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ADVANCED MACHINE LEARNING =

Canonical Correlation Analysis (CCA)

GOAL.:
Determine features in two (or more) separate descriptions of the dataset
such that jointly these features represent well the dataset.

Applicable to datasets that are multimodal:
e audio & images/video
* Dbiometric data (size, fingerprint, hair color, etc.)
» text and speech

CCA is useful when the modalities have very different characteristics:
« different dimensions
« different features
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Vi 777 {Xz,yz} W, cR"™

T T
max corr (W, X, w; y)

w* wY

Video description | Audio description |

Extract hidden structure in each modality.
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CCA Derivation

Dataset if composed of M pairs of multidimensional variables

M M

X ={X‘ ERNX} Y :{yi GRNV}

Crosscovariance matrix
Cy ISN, XN,
Measure crosscorrelation between X and Y.

Search two projections w, and w

max corr (w, X, w)Y )

w* wY

_|
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WIE{XYT}Wy w(C w
= maX = MaX

Xy ]e JwiC o wg €,
| |

Covariance matrices
C=E{XXT}:N, xN,

With X and Y zero mean, i.e. E{X}=E{Y}=0

Cy, =E{YYT}: NyxN,|

&)
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CCA Derivation

Correlation not affected by rescaling the norm of the vectors,

T T
— we can ask that w,C w, =w, C w, =1

max p = max w.C, W

Xxy 'y
Wy Wy,

u.c.w,C,w, =w,C w, =1

To determine the optimum (maximum) of p, solve by Lagrange:
L(WX,Wy,/IX,/ly):WICXyWy -2, (WICXXWX —1)—/’Ly (W;CWWy —l)

Taking the partial derivatives over w,, w,
C,w, =24C w, Multiply each equation by w, and w, respectively

and substracting => A, =4, =4/2
nyWx — 2/1yCWWy ’ ' '
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CCA Solution

Replacing 4, and A, by 4/2, the partial derivatives become:

C, W, =AC, W,
Generalized Eigenvalue Problem;

C W, = AC W It can be reduced to a classical eigenvalue
Y ey problem if Cx is invertible

— Which can be rewritten as
C.ClC w = }LZCXXWX

Xy “yy "yx X

Solving for w, gives:
-1 2
C,ChCyw, =4C, w,

YXIXX Uxy Ty
If C,, is invertible, it becomes an eigenvalue problem as for w,.

These two eigenvalue problems yield a pair of

g vectors {wi,w,} ,whereq=min(N,,N,)

i=1..q

. . N
w, eR%, w, e R™
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CCA Solution

The projection vectors can be visualized in original space.

If x and y are 2-dimensional spaces, we have at most 2 pairs of projections.
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Kernel Canonical Correlation Analysis

% CCA assumes linear projections in each space.
“ Kernel CCA extends CCA to discover correlations in non-linear features.
s As for kPCA, KCCA will exploit the fact that CCA depends on

computing inner product across datapoints, and replace these by the
kernel function to apply linear CCA in feature space.
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KCCA Principle

max corr (W} ¢, (x),w, ¢, (y))

W, wY
VrODUooom {

Assume two transformations

Video description Audio description ¢X .

And then perform correlation analysis in feature space
across the two feature spaces. e

o

N
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kCCA derivation

M

X ={x eR™}" ¥ =ly eR"}

=1

l Send into two separate feature spaces for datain X and in Y.

M M

FX:{¢X(Xi)}: and Fy={¢y(yi)}zl, with E{FX}:Z¢X(Xi)=O and E{Fy}:Zgﬁy(yi):O

Construct associated kernel matrices:
K,=F/F., K,=F'F,, columnsof F,,F, are ¢ (x‘), @, (yi)
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ADVANCED MACHINELEARNING =3
kCCA derivation

In Linear CCA, we were solving for:  In kernel CCA, we solve for:

TT T
maxw,C, W, maxa, F F F'F, o,
Wy , W, Wi, Wy Ky Ky
T T TT T I T T .
uc. w,Cw=wC w =1 uc. o R RFEFRa=aFFFFa =1
Ky Ky

Express the projection vectors as a linear
combination of images of datapoints
in feature space (as in KPCA):

w, = F.a, and w, = Fy a, Replace the covariance and crosscovariance

v " matrices by the product of the projection
=W, = > a4 (X )andw, => a4, (¥') vectors in feature space (as in kPCA):
i=1 i=1
CXX = I:X |:XT
.
C,=FF
.
C,=FF,
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kCCA Solution

max p = maxa, KK a,

Wy, Wy, ay,ay

u.c. (al Kfax) = (a; Kjay) =1

Generalized eigenvalue problem:
[ 0 KXKy)EaX] A[Kf 0 }(a]
KK, 0 a, 0 K§ a,

This is again a generalized eigenvalue problem
with « , «, the dual eigenvectors (as dual

eigenvectors in kPCA), see documentation
In annexes for derivation.
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kCCA Solution

If the intersection between the spaces spanned by K, «,, K &, is non-zero (with no centering),
then the problem has a trivial solution, as p ~ cos(K,a,. K, ) =1
(see solution to the exercises).

Generalized eigenvalue problem:

[ 0 KXKy][axj A Ky O [a}
KK, 0 a, 0 K \a,

Add a regularization term to increase the rank of the matrix and make it invertible
(to avoid the trivial solution)
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KCCA for multiple modalities

L

X={x eR%}" v =cfy RV’

=1

l

L subdatasets: X,,...., X, with M observations each

=1

Dimensions N ,....N :, i.e. X, : N, xM

Applying L non-linear transformations ¢, to X,,...X, resp.
— construct L Gram matrices: K,....., K|

Mx )
K, +——I 0
0 KK, ... KK, o, ( ! 2 j o,
KK, 0 ... KK, || a, a,
= A e
K, K KK, ... 0 104 2| a
L™ L™ L 0 (KL_F%I j L
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Interpretating the solution of kKCCA

We cannot observe the projection vectors w..
But we can observe the projections of the datapoints on these vectors.

Recall that we have expressed the projection vectors
as a linear combination of images of datapoints
In feature space (as in KPCA):

M
Wx = ZaX,j¢X (XJ)
j=1

j=1 9

-
\.

We can visualize the isolines solution:

M _ ]
<Wx ’ ¢(X)> = Zax, iK (XJ ) X) = cst Homogeneous polynomial kernel p =2
j=1

NN
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c=1
C=

p=>5
—4

| kernel p

KCCA

c
7p
O
-

Inhomogeneous polynomial kernel

Inhomogeneous polynomia
RBF kernel
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CCA and PCA

CCA is often thought of as a generalization of PCA.

L)

» CCA resembles PCA In that it seeks to find correlations to reveal features.
However, these are not the same correlations.

4

D)

» CCAresembles PCA in that it can be solved in closed-form through an
eigendecomposition of a matrix. But CCA and PCA have different matrices.

L)

4

)

» CCA differs from PCA in that it finds different axes, in general.

L)

4

)

» The axes found by PCA form an orthonormal basis of the space. This is not the
case for CCA.

L)

&

D)

» The axes are not necessarily aligned with maximum variance in CCA.

L)
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CCA and KCCA: Summary

s CCA is an excellent mean to discover appropriate projections when your
data is multi-modal.

¢ In each modality (separately), CCA finds projections that highlight features
common to the datapoints as a whole.

% It generates projections that are different from performing PCA on each
modality separately.

% The non-linear version of CCA, kernel CCA, generates sets of projections
different from linear CCA and from kPCA.

% CCA and kCCA can be good pre-processing methods before performing
more complex computation, such as clustering or classification.

NN



