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MACHINE LEARNING

Linear and Kernel 

Canonical Correlation Analysis
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Canonical Correlation Analysis (CCA)

GOAL: 

Determine features in two (or more) separate descriptions of the dataset 

such that jointly these features represent well the dataset. 

Canonical Correlation Analysis (CCA)

Applicable to datasets that are multimodal:

• audio & images/video

• biometric data (size, fingerprint, hair color, etc.)

• text and speech 

CCA is useful when the modalities have very different characteristics:

• different dimensions 

• different features
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Canonical Correlation Analysis (CCA)

Video description Audio description
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Extract hidden structure in each modality.

CCA Principle

Search projections in X and Y.
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Crosscovariance matrix
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CCA Derivation

T T

x y

Correlation not affected by rescaling the norm of the vectors, 

we can ask that w w 1xx x yy yC w C w  
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To determine the optimum (maximum) of , solve by Lagrange:

, , , = 1 1T T T

x y x y x xy y x x xx x y y yy yL w w w C w w C w w C w
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Taking the partial derivatives over ,
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Multiply each equation by  and  respectively

and substracting : / 2

x y
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Generalized Eigenvalue Problem; 

It can be reduced to a classical eigenvalue 

problem if Cxx is invertible

1 2

Solving for  gives:

If  is invertible, it becomes an eigenvalue problem as for .

y

yx xx xy y yy y

yy y

w
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These two eigenvalue problems yield a pair of

 vectors , , where min( , )
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CCA Solution

1 2

Which can be rewritten as

xy yy yx x xx xC C C w C w





Replacing  and  by / 2,  the partial derivatives become:x y

xy y xx x

yx x yy y
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The projection vectors can be visualized in original space.

CCA Solution

   1 1 2 2

If  and  are 2-dimensional spaces, we have at most 2 pairs of projections.

,  and ,x y x y

x y

w w w w
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 CCA assumes linear projections in each space.

 Kernel CCA extends CCA to discover correlations in non-linear features.

 As for kPCA, kCCA will exploit the fact that CCA depends on

computing inner product across datapoints, and replace these by the

kernel function to apply linear CCA in feature space.

Kernel Canonical Correlation Analysis
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Video description Audio description

 1 1,x y

xN
x yN

y

 2 2,x y

    
,

max ,
x y

T T

x y y
w

x
w

corr w x w y

x y

Assume two transformations

And then perform correlation analysis in feature space 

across the two feature spaces.

kCCA Principle



ADVANCED MACHINE LEARNING

10

ADVANCED MACHINE LEARNING

   
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F x F y E F x E F y   
 

 

      

Send into two separate feature spaces for data in X and in Y.

   

Construct associated kernel matrices: 

,  ,       columns of ,  are ,  T T i i

x x x y y y x y x yK F F K F F F F x y  

kCCA derivation
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   , ,

1 1

Express the projection vectors as a linear 

combination of images of datapoints

in feature space (as in kPCA):

 and 

 and 

x x x y y y

M M
i i

x x i x y y i y
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T
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In Linear CCA, we were solving for:
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u.c.    w w 1
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w w
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C

C w C w 

Replace the covariance and crosscovariance

matrices  by the product of the projection 

vectors in feature space (as in kPCA):
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In kernel CCA, we solve for:
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kCCA derivation
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This is again a generalized eigenvalue problem

with ,  the dual eigenvectors (as dual 

eigenvectors  in kPCA), see documentation 

in annexes for derivation.

x y 

   

, ,

2 2

max  max

. . 1

x y x y

T

x x y y
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x x x y y y

K K

u c K K

 
  

   



 

2

2

Generalized eigenvalue problem:

   0               0

        0  0       
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y yy x y
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 
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 

     
         

      

kCCA Solution
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2

2

Generalized eigenvalue problem:

   0               0

        0  0       

x y x x x

y yy x y

K K K

K K K

 


 

     
         

      

kCCA Solution

2

2

Add a regularization term to increase the rank of the matrix and make it invertible

(to avoid the trivial solution)

+ I   ,   0
2

x x

M
K K




 
  

 

 

If the intersection between the spaces spanned by ,   is non-zero (with no centering),

then the problem has a trivial solution, as ~ cos , 1

(see solution to the exercises).  

x x y y

x x y y

K K

K K

 

   
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Can be extended to multiple modalities

   
1 1
, yi x i

MM NN

i i
X x Y y

 
    2-modalities
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 subdatasets: ,....,  with  observations each

Dimensions ,.... :, i.e. :
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Applying  non-linear transformations , to ,... ,  resp.

 construct  Gram matrices: ,.....,
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

kCCA for multiple modalities
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   
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 
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We cannot observe the projection vectors .

But we can observe the projections of the datapoints on these vectors. 

iw

Interpretating the solution of kCCA

     ,

1

,

, ,
M

j

x x j

j

jk x x

w x x x   

 





 

 



 ,

1

Recall that we have expressed the projection vectors 

as a linear  combination of images of datapoints

in feature space (as in kPCA):

M
j

x x j x

j

w x 




   ,

1

We can visualize the isolines solution:

, ,
M

j

x x j

j

w x k x x cst 


  Homogeneous polynomial kernel 2p 
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Example of Isolines in kCCA

Inhomogeneous polynomial kernel 5,  1p c 

Inhomogeneous polynomial kernel 4,  1p c 

 kernelRBF

   ,

1

, ,
M

j

x x j

j

w x k x x cst 


     ,

1

, ,
M

j

y y j

j

w y k y y cst 


 
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Canonical Correlation Analysis (CCA)

CCA is often thought of as a generalization of PCA.

 CCA resembles PCA in that it seeks to find correlations to reveal features. 

However, these are not the same correlations.

 CCA resembles PCA in that it can be solved in closed-form through an 

eigendecomposition of a matrix. But CCA and PCA have different matrices.

 CCA differs from PCA in that it finds different axes, in general. 

 The axes found by PCA form an orthonormal basis of the space. This is not the 

case for CCA.

 The axes are not necessarily aligned with maximum variance in CCA.

CCA and PCA
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Summary

 CCA is an excellent mean to discover appropriate projections when your

data is multi-modal.

 In each modality (separately), CCA finds projections that highlight features

common to the datapoints as a whole.

 It generates projections that are different from performing PCA on each

modality separately.

 The non-linear version of CCA, kernel CCA, generates sets of projections

different from linear CCA and from kPCA.

 CCA and kCCA can be good pre-processing methods before performing

more complex computation, such as clustering or classification.

CCA and kCCA: Summary


