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Outline of Video

1. Review principle and steps of K-Means algorithm

2. Derive kernel version of K-means
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K-means Clustering: Algorithm

Step 2: Initialize randomly the center of the clusters & assign points to closest clusters.

Step 1: Make a guess on what is the correct number of clusters K

K=3
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K-means Clustering: Algorithm

Step 3: recompute the location of the centers of the clusters by taking the centroid

of the datapoints assigned to each center.
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K-means Clustering: Algorithm
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K-means Clustering: Algorithm

Iterate until convergence

K-means is guaranteed to converge in a finite number of steps.
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K-means Clustering: Algorithm

K-means creates a hard partitioning of the dataset
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K-Means clustering minimizes a quadratic cost function

K-means Clustering: Objective function
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❑ The algorithm is guaranteed to converge in a finite number of iterations (but it 

converges to a local optimum!)

❑ It is computationally cheap and faster than other clustering

techniques - update step is ~O(N). 

K-means Clustering: Advantages

K-means Clustering: Disadvantages

Good performance depends on 

properly choosing K.  

Good performance depends 

on initialization.

Use RSS or BIC to determine optimal choice of K and run.
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K-means can separate clusters linearly, or quasi-linearly (with norm-p) only.

K-means Clustering: Limitations

Kernel K-means can generate non-linear separations of groups of points.
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Kernel K-means: Principle

Idea:

❑ Exploit the principle of the kernel to perform classical K-means clustering 

with norm-2 in feature space:

→ This yields non-linear boundaries.

→ This retains simplicity of computation of linear K-means.

❑ The objective function of K-means is composed of an inner product across 

datapoints.

→ One can replace the inner product with a kernel to perform inner product 

in feature space.
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Kernel K-means
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Express the same problem in feature space:
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Kernel K-means: Derivation
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Kernel K-means: Solution
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Kernel K-means

Kernel K-means algorithm is also an iterative procedure:

1. Initialization: pick K clusters (random assignment of points to a cluster, or use 

K-means at initialization)

2. Assignment Step: Assign each data point  to its “closest” centroid 

(E-step).

3. Update Step: Update the list of points belonging to each centroid 

(M-step)

4. Go back to step 2 and repeat the process until the clusters are stable.
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If x is close to all points in 
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this sum is close to 1.Normalization factor

Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

Consider a RBF kernel. Let us interpret the different terms.

The tighter the cluster, the closer the datapoint must be to the cluster to be assigned.
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

1C 2C

1 2is denser than .C C

The tighter the cluster, the closer the datapoint must be to the cluster to be assigned.
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Kernel K-means: examples

2 Clusters

Nonlinear boundaries with kernel K-means
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Kernel K-means: examplesNonlinear boundaries with kernel K-means
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Kernel K-means: examplesSensitivity to kernel width

Kernel width too large
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Kernel K-means: examplesSensitivity to choice of K

Still sensitive to choice of K. Here K=3.
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Kernel K-means: examplesSensitivity to initialization

But still sensitive to initialization

RSS measure: 2773

BIC: -5500
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Kernel K-means: examplesFinding the right kernel width

With a correct Kernel width

RSS measure: 2625

BIC: -5522

Better values on 

both RSS and BIC
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With a polynomial kernel

Norm - Positive value

A datapoint will be assigned to the closest cluster in the closest partition.

Kernel K-means: interpreting the solution

A: Affected by the 

position of the points 

from the origin (norm).

B: Affected by the 

relative angle across 

the points.
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Kernel K-means: ExampleQuadran partitioning

Homogeneous polynomial p=1
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Kernel K-means: ExampleQuadran partitioning

Homogeneous polynomial p=2
Effect of the norm to the origin on 

cluster separation. 

Clustering with K=8 and homogeneous polynomial with p=1
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❑ Kernel K-means follows the same principle as K-means. It is an 

iterative procedure, akin to Expectation-Maximization.

❑ It allows to build highly non-linear boundaries when using the RBF 

kernel.

❑ When using the polynomial kernel, it allows to separate groups of 

datapoints exploiting the geometrical distribution of the points.

❑ As K-means, it depends on initialization of the centers of the clusters 

which is random.

❑ As K-means, the solution depends on choosing well the number of 

clusters K. To choose K, one can use the AIC, BIC or RSS criteria.

❑ It is computationally more expensive: K-means is O(N). Kernel K-

means requires to store a Gram matrix which is O(M2).  

Summary


