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MACHINE LEARNING

Spectral Clustering & Nonlinear Embeddings

Interactive exercise session
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Figure 2 Examples of manifolds with intrinsic dimension d = 2. (Left) A Swiss roll. (Middle) A torus (hollow). (Right) 1,000 points sampled from a torus sectioned by a plane.

Manifold Learning

Dataset resides on an unknown nonlinear manifold.
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Manifold Learning

Principle: Dataset resides on an unknown nonlinear 
manifold.

Identify the manifold and construct a 
new representation.

Project the data onto this representation 
to simplify further computations. 
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Manifold Learning
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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Embed Data in a Graph

• Build a similarity graph

• Each vertex on the graph is a datapoint

Original dataset Graph representation of the dataset
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Measure Distances in Graph

Construct the similarity matrix (adjacency matrix) S to denote whether 

points are close or far away to weight the edges of the graph.

1.0.....0.8. .. 0.2  ...  0.2

..... 

0.2.....0.2........0.7....1.0

S

 
 

=
 
  
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Connected Components in a Graph

1.........1. .. .....0  .......0

..... 

0.........0..........1.........1

S

 
 

=
 
  

If all blue connections have value zero in the similarity matrix, then the graph

has 2 connected components (i.e. two disconnected blocks of datapoints;

all datapoints within a block are connected).
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Looking at the similarity matrix, what can you say

about the distribution of points?

A. There are 4 datapoints.

B. There are 8 datapoints.

C. I do not know.

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  

Spectral Clustering: example
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Looking at the similarity matrix, what can you say

about the distribution of points?

A. There are 4 datapoints.

B. There are 8 datapoints.

C. I do not know.

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  

Spectral Clustering: example
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Looking at the similarity matrix, what can you say

about the distribution of points?

A. The points are grouped in one cluster.

B. The points are grouped in 2 clusters.

C. The distribution of the points is uniform in each cluster.

D. I do not know.

Spectral Clustering: example

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  
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Looking at the similarity matrix, what can you say

about the distribution of points?

A. The points are grouped in one cluster.

B. The points are grouped in 2 clusters.

C. The distribution of the points is uniform in each cluster.

D. I do not know.

Spectral Clustering: example

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  
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Disconnected Graphs

1.........1. .. .....0  .......0

..... 

0.........0..........1.........1

S

 
 

=
 
  

Example: 

A disconnected Graph with binary entries for S

( )

( )

Two data-points are connected  

if a the similarity between them is higher than a threshold;

or b if they are k-nearest neighbors according to the similar

, 1

i

) 

ty)  metri c .

i jS x x =



MACHINE LEARNING II

14

Graph Laplacian

1 2

Eigenvalue decomposition of the Graph Laplacian matrix:

All eigenvalues of  are positive and the smallest eigenvalue of  is zero:

If we order increasthe eigenvalues by in  order:

0

g

....

T

M

L U U

L L

  

= 



=    .

Theorem (see annexes):

If the graph has  connected components, then the 

eigenvalue =0 has multiplicity .

k

k
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Spectral Clustering

Let us do exercise I
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Spectral Clustering: Exercise I

Consider a two-dimensional dataset composed of two points.

a) Build a similarity matrix using a threshold function on  Euclidean (norm-2) 

distance. The metric outputs 1 if the points are close enough according to a 

threshold and zero otherwise. Consider two cases: when the two datapoints 

are close or far. 

b) For each of the two cases above, build the Laplacian matrix, perform an 

eigenvalue decomposition and discuss the eigenvalues. L D S= −



MACHINE LEARNING II

18

The multiplicity of the eigenvalue 0 determines the number of connected 

components in a graph. 



→ Identifying the number of clusters using the eigenvalue decomposition 

of the Laplacian matrix is then immediate (using above) when the 

similarity matrix is sparse.

→ What happens when the similarity matrix is full?

Role of the eigenvalues in spectral clustering
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Spectral Clustering

1.0.....0.8. .. 0.2  ... 0.2

..... 

0.2.....0.2........0.7....1.0

S

 
 =
 
  

Similarity map : N NS  →

( )

2

22

Assume  is composed of continuous values; each entry

is computed using the Gaussian kernel (Gram matrix) 

,

i jx x

i j

S

S x x e 

−
−

=
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Spectral Clustering: exercise II

Consider a two-dimensional dataset composed of two points (assume again 

two cases – points are close to one another or are far apart).

a)  Build a similarity matrix using a RBF kernel. Build the Laplacian matrix, 

perform an eigenvalue decomposition and discuss the eigenvalues and 

eigenvectors, for each of the two cases above.

b) Repeat (a) using a homogeneous polynomial kernel with p=2.
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What can you say about the eigenvalues of the 

associated Laplacian matrix?

A. Only one eigenvalue is zero.

B. Two eigenvalues are zero.

C. Four eigenvalues are zero.

D. I do not know.

Information entailed in the eigenvalues

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  
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What can you say of the non zero eigenvalues of the 

associated Laplacian matrix?

A. They will all be equal.

B. One group will be much larger than another group.

C. I do not know.

Information entailed in the eigenvalues

   1.0    0.9    0.9    0.9     0       0       0      0

   0.9    1.0    0.9    0.9     0       0       0      0

   0.9    0.9    1.0    0.9     0       0       0      0

   0.9    0.9    0.9   1.0    
S =

  0       0       0      0

    0       0       0      0      1.0    0.1    0.1    0.1

    0       0       0      0      0.1    1.0    0.1    0.1

    0       0       0      0      0.1    0.1    1.0    0.1

    0       0       0      0      0.1    0.1    0.1    1.0

 
 
 
 
 
 
 
 
 
 
 
  
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Spectral Clustering

This provides an indication of the number of clusters K 

(K: # of groups of eigenvalues with similar values).

We do not yet know how the points are partitioned in the clusters!

Let us see now how we can infer the clusters from the eigenvalue decomposition.

Spectral Clustering: finding the clusters
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To find the clusters:

A. Project points on the K eigenvectors with largest eigenvalues.

B. Project points on the K eigenvectors with associated eigenvalue zero.

C. Project points on the K eigenvectors with smallest eigenvalues.

D. I do not know.  

Spectral Clustering: finding the clusters
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To find the clusters:

A. Apply K-means on points in original space. 

B. Apply K-means on points in projected space. 

C. Apply K-means on points in both original and projected space. 

D. I do not know. 

Spectral Clustering: finding the clusters
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1 2 3

The eigenvectors of  are:

1 0 1
1 1

1           0          1
2 2

  0 1   0

L

e e e

− −     
     

= − = =
     
          

Example: 3 datapoints in a graph composed of 2 partitions

1  1  0 1   1   0

The similarity matrix is 1  1  0 ,  1   1    0

0  0  1 0     0    0

 has eigenvalue =0 with multiplicity

S L

L 

−   
   

= = −
   
      

 two.

1x

2x

3x

21 3

1 
1

  0   
2

  1

1  
1

  0  

0 

  
2

 

 1

1 0

y yy

− 


 
 

=

− 
 

=



=

  
 


 


  − 

Finding the clusters: example
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Spectral Clustering

1x

2x

3x
1 2y y=

3y

1y

2y

1 2

3

The images ,  of the datapoints are superposed 

(when considering the first two dimensions only)

and orthogonal to the image  of the 3rd point.

y y

y

21 3

1 
1

  0   
2

  1

1  
1

  0  

0 

  
2

 

 1

1 0

y yy

− 


 
 

=

− 
 

=



=

  
 


 


  − 

1 2

1 2

The coordinates of the images ,  of the datapoints

,  for the first two eigenvectors are equal.

y y

x x
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Spectral Clustering

1x

2x

3x
1 2y y=

3y

1y

2y

To discover the clusters, run K-means in image space (y-space).

1 2

3

The images ,  of the datapoints are superposed 

(when considering the first two dimensions only)

and orthogonal to the image  of the 3rd point.

y y

y
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1 2 3

The images of the points are given by:

1/ 3  1/ 3 1/ 3

 0.4 ,  0.4 , 0.8

 0.7     0.7 0.0

y y y

     
     

= − = − =     
     −
     

1 2 3

with associated eigenvectors :

1 0.4 0.7
1

1 ,  0.4 ,    0.7
3

1   0.8   0.0

e e e

− −     
     

= = − =
     
          

Spectral Clustering

 1       0.9       0.02

0.9       1        0.02

0.02   0.02       1

S =

 
 
 
  

1x

2x

3x

It makes sense to group eigenvectors with smallest eigenvalues.

1 2

1 2

The coordinates of the images ,  of the datapoints

,  for the first two eigenvectors are again equal.

y y

x x

Finding the clusters: example

Example: 3 datapoints in a fully connected graph 

    0.92   -0.90   -0.02

   -0.90   0.92   -0.02

   -0.02   -0.02    0.04

L =

 
 
 
  

2

3

1 has eigenvalue =0 with multiplicity 1. 

The second eigenvalue is small 0.06,   

whereas the 3rd one is large, 1.82.

L 





=

=
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Spectral Clustering

1x

2x

3x1 2y y=

3y

1y

2y

1 2

3

The images ,  of the datapoints are superposed 

(when considering the first two dimensions only)

and orthogonal to the image  of the 3rd point.

y y

y

1 2 3

The images of the points are given by:

1/ 3  1/ 3 1/ 3

 0.4 ,  0.4 , 0.8

 0.7     0.7 0.0

y y y

     
     

= − = − =     
     −
     

2y

To discover the clusters, run K-means in image space (y-space).
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1 2 3

with associated eigenvectors :

1 0.21 0.78
1

1 ,  0.57 ,    0.57
3

1   0.79   0.21

e e e

− −     
     

= = − =
     
          

Example: 3 datapoints in a fully connected graph

 1       0.9       0.8

The similarity matrix is 0.9       1        0.7

0.8     0.7        1

S

 
 

=
 
  

1x

2x
3x

Entries are no longer equal!

The 3rd point is now 

closer to the two other 

points

1 2 3

The images of the points are given by:

1/ 3  1/ 3 1/ 3

0.21 , 0.57 , 0.79

0.78   0.57 0.21

y y y

     
     

= − = − =     
     −
     

2 3

 has eigenvalue =0 with multiplicity 1. The second

and third eigenvalues are both large 2.23,  2.57.

L 

 = =
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1 2

1 2 3

3

With spectral clustering, the eigenvectors of  are:

1 0 1
1 1

1 ,  0 ,    1
2 2

0 1   0

,  20,  0 . 

L

e e e

 

− −     
     

= − = =
     
        

=



==



1x

2x

3x

Equivalency to other non-linear Embeddings

1 2

1 2 3

3

The eigenvalue decomposition of  (equiv. to kPCA 

on  Gram matrix) yields the set of dual eigenvectors:

1 0 1
1 1

1 ,  0 ,  1
2 2

0 1   0

,  0 1 .2  ,

S

 







−     
     

= = = −
     
         

==



=

 The dual eigenvectors with non-zero 

eigenvalues are aligned with the set of 

eigenvectors of the Laplacian matrix!

Careful: this is not true in arbitrary cases!

→

What about kernel PCA?
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Kernel PCA as preprocessing before K-means?
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KPCA as pre-processing before kernel K-means

The choice of parameters  in kernel K-Means can be initialized by doing a 

readout of the Gram matrix after kernel PCA.

The number of large eigenvalues = number of clusters (here 3)

Projections on dual eigenvectors 1 to 4 (from left to right) 
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The choice of kernel and kernel’s hyperparameters determines the 

number of clusters

The number of large eigenvalues = 

number of clusters (here 2)

KPCA as pre-processing before kernel K-means
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Kernel PCA projections can help determine the kernel width

The smallest eigenvalues entail information about dispersion within clusters

The smaller, the tighter the cluster.

Looking at eigenvalue distribution in Kernel PCA projections 

can help determine the tightness of the clusters.
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Non-linear embeddings
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If one could flatten the manifold, this would be advantageous for:

o Visualizing the data

o Reducing the dimensionality

o linearly separating the group of data

Source: DOI: 10.5772/65903

Points close to one another are actually far apart on the manifold

Non-linear embeddings
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Similarity Matrix:

1      0.5     0      0 .....

0.5    1     0

0       0     1 ...........

.......

S

 
 
 =
 
 
 

Construct graph 

from datapoints

Laplacian Eigenmaps

Sample datapoints

Adjacency graph:

We put an edge (rbf kernel) between nodes i and j if:

• x i is among k nearest neighbors of x j or

• if x j is among k nearest neighbors of x i 

(the relation is symmetric)

x i

x j
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Laplacian Eigenmaps

( )1

Solve the generalized eigenvalue problem: 

:   eigenvectors

i i i i

i

Le De I D S e e

e M

 −=  − =

Ensures minimal distorsion while offering a rescaling.

If  not invertible, solve:   

min     such that  e 1.T T

y

D

e Le De =

Similarity Matrix:

1      0.5      0      0  

0.5    1       0      0

0       0       1     0.3

0       0      0.3    1 

S

 
 
 =
 
 
 

1

Similarity Matrix:

0.33   -0.33      0          0  

-0.33   0.33      0          0

   0       0      0.23      -0.23

   0       0      0.23      0.23 

I D S−

 
 
 − =
 
 
 

1

0.46   0.Eigenvalues of :               0   0   

Eigenvalues of :    0   0    0.6    1

66

.0

L

I D S−−

Reflected in the eigenvalues

Symetrized and normalized form of the Graph Laplacian
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2 3The projections on the pair ,  generate 

a flat embedding that enables a piece-wise 

linear partitioning.

e e

Data used in the practice session

Laplacian Eigenmaps
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How to determine the best embedding?
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Comparison of eigenvalues

Looking at the Laplacian eigenvalues eases the identification of the number of clusters.

Decomposition of the Laplacian Decomposition of the Gram Matrix
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Comparison of projections

Clusters are better separated in the Laplacian projections.
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Tightly embedded clusters

When the groups of datapoints are intermingled along different dimensions.
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Double Helix kPCA Projection

Projection after kernel PCA with inhomogeneous polynomial kernel
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Projection using Laplacian eigenmaps

Double Helix Laplacian Projections
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Comparison of eigenvalues

kPCA does a better job at extracting the number of clusters and projections

Laplacian projections are best suited when the clusters are well separated spatially

(disconnected graph)
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Isomap embedding

( )( )
2

 neighbours

Compute pairwise distances:

min ,i j

ij
k nearest

S d x x
−

=

Do an eigendecomposition of the

centered similarity matrix.

Isomap is an extension of Multidimensional scaling.
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Multi-Dimensional Scaling (MDS)

'

2
1 1 , 1

1) Build similarity matrix from Gram Matrix, using linear kernel

, squared pairwise distance 

1 1 1
2) Center the similarity matrix:   

3) Decompose '  

i j i j

ij

M M M

ij ij ik kj kl

k k k l

S x x x x

S S S S S
M M M

S

= = =

= −

= − − +  

1... .to obtain eigenvectors ,  

4) Generate scaled projections  

i

j i

i i j

i Me

y e

=

=

Flattens and normalizes but does not separate.

MDS
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Multi-Dimensional Scaling (MDS)

The embeddings do not separate the two groups.
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Manifold Learning Methods: Caveats 
o Knowing the intrinsic dimension of the manifold can help recovering the projections

o The result of the algorithm heavily depends on setting well the hyperparameters such as the 
type of neighborhood graph (k-NN or radius neighbor) and neighborhood scale

o The algorithms heavily depend on the sampling method, that can affect measure of local 
density (and hence of relative scaling). Non uniform sampling can lead to undersired local 
deformation of the space.

Ground truth

Laplacian Eigenmaps

Effects of graph construction and 
renormalization, when the sampling 
density is highly nonuniform

Diffusion Maps

1

1 1

Rows Column 
normalization normalization

Laplacian Eigenmap use: 

Diffusion maps use: 

L I D S

L I D S SD

−

− −

= −

 
 = − +
 
 
 
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We have seen how to use decomposition of the following set of matrices:

Gram matrix: kPCA, kCCA, MDS

Graph Laplacian: Laplacian Eigenmaps

See also supplement on moodle for other techniques:

- Maximum variance unfolding

- Local Linear Embeddings (LLE)

Summary: techniques to generate non-linear embeddings
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Manifold Learning
Methods: Trade-offs 

Sensitivity and properties of 

learned representations 

depending on parameters’ 

and algorithmic choices. 
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