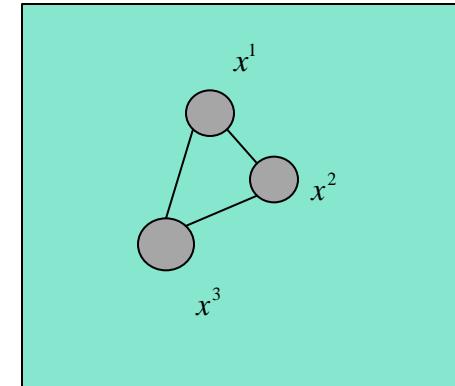
$$S = \begin{bmatrix} 1 & 0.9 & 0.02 \\ 0.9 & 1 & 0.02 \\ 0.02 & 0.02 & 1 \end{bmatrix} \quad L = \begin{bmatrix} 0.92 & -0.90 & -0.02 \\ -0.90 & 0.92 & -0.02 \\ -0.02 & -0.02 & 0.04 \end{bmatrix}$$

L has eigenvalue $\lambda_1 = 0$ with multiplicity 1.

The second eigenvalue is small $\lambda_2 = 0.06$,
whereas the 3rd one is large, $\lambda_3 = 1.82$.

with associated eigenvectors :

$$e^1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad e^2 = \begin{bmatrix} -0.4 \\ -0.4 \\ 0.8 \end{bmatrix}, \quad e^3 = \begin{bmatrix} -0.7 \\ 0.7 \\ 0.0 \end{bmatrix}$$



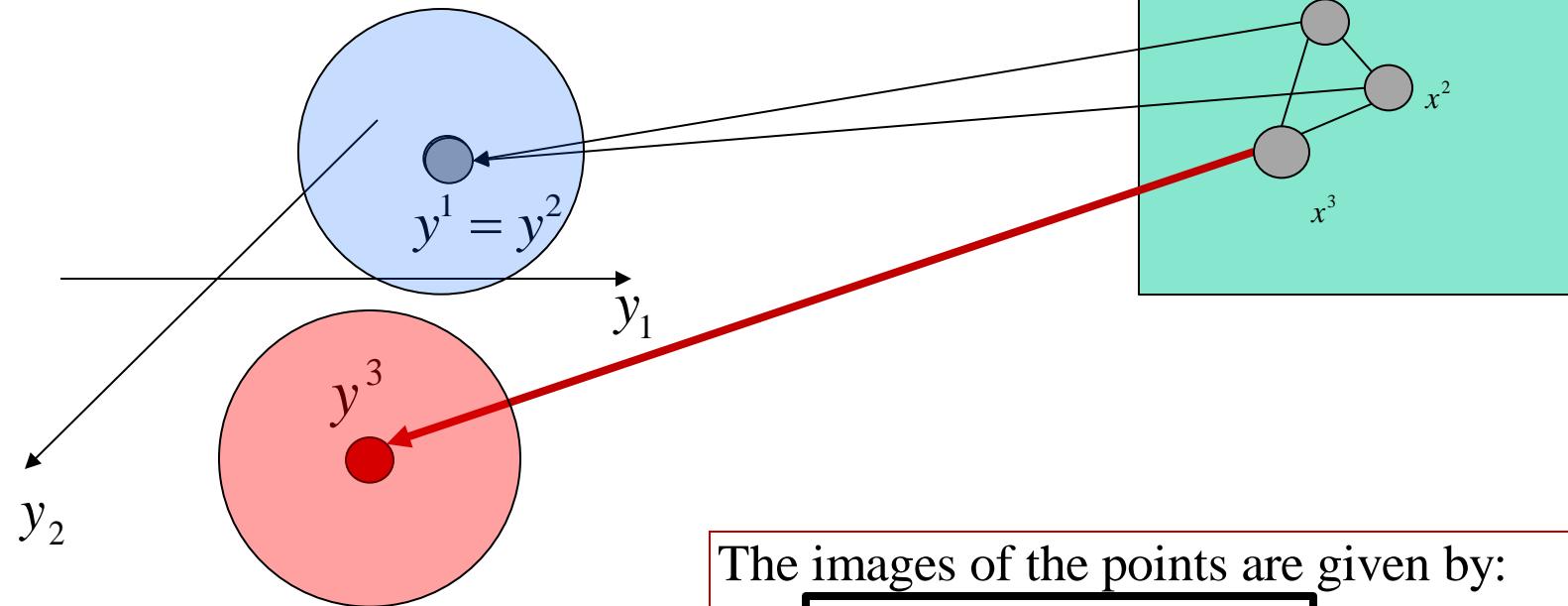
The coordinates of the images y^1, y^2 of the datapoints x^1, x^2 for the first two eigenvectors are again equal.

The images of the points are given by:

$$y^1 = \begin{bmatrix} 1/\sqrt{3} \\ -0.4 \\ -0.7 \end{bmatrix}, \quad y^2 = \begin{bmatrix} 1/\sqrt{3} \\ -0.4 \\ 0.7 \end{bmatrix}, \quad y^3 = \begin{bmatrix} 1/\sqrt{3} \\ 0.8 \\ 0.0 \end{bmatrix}$$

It makes sense to group eigenvectors with smallest eigenvalues.

The images y^1, y^2 of the datapoints are superposed (when considering the first two dimensions only) and orthogonal to the image y^3 of the 3rd point.



The images of the points are given by:

$$y^1 = \begin{bmatrix} 1/\sqrt{3} \\ -0.4 \\ -0.7 \end{bmatrix}, y^2 = \begin{bmatrix} 1/\sqrt{3} \\ -0.4 \\ 0.7 \end{bmatrix}, y^3 = \begin{bmatrix} 1/\sqrt{3} \\ 0.8 \\ 0.0 \end{bmatrix}$$

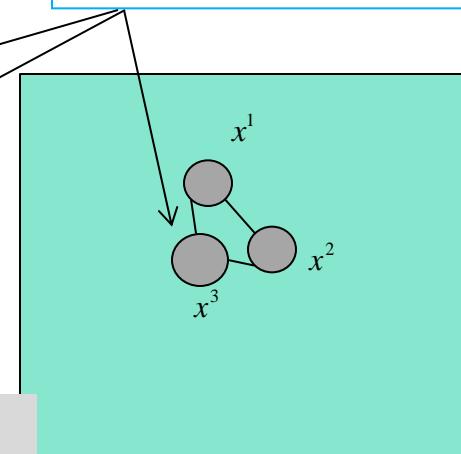
To discover the clusters, run K-means in image space (y-space).

Example: 3 datapoints in a fully connected graph

The similarity matrix is $S =$

$$\begin{bmatrix} 1 & 0.9 & 0.8 \\ 0.9 & 1 & 0.7 \\ 0.8 & 0.7 & 1 \end{bmatrix}$$

The 3rd point is now closer to the two other points



L has eigenvalue $\lambda=0$ with multiplicity 1. The second and third eigenvalues are both large $\lambda_2 = 2.23$, $\lambda_3 = 2.57$.

with associated eigenvectors :

$$e^1 = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, e^2 = \begin{bmatrix} -0.21 \\ -0.57 \\ 0.79 \end{bmatrix}, e^3 = \begin{bmatrix} -0.78 \\ 0.57 \\ 0.21 \end{bmatrix}$$

Entries are no longer equal!

The images of the points are given by:

$$y^1 = \begin{bmatrix} 1/\sqrt{3} \\ -0.21 \\ -0.78 \end{bmatrix}, y^2 = \begin{bmatrix} 1/\sqrt{3} \\ -0.57 \\ 0.57 \end{bmatrix}, y^3 = \begin{bmatrix} 1/\sqrt{3} \\ 0.79 \\ 0.21 \end{bmatrix}$$

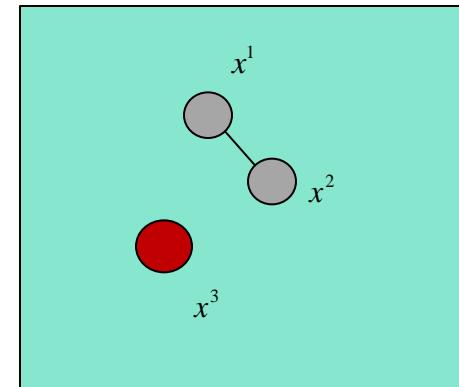
Equivalency to other non-linear Embeddings

What about kernel PCA?

The eigenvalue decomposition of S (equiv. to kPCA on Gram matrix) yields the set of dual eigenvectors:

$$\alpha^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \alpha^2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad \alpha^3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$$

$$\lambda_1 = 2, \lambda_2 = 1, \lambda_3 = 0.$$



With spectral clustering, the eigenvectors of L are:

$$e^1 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}, \quad e^2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \quad e^3 = \frac{1}{\sqrt{2}} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$\lambda_1 = 0, \lambda_2 = 0, \lambda_3 = 2.$$

→ The dual eigenvectors with non-zero eigenvalues are aligned with the set of eigenvectors of the Laplacian matrix!

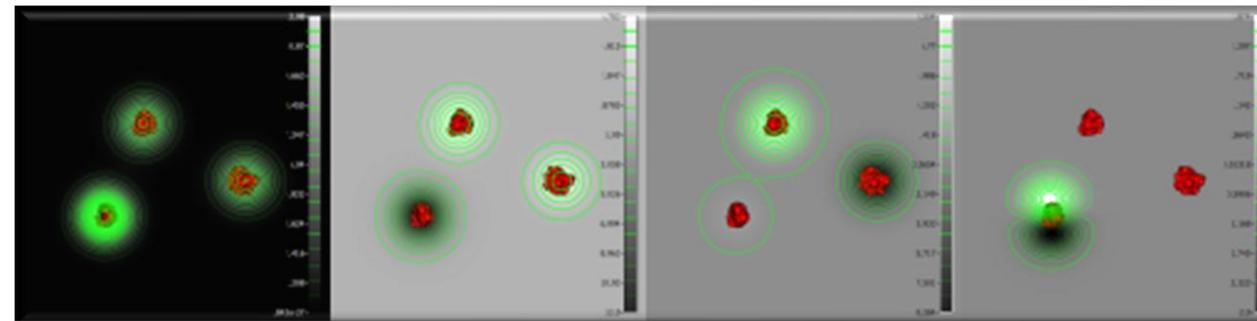
Careful: this is not true in arbitrary cases!

Kernel PCA as preprocessing before K-means?

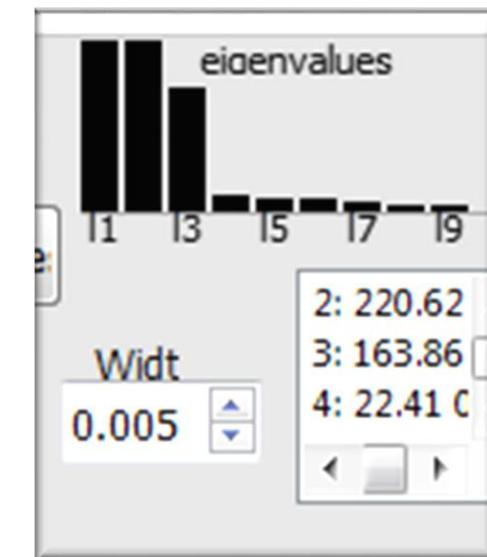
KPCA as pre-processing before kernel K-means

The choice of parameters in kernel K-Means can be initialized by doing a readout of the Gram matrix after kernel PCA.

The number of large eigenvalues = number of clusters (here 3)



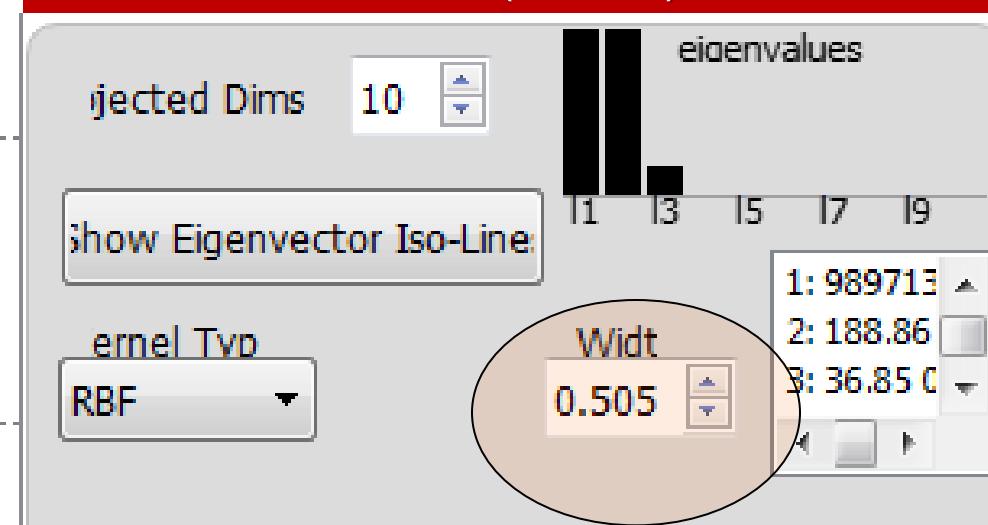
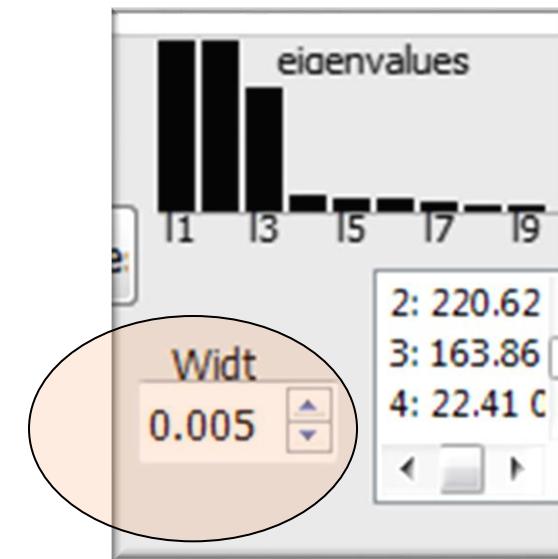
Projections on dual eigenvectors 1 to 4 (from left to right)



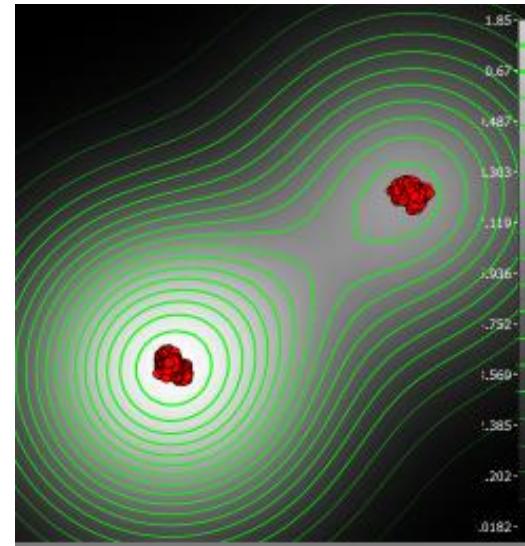
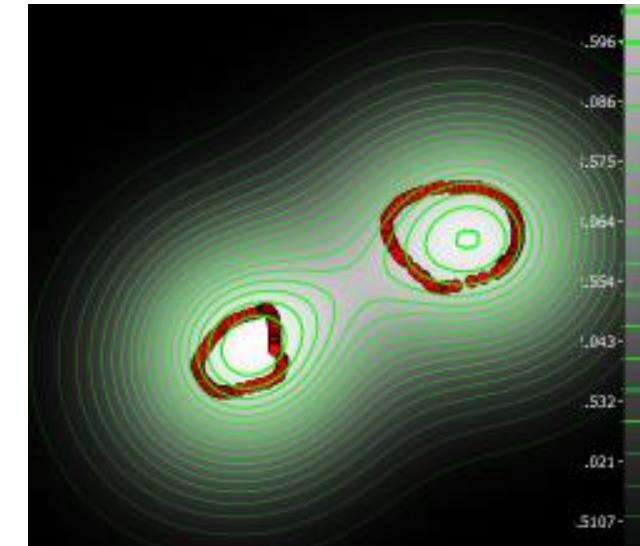
KPCA as pre-processing before kernel K-means

The choice of kernel and kernel's hyperparameters determines the number of clusters

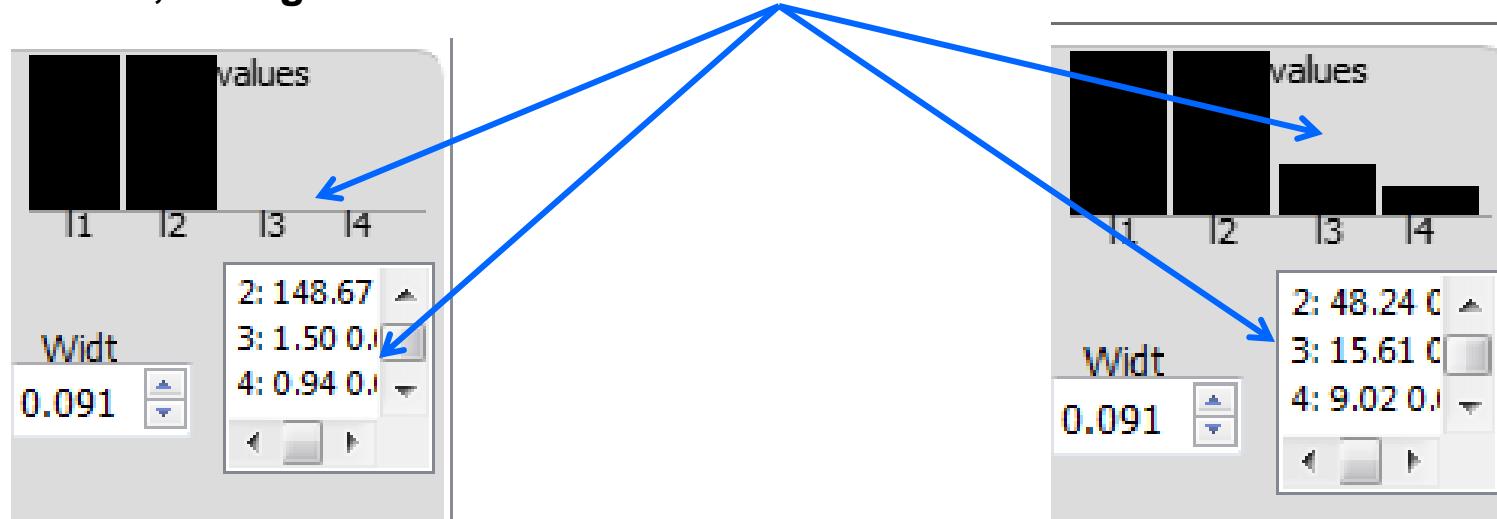
The number of large eigenvalues = number of clusters (here 2)



Looking at eigenvalue distribution in Kernel PCA projections can help determine the tightness of the clusters.



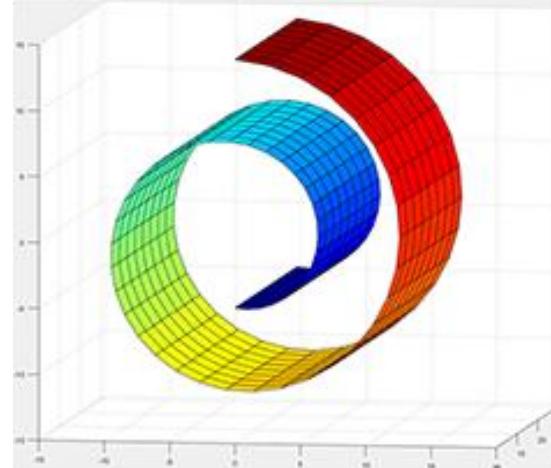
The smallest eigenvalues entail information about dispersion within clusters
The smaller, the tighter the cluster.



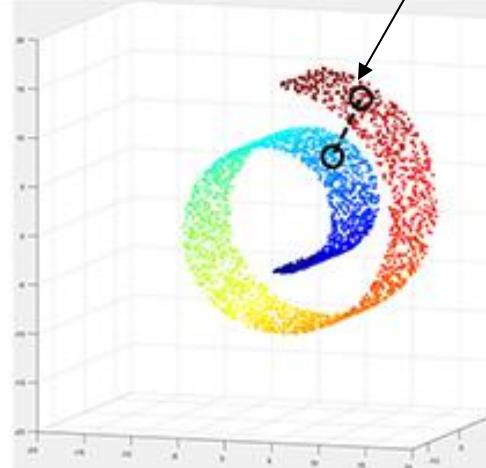
Non-linear embeddings

Non-linear embeddings

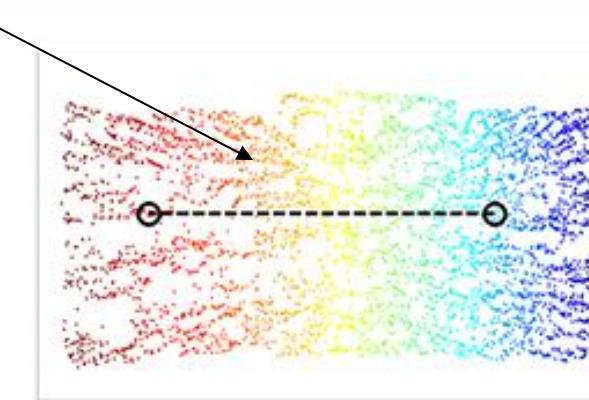
Points close to one another are actually far apart on the manifold



(a)



(b)



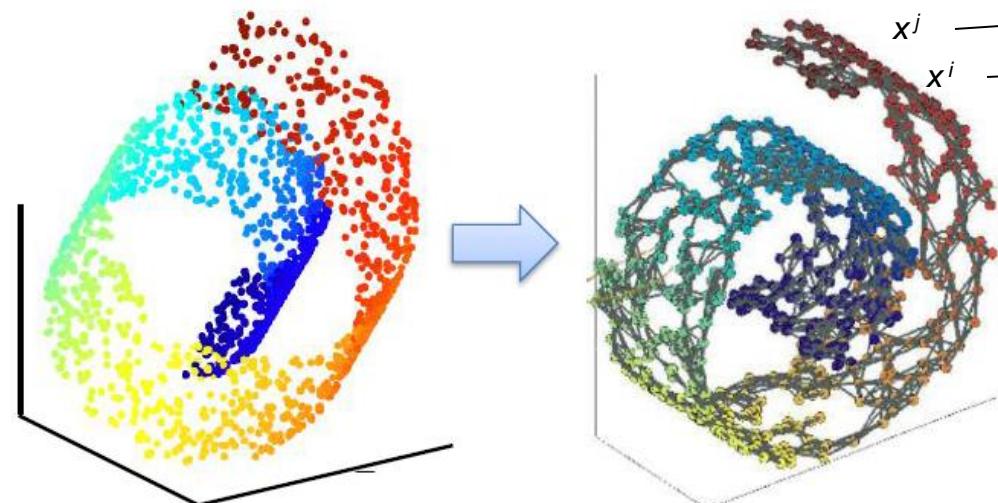
Source: DOI: 10.5772/65903

(c)

If one could flatten the manifold, this would be advantageous for:

- Visualizing the data
- Reducing the dimensionality
- linearly separating the group of data

Laplacian Eigenmaps



Sample datapoints

Construct graph
from datapoints

Similarity Matrix:

$$S = \begin{bmatrix} 1 & 0.5 & 0 & 0 & \dots \\ 0.5 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & \dots & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

Adjacency graph:

We put an edge (rbf kernel) between nodes i and j if:

- x^i is among k nearest neighbors of x^j or
- if x^j is among k nearest neighbors of x^i
(the relation is symmetric)

Laplacian Eigenmaps

Solve the generalized eigenvalue problem:

$$Le^i = \lambda De^i \Leftrightarrow (I - D^{-1}S)e^i = \lambda e^i$$

e^i : M eigenvectors

If D not invertible, solve:

$$\min_y e^T L e \quad \text{such that } e^T D e = 1.$$

Similarity Matrix:

$$S = \begin{bmatrix} 1 & 0.5 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0.3 \\ 0 & 0 & 0.3 & 1 \end{bmatrix}$$

Symmetrized and normalized form of the Graph Laplacian

Ensures minimal distortion while offering a rescaling.

Similarity Matrix:

$$I - D^{-1}S = \begin{bmatrix} 0.33 & -0.33 & 0 & 0 \\ -0.33 & 0.33 & 0 & 0 \\ 0 & 0 & 0.23 & -0.23 \\ 0 & 0 & 0.23 & 0.23 \end{bmatrix}$$

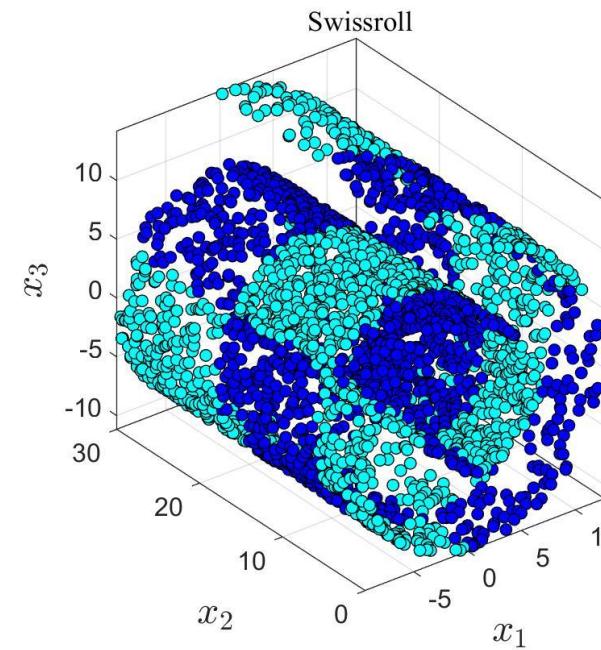
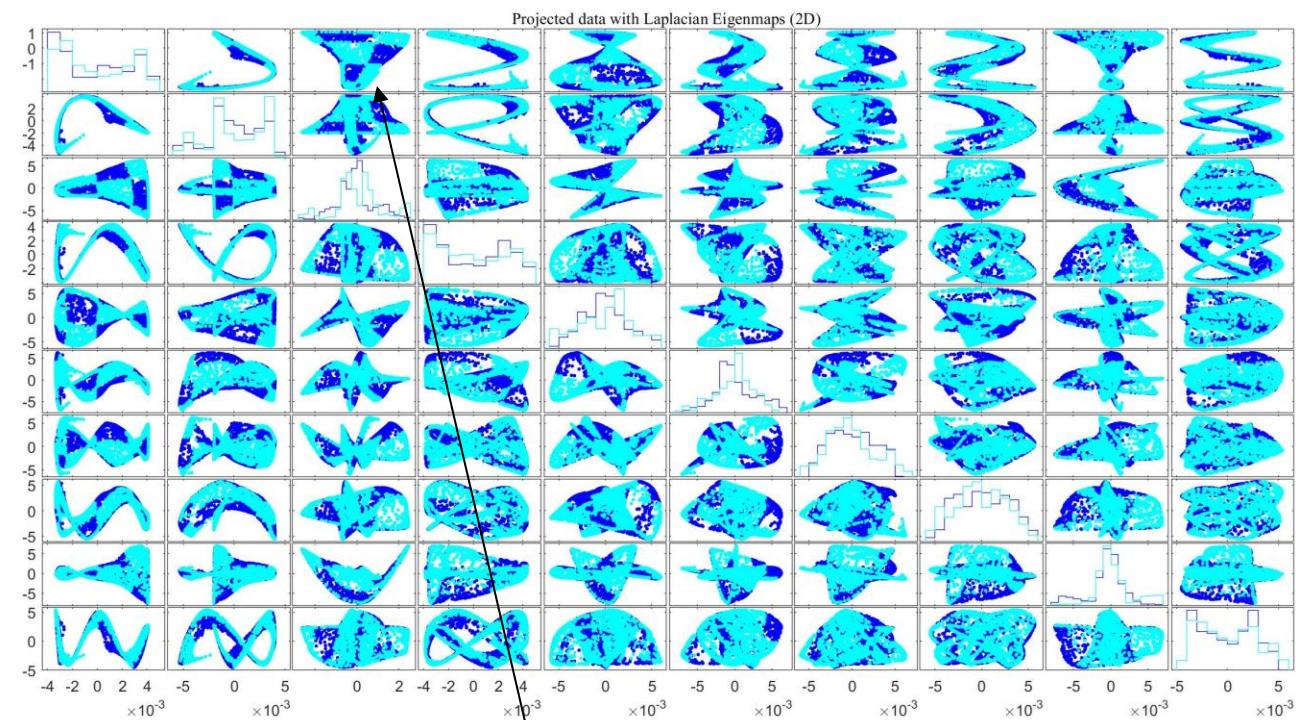
Reflected in the eigenvalues

Eigenvalues of L : 0 0 **0.46** 0.66

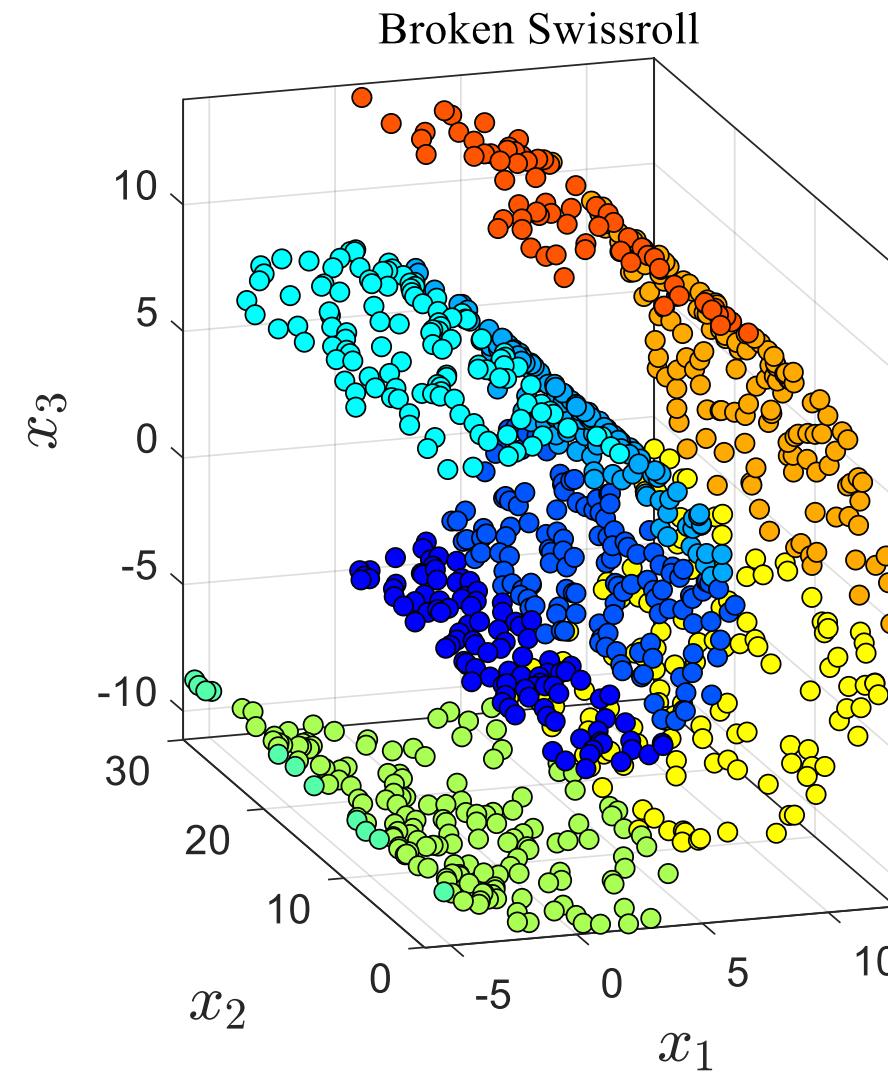
Eigenvalues of $I - D^{-1}S$: 0 0 **0.6** 1.0

Laplacian Eigenmaps

Data used in the practice session



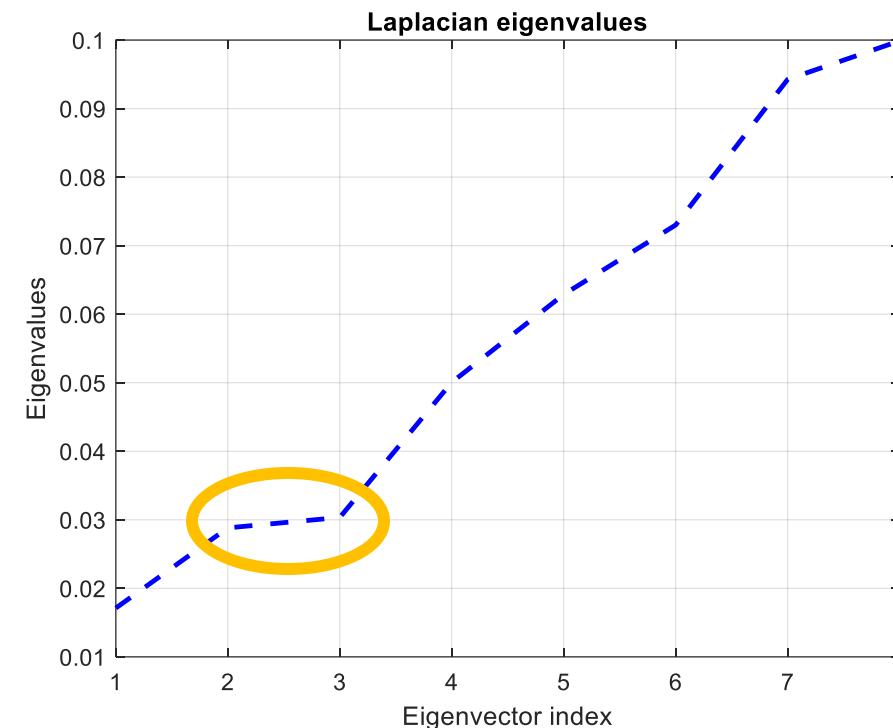
The projections on the pair e^2, e^3 generate a flat embedding that enables a piece-wise linear partitioning.



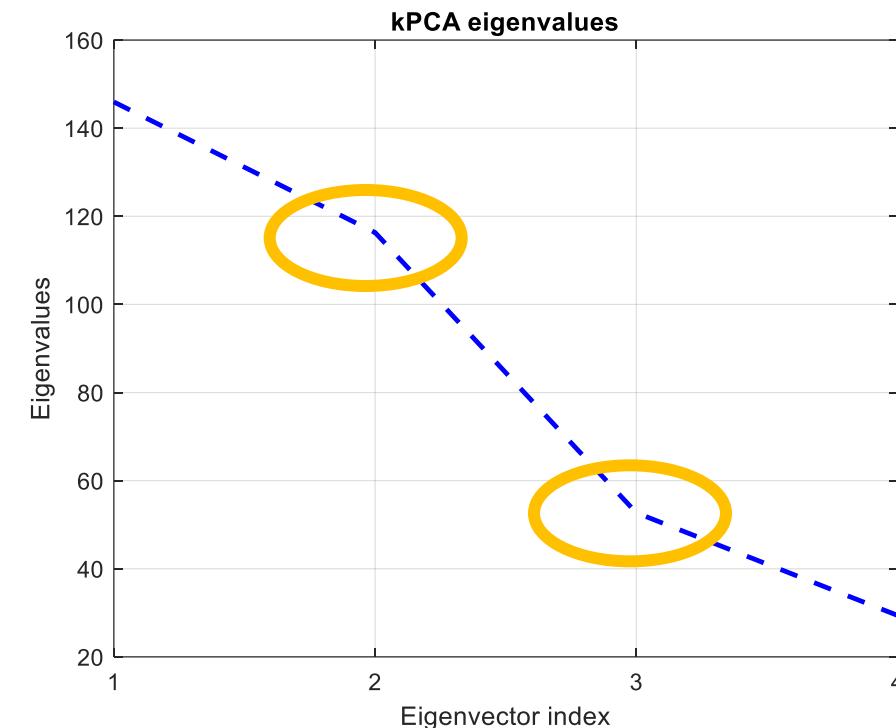
How to determine the best embedding?

Comparison of eigenvalues

Decomposition of the Laplacian

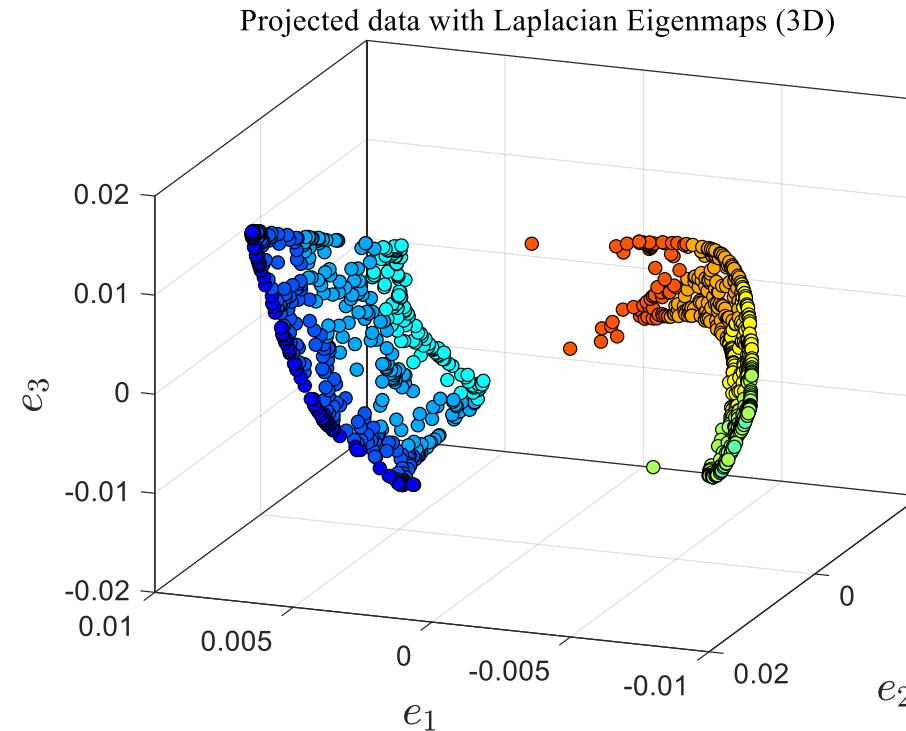
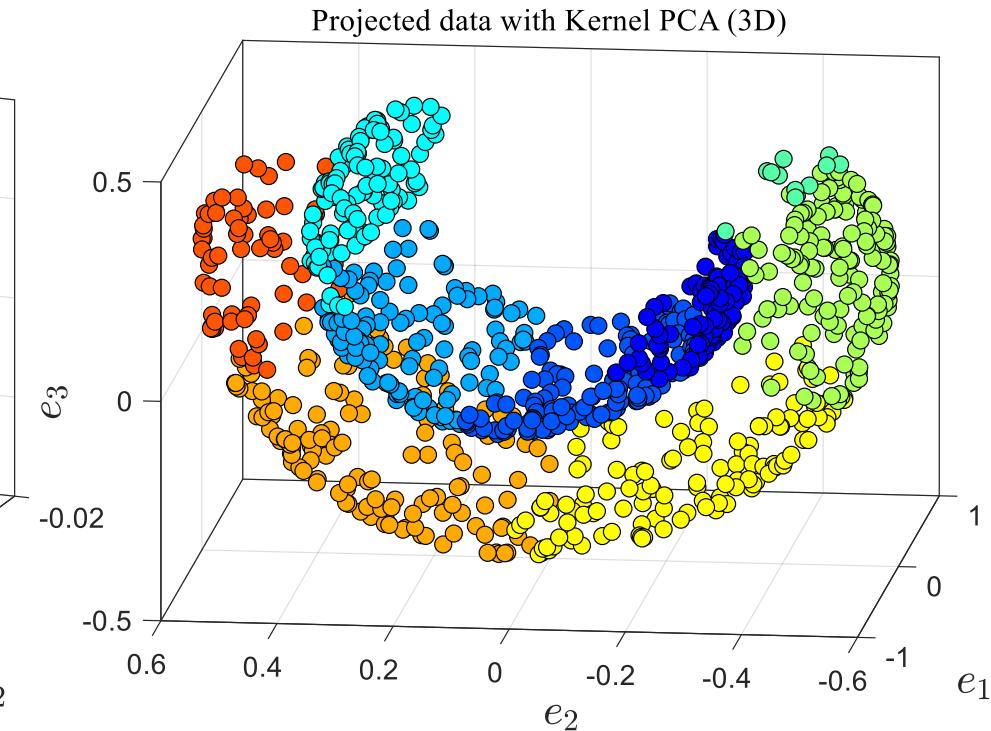


Decomposition of the Gram Matrix



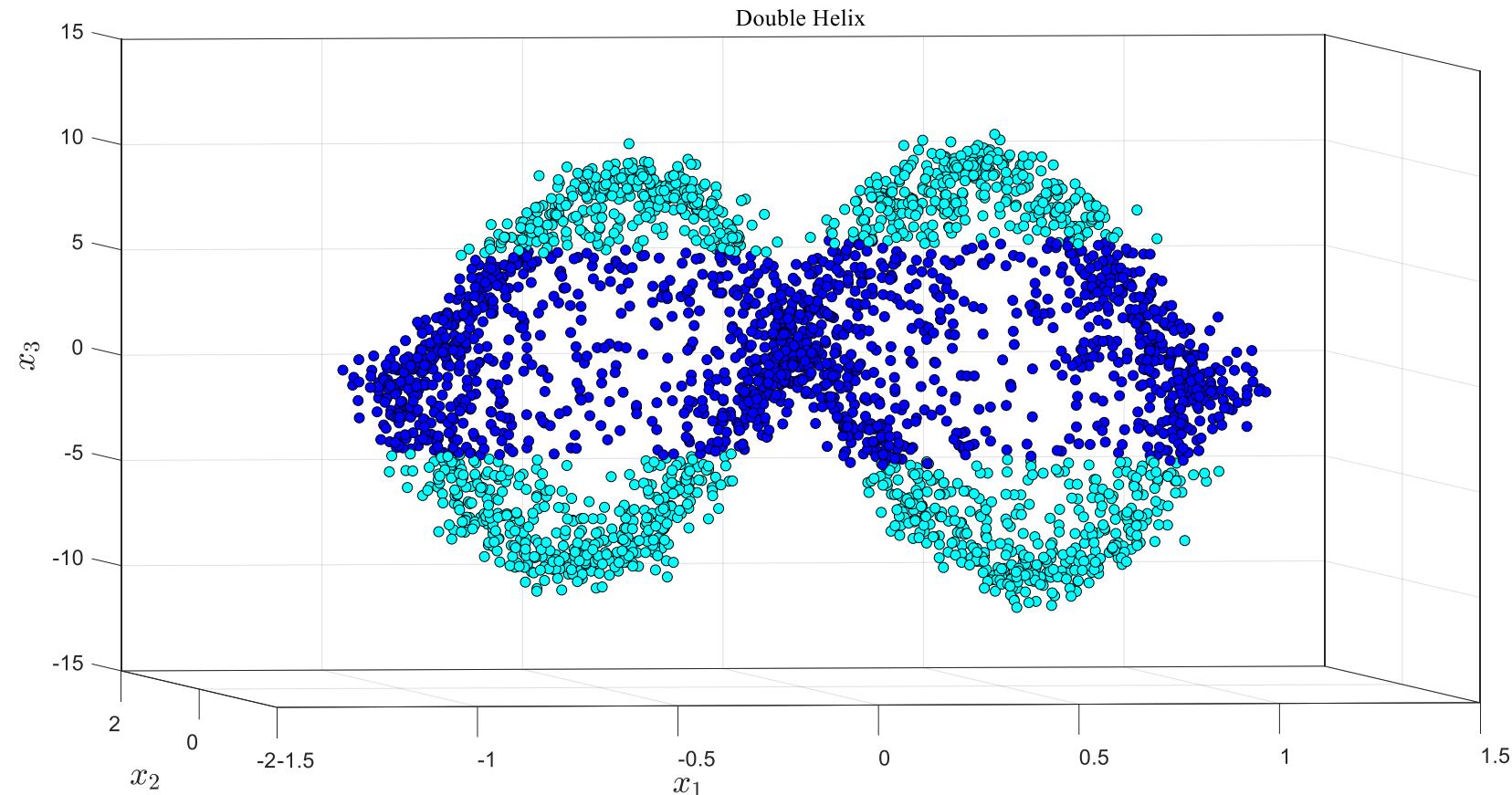
Looking at the Laplacian eigenvalues eases the identification of the number of clusters.

Comparison of projections



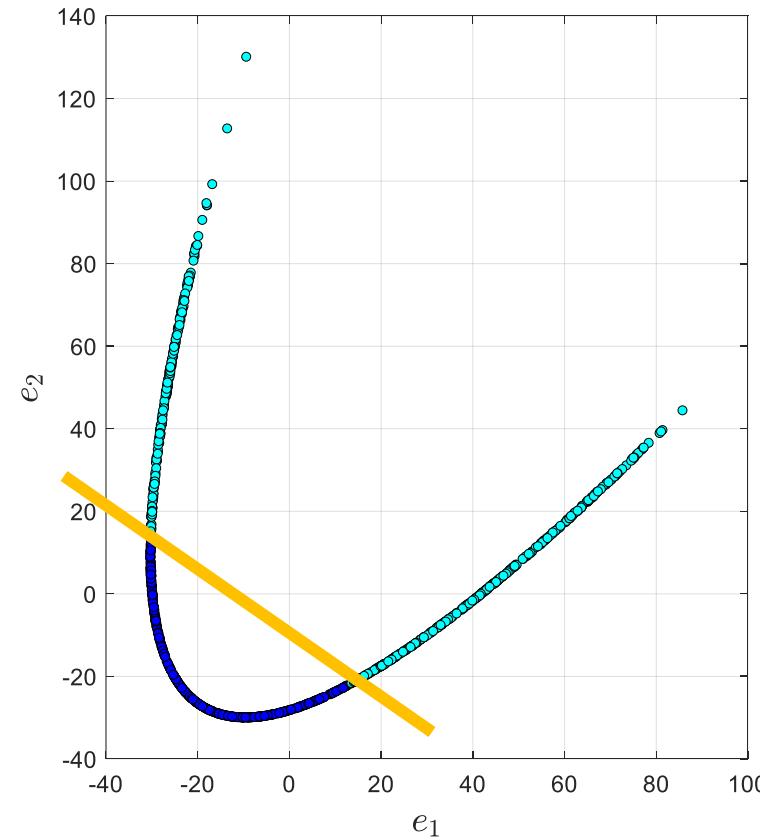
Clusters are better separated in the Laplacian projections.

Tightly embedded clusters



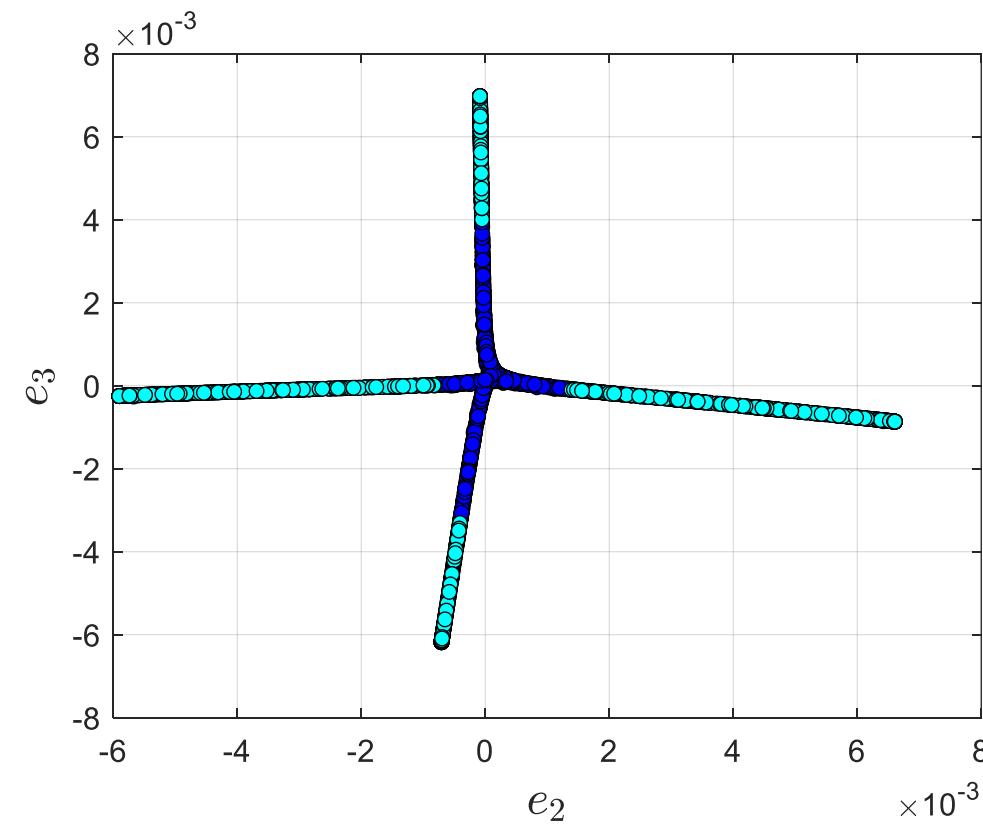
When the groups of datapoints are intermingled along different dimensions.

Double Helix kPCA Projection



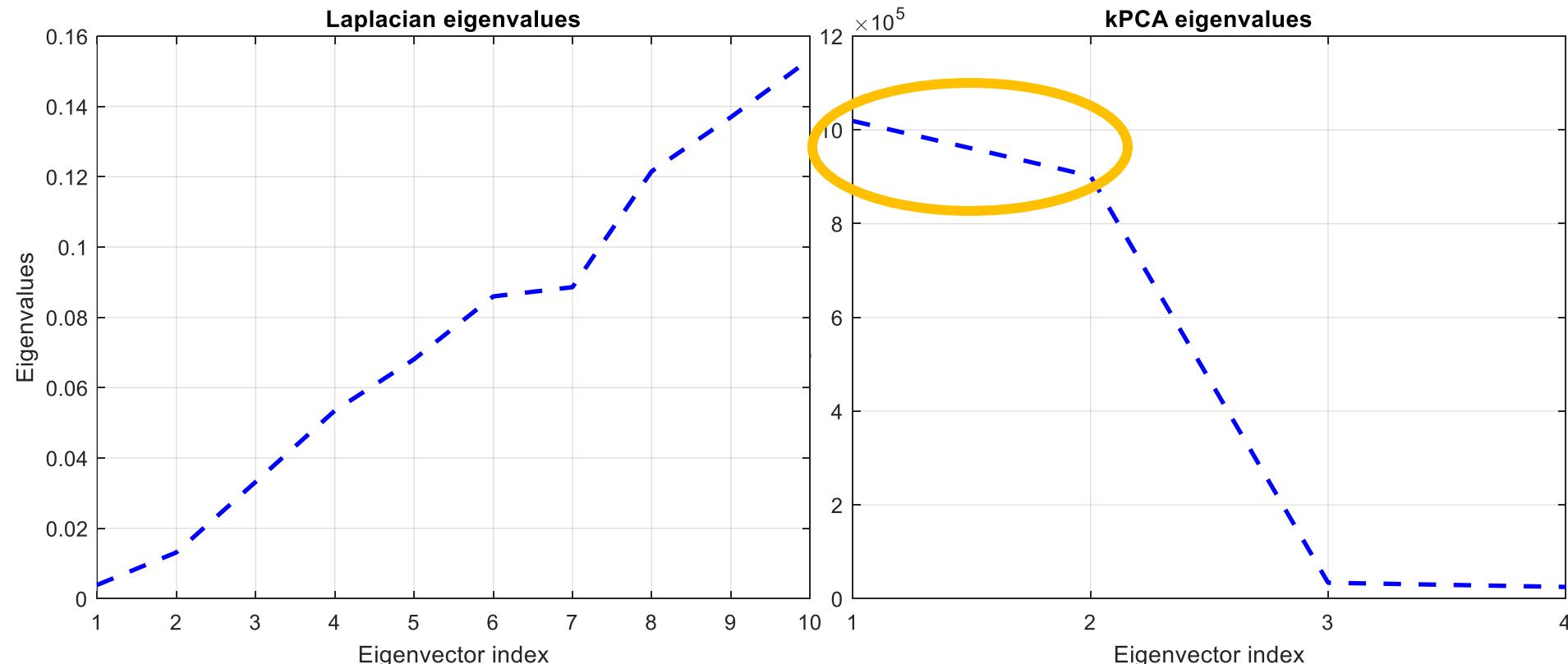
Projection after kernel PCA with inhomogeneous polynomial kernel

Double Helix Laplacian Projections



Projection using Laplacian eigenmaps

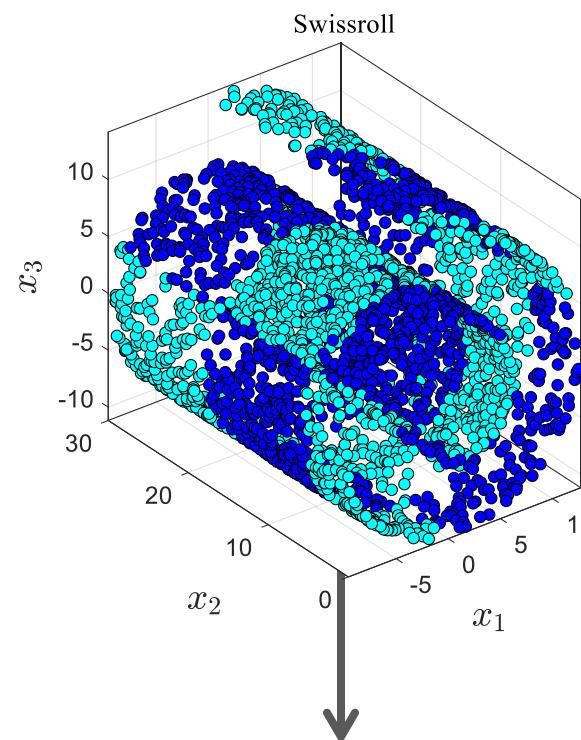
Comparison of eigenvalues



kPCA does a better job at extracting the number of clusters and projections

Laplacian projections are best suited when the clusters are well separated spatially
(disconnected graph)

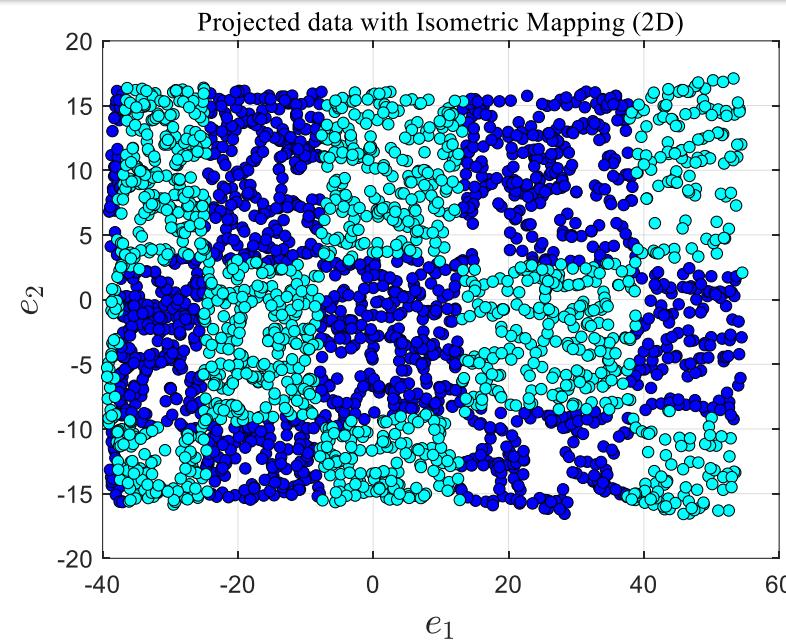
Isomap embedding



Compute pairwise distances:

$$S_{ij} = \left(\min_{k-\text{nearest neighbours}} d(x^i, x^j) \right)^2$$

Do an eigendecomposition of the centered similarity matrix.



Isomap is an extension of Multidimensional scaling.

Multi-Dimensional Scaling (MDS)

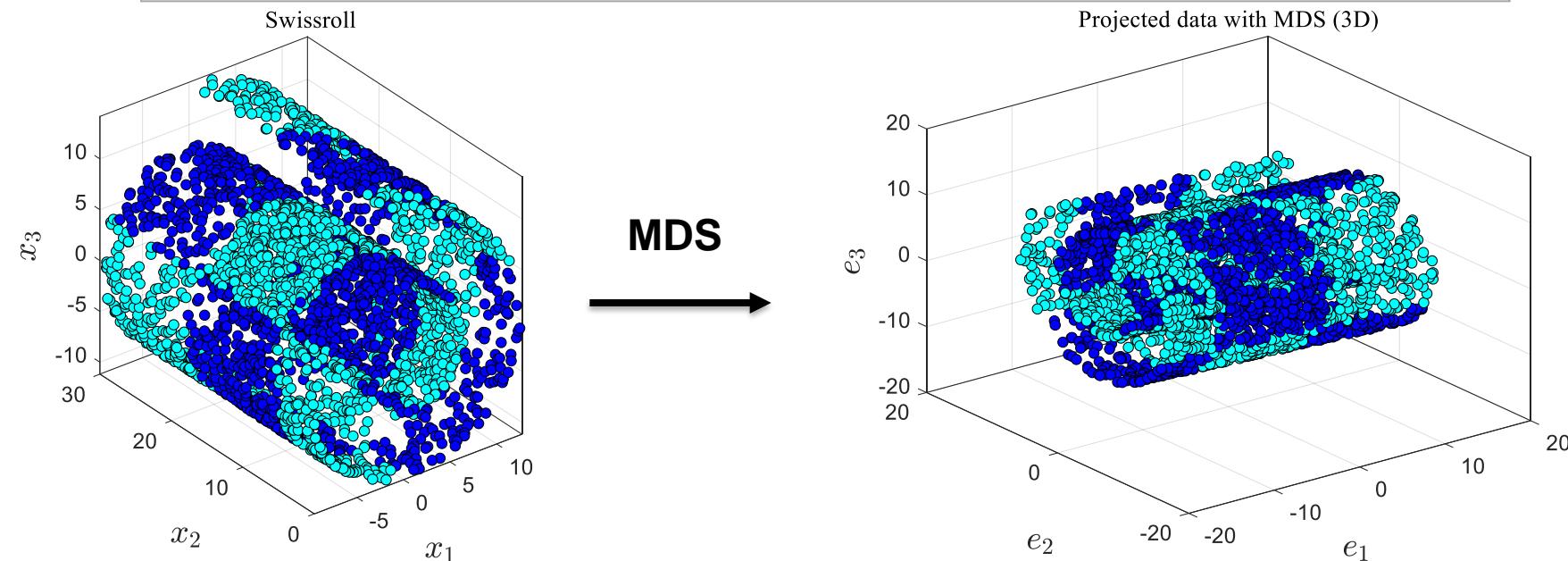
1) Build similarity matrix from Gram Matrix, using linear kernel

$$S_{ij} = \langle x^i, x^j \rangle \sim \text{squared pairwise distance } \|x^i - x^j\|$$

2) Center the similarity matrix: $S'_{ij} = S_{ij} - \frac{1}{M} \sum_{k=1}^M S_{ik} - \frac{1}{M} \sum_{k=1}^M S_{kj} + \frac{1}{M^2} \sum_{k,l=1}^M S_{kl}$

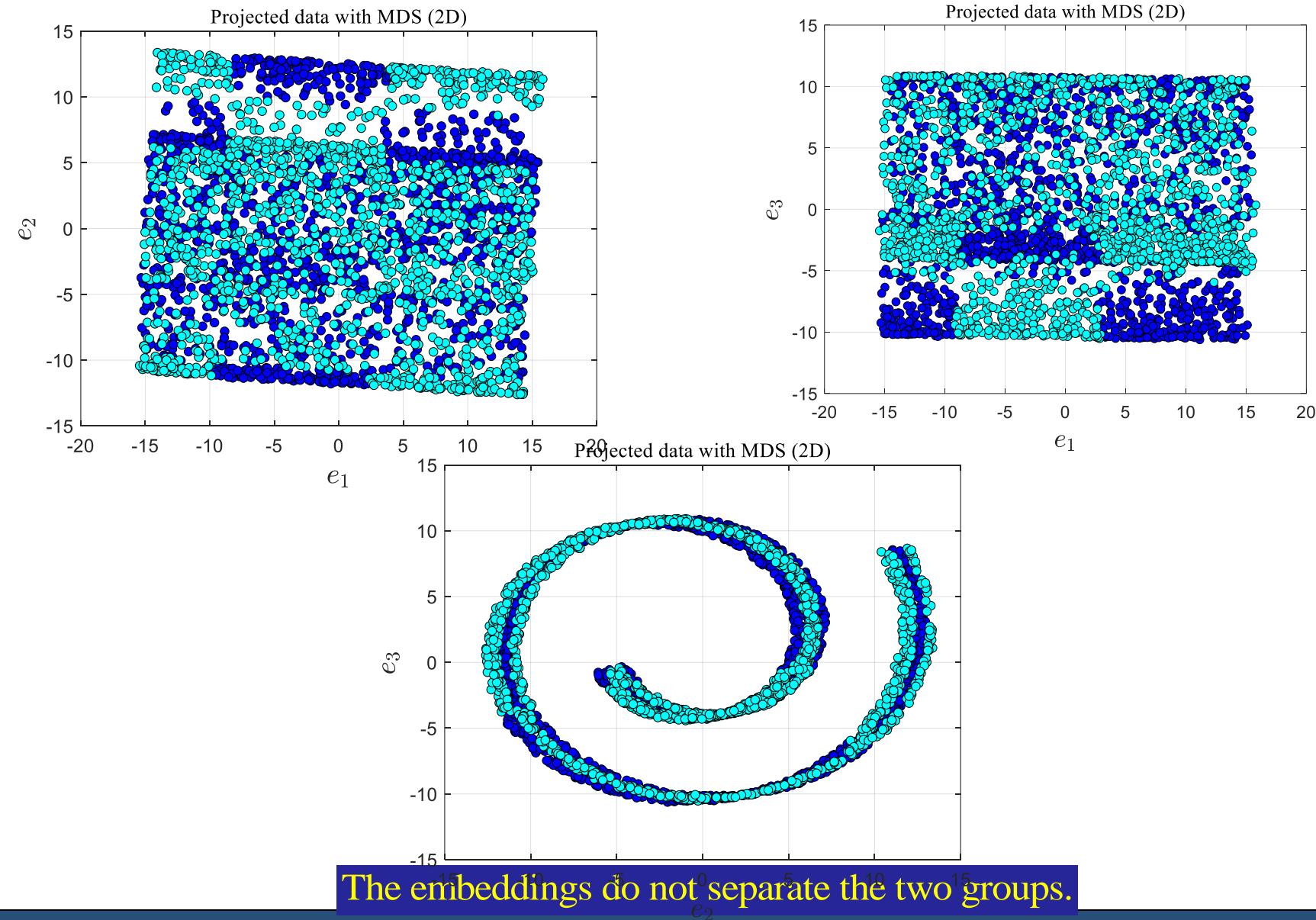
3) Decompose S' to obtain eigenvectors e^i , $i = 1 \dots M$.

4) Generate scaled projections $y_i^j = \sqrt{\lambda_i} e_j^i$



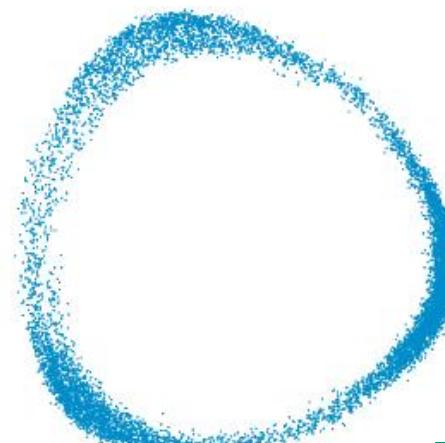
Flattens and normalizes but does not separate.

Multi-Dimensional Scaling (MDS)

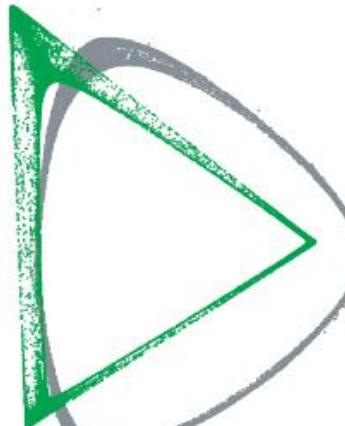


Manifold Learning Methods: Caveats

- Knowing the intrinsic dimension of the manifold can help recovering the projections
- The result of the algorithm heavily depends on setting well the hyperparameters such as the type of neighborhood graph (k -NN or radius neighbor) and neighborhood scale
- The algorithms heavily depend on the sampling method, that can affect measure of local density (and hence of relative scaling). Non uniform sampling can lead to undesired local deformation of the space.



Ground truth



Diffusion Maps

Laplacian Eigenmap use: $L = I - D^{-1}S$

Diffusion maps use: $L = I - \begin{pmatrix} D^{-1}S & SD^{-1} \\ \text{Rows normalization} & \text{Column normalization} \end{pmatrix}$

Laplacian Eigenmaps

Effects of graph construction and renormalization, when the sampling density is highly nonuniform

Summary: techniques to generate non-linear embeddings

We have seen how to use decomposition of the following set of matrices:

Gram matrix: kPCA, kCCA, MDS

Graph Laplacian: Laplacian Eigenmaps

See also supplement on moodle for other techniques:

- Maximum variance unfolding
- Local Linear Embeddings (LLE)

Manifold Learning Methods: Trade-offs

Sensitivity and properties of learned representations depending on parameters' and algorithmic choices.

