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Outline of Video

1. Review principle and steps of K-Means algorithm

2. Derive kernel version of K-means
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K-means Clustering: Algorithm

Ste* 1: Make a guess on what is the correct number of clusters K ‘

Step 2: Initialize randomly the center of the clusters & assign points to closest clusters.
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K-means Clustering: Algorithm

Step 3: recompute the location of the centers of the clusters by taking the centroid
of the datapoints assigned to each center.
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K-means Clustering: Algorithm
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K-means Clustering: Algorithm

Iterate until convergence

K-means is guaranteed to converge in a finite number of steps.
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K-means Clustering: Algorithm
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K-means Clustering: Objective function

K-Means clustering minimizes a quadratic cost function
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K-means Clustering: Advantages

O The algorithm is guaranteed to converge in a finite number of iterations (but it
converges to a local optimum!)

O It is computationally cheap and faster than other clustering
techniques - update step is ~O(N).

K-means Clustering: Disadvantages

Use RSS or BIC to determine optimal choice of K and run.

Good performance depends on Good performance depends
properly choosing K. on initialization.




MACHINE LEARNING - 2012

K-means Clustering: Limitations

K-means can separate clusters linearly, or quasi-linearly (with norm-p) only.
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Kernel K-means: Principle

Idea:

O Exploit the principle of the kernel to perform classical K-means clustering
with norm-2 in feature space:
—> This yields non-linear boundaries.
—> This retains simplicity of computation of linear K-means.

O The objective function of K-means is composed of an inner product across
datapoints.
—> One can replace the inner product with a kernel to perform inner product
In feature space.
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Kernel K-means: Derivation

K — Means algorithm minimizes the objective function:
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We cannot observe the image of #* in feature space.

— Construct ¢( yk) using images of points in same cluster.
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Kernel K-means: Solution
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Objective function in feature space
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Kernel K-means: Algorithm

Kernel K-means algorithm is also an iterative procedure:

1. Initialization: pick K clusters (random assignment of points to a cluster, or use
K-means at initialization)

2. Assignment Step: Assign each data point to its “closest” centroid
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3. Update Step: Update the list of points belonging to each centroid
(M-step)

4. Go back to step 2 and repeat the process until the clusters are stable.
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Kernel K-means: interpreting the solution

Consider a RBF kernel. Let us interpret the different terms.

Cst of value 1

arg mind (x,C"): min
Kk

If the points are tightly

grouped in the cluster,
Normalization factor this sum is close to 1.

The tighter the cluster, the closer the datapoint must be to the cluster to be assigned.
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The tighter the cluster, the closer the datapoint must be to the cluster to be assigned.
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Nonlinear boundaries with kernel K-means

2 Clusters
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Nonlinear boundaries with kernel K-means
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Sensitivity to kernel width

Kernel width too large
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Sensitivity to choice of K

Still sensitive to choice of K. Here K=3.
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But still sensitive to initialization

RSS measure: 2773
BIC: -5500
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RSS measure: 2625
BIC: -5522

Better values on
both RSS and BIC
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With a correct Kernel width
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Kernel K-means: interpreting the solution

B: Affected by the

A: Affected by the relative angle across

position of the points the points.
from the origin (norm).

Norm - Positive value
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A datapoint will be assigned to the closest cluster in the closest partition.
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Quadran part|t|on|ng
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Quadran partitioning

Effect of the norm to the origin on
cluster separation.
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Kernel K-means follows the same principle as K-means. It is an
iterative procedure, akin to Expectation-Maximization.

It allows to build highly non-linear boundaries when using the RBF
kernel.

When using the polynomial kernel, it allows to separate groups of
datapoints exploiting the geometrical distribution of the points.

As K-means, it depends on initialization of the centers of the clusters
which is random.

As K-means, the solution depends on choosing well the number of
clusters K. To choose K, one can use the AIC, BIC or RSS criteria.

It is computationally more expensive: K-means is O(N). Kernel K-
means requires to store a Gram matrix which is O(M?).



