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Proof We can decompose

£
B-1/2 AB“l/Z = 2 )\iViV,i,

i=1
implying that
‘ ' .t
A= ABY2v; (Blf’-’vi) =3 ABw; (Bw;)
i=1 i=1
as required. - i

Definition 6.27 [Generalised deflation| The final proposition suggests how
we can deflate the matrix A in an iterative direct solution of the generalised -

eigenvalue problem
Aw = ABw.
After finding a non-zero eigenvalue-eigenvector pair A, w we deflate A by
A — A-)\Bw(Bw) = A-\Bww'B/,

leaving B unchanged. ) [

6.5 Canonical correlation analysis

We have looked at two ways of detecting stable patterns through the use of
eigen-decompositions firstly to optimise variance of the training data in ker-
nel PCA and secondly to maximise the covariance between two views of the
data typically input and output vectors. We now again consider the case in
which we have two views of the data which are paired in the sense that each
example as a pair of representations. This situation is sometimes referred
to as a paired dataset. We will show how to find correlations between the
two views. .

An extreme case would be where the second view is simply the labels
of the examples. In general we are interested here in cases where we have
a more complex ‘output’ that amounts to a different representation of the

same object.

Example 6.28 A set of documents containing each document in two dif-
ferent languages is a paired dataset. The two versions give different views of
the same underlying object, in this case the semantic content of the docu-
ment. Such a dataset is known as a parallel corpus. By seeking correlations
between the two views, we might hope to extract features that bring out
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the underlying semantic content. The fact that a pattern has been found
in both views suggests that it is not related to the irrelevant representation
specific aspects of one or other view, but rather to the common underlying
semantic content. This example will be explored further in Chapter 10. =

This section will develop the methodology for finding these common pat-
terns in different views through seeking correlations between projection val-
ues from the two views. Using an appropriate regularisation technique, the
methods are extended to kernel-defined feature spaces.

Recall that in Section 5.3 we defined the correlation between two zero-
mean univariate random variables z and y to be

cov(z, y)

= otz ) = I - .
p = corr (,Y) E[zm]E[yy] m\/m

Definition 6.29 [Paired dataset] A paired dataset is created when each
object x € X can be viewed through two distinct projections into two feature
spaces

¢, x — Fa and ¢, : x — Fp,

where F, is the feature space associated with one representation and Fj the
feature space for the other. Figure 6.3 illustrates this configuration. The
corresponding kernel functions are denoted xq and Kp. Hence, we have a
multivariate random vector (¢ (x) , ¢y (x)). Assume we are given a training
set

S = {(ha (x2) by (X1)) - (¢ (2) » 5 (x0))}

drawn independently at random according to the underlying distribution.
We will refer to such a set as a paired or aligned dataset in the feature space
defined by the kernels kq and Kp. [

We now seek to maximise the empirical correlation between T, = W, @, (%)
and xp = W,y (X) over the projection directions We and wyp

E [z,7s)]
VE azal E z7:]
B [, b, (%) 5 (%) Wi
VB (e () 90 () wa] E [0 (x) 93 (9w

max p =
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Fig. 6.3. The two embeddings of a paired dataset.
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where we have decomposed the empirical covariance matrix as follows

£
Z (¢ (%) . ¢ (%)) (00 (x) . B3 (%))

1
C = -

{

_ = ) ; Zl—l @y (x) ¢, (X)

- /

21 1 (]5(1 (X) (vbb (X) 7 Zz'—l ¢b (X) ¢b ( )

_ (Caa Cba)
Car Cw

This optimisation is very similar to that given in (6.14). The only differ-
ence is that here the denominator of the quotient measures the norm of the
projection vectors differently from the covariance case. In the current opti-

misation the vectors w, and wj are again only determined up to direction
since rescaling w, by A\, and wy, by A, results in the quotient

/\a /\beZ Cabwb N >\a )\bW:;,Ca,bWb
! /
SR Coaw i Coy,  ah/ Wi CaaWaw Gy
_ woCap Wy
VW5 CaaWo Wy Coy W

This implies that we can constrain the two terms in the denominator to
individually have value 1. Hence, the problem is solved by the following
optimisation problem.

Computation 6.30.[CCA] Given a paired dataset with covariance matrix
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C.», canonical correlation analysis finds the directions w,,w}, that maximise
the correlation of corresponding projections by solving

ma'XWa.Wb W;Cabwb (6 20)
subject to  w,C,ow, =1 and w;Cpwy = 1.

Solving CCA Applying the Lagrange multiplier technique to the optimi-
sation (6.20) gives

A
max w,Cgpwp — %‘1 (W, CaaWa — 1) — 7‘11 (WyCrpwp — 1) .

Taking derivatives with respect to w, and w; we obtain the equations
CusWp — XaCaaWe =0 and Cpow, — MpyCrpwy = 0. (6.21)
Subtracting w/, times the first from wj, times the second we have
AW, CoaWa — AWy Cppwp, = 0,

which, taking into account the two constraints. implies A, = M. Using A
to denote this value we obtain the following algorithm for computing the
correlations.

Algorithm 6.31 [Primal CCA] The following method finds the directions
of maximal correlation:

Input covariance matrices Cgq, Cpp, Cpq and Cyy

Process | solve the generalised eigenvalue problem:
(e T)Ga) (5 @) Co)

Cba 0 Wy 0 Cbb Wp

Output | eigenvectors and eigenvalues w3, wj and A\; >0, j =1,.... L
(6.22)
=

This is an example of a generalised eigenvalue problem described in the
last section. Note that the value of the eigenvalue for a particular eigenvector
gives the size of the correlation since w/, times the top portion of (6.22) gives

7 !
P =wW,Cappwp = AW, Coow, = A

Hence, we have all eigenvalues lying in the interval [—1,+1], with each A;

and eigenvector
Wa
Wp
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paired with an eigenvalue —A\; with eigenvector

(%)

We are therefore only interested in half the spectrum which we can take to
be the positive eigenvalues. The eigenvectors corresponding to the largest
eigenvalues are those that identify the strongest correlations. Note that in
this case by Proposition 6.22 the eigenvectors will be conjugate with respect

to the matrix
Cww O
so that for i # j we have

SE : '
a) (Caa O a j i A% i
() & &) et (o

and

X 7 .
W} Ca 0 w' Y ; i\ ;
- (W{) ( 0 Cbb> (—“(ié> = (wa) Caawa - (W{’> Coowy

yielding
¢ 3 N\ 7 A
(wé), Ciaw, =0 = (wi) Cupywy,.

This implies that, as with PCA, we obtain a diagonal covariance matrix if
we project the data into the coordinate system defined by the eigenvectors,
whether we project each view independently or simply the sum of the pro-
jections of the two views in the common space. The directions themselves
will not, however, be orthogonal in the standard inner product of the feature
space.

Dual form of CCA Naturally we wish to solve the problem in the dual
formulation. Hence, we consider expressing w, and w; in terms of their
respective parts of the training sample by creating a matrix X, whose rows
are the vectors ¢, (x;), ¢ = 1,....£ and the matrix X, with rows ¢ (x;)

wo = X, a, and wp = Xj o
Substituting into (6.20) gives

max 0, X X X X g
subject to @ X XXX o, =1 and o X, X[ X X}y = 1,

R e A S SR R
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or equivalently the following optimisation problem.

Computation 6.32 [Kernel CCA] Given a paised dataset with respect to
kernels &, and xp, kernel canonical correlation analysis finds the directions
of maximal correlation by solving

MaXe, o af,KaKbab
subject to o ,K2a, =1 and ofKZay = 1,

where K, and K, are the kernel matrices for the two representations. -]

Figure 6.4 shows the two feature spaces with the projections of 7 points.
The shading corresponds to the value of the projection on the first correlation
direction using a Gaussian kernel in each feature space.

Overfitting in CCA Again applying the Lagrangian techniques this leads
to the equations

K. Kyap — )\Kgaa =0 and K;K,a, — )\Kgab = 0.

These equations highlight the potential problem of overfitting that arises in
high-dimensional feature spaces. If the dimension N, of the feature space
F, satisfies N, > £, it is likely that the data will be linearly independent
in the feature space. For example this is always true for a Gaussian kernel.
But if the data are linearly independent in F, the matrix K, will be full
rank and hence invertible. This gives

1
oy = XK,;lyzcba,, (6.23)

and so
Kiop — N Kiay = 0.

This equation will hold for all vectors e, with A = 1. Hence, we are able to
find perfect correlations between arbitrary projections in F, and an appro-
priate choice of the projection in F;,. Clearly these correlations are failing to
distinguish spurious features from those capturing the underlying semantics.
This is perhaps most clearly demonstrated if we consider a random permu-
tation o of the examples for the second projections to create the vectors

(¢a (xi), P (Xo(.,'))) T8 B

The kernel matrix K, will be unchanged and hence still invertible. We are
therefore still able to find perfect correlations even though the underlying
semantics are no longer correlated in the two representations.
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Fig. 6.4. Two feature spaces for a paired dataset with shading indicating the value
of the projection onto the first correlation direction.

These observations show that the class of pattern functions we have se-
lected are too flexible. We must introduce some regularisation to control the
flexibility. We must. therefore. investigate the statistical stability of CCA,
if we are to ensure that meaningful patterns are found.
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Stability analysis of CCA Maximising correlation corresponds to min-
imising the empirical expectation of the pattern function

ooy (%) = |[Watha (%) = Whety, (30]°

subject to the same conditions, since

B [|lwiga ()~ wi, (9] = & [JIwa, GoI] +E[llwists Gol7] -

+
ok (W, (%) . Wy (%))]
= 2 (1 o W:ICabWb) :

The function gw,.w, (X) ~ 0 captures the property of the pattern that we
are seeking. It assures us that the feature w,0,(x) that can be obtained
from one view of the data is almost identical to wj0, (x) computable from
the second view. Such pairs of features are therefore able to capture un-
derlying properties of the data that are present in both views. If our as-
sumption is correct, that what is essential is common to both views. then
these features must be capturing some important properties. We can ob-
tain a stability analysis of the function by simply viewing gw,.w, (x) as a
regression function, albeit with special structure. attempting to learn the
constant 0 function. Applying the standard Rademacher bound. observe
that, the empirical expected value of gw,w, (X) is simply 2 (1 —w,Capwp).
Furthermore. we can use the same technique as that described in Theorem
A.3 of Appendix A.2 to represent the function as a linear function in the
feature space determined by the guadratic kernel

R (x,2) = (ko (x.2) + Kb (x.2))°.

with norm-squared
2 2
2 |[wawj |3 = 2tx (wow,waw}) = [[wall® [wsll*
This gives the following theorem.

Theorem 6.33 Fiz A and B in RT. If we obtain a feature given by the
pattern function gw,w, (X) with |[wa|| < A and ||wy|| < B. on a paired
training set S of size £ in the feature space defined by the kernels rq and Ky
drawn i.i.d. according to a distribution D, then with probability greater than
1 — & over the generation of S. the expected value of gw,.w, (x) on new data
s bounded by

Ep [gwew, ()] < 2(1—w,Capws) +
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£
445 <= 0 2 a2 [I(2/9)
. —f—;(h.a(xi,xi)+nb(x.i,xi)) + 3R —1—,
where
R*’= ‘max_ (ka(x,%)+ rp(x,%)).
x& supp(D)

The theorem indicates that the empirical value of the pattern function
will be close to its expectation, provided that the norms of the two direc-
tion vectors are controlled. Hence, we must trade-off between finding good
correlations while not allowing the norms to become too large.

Regularisation of CCA Theorem 6.33 shows that the quality of the gen-
eralisation of the associated pattern function is controlled by the product
of the norms of the weight vectors w, and w,. We therefore introduce a
penalty on the norms of these weight vectors. This gives rise to the primal
optimisation problem.

_ Computation 6.34 [Regularised CCA] The regularised version of CCA is
solved by the optimisation:
max p(Wq, Wp) (6.24)
Wa,Wp

’
Wa,CabWb

\/((1 — 74) W CaaWa + Tq HWaHQ) ((1 — 75) Wy CopWp + T HWb||2)

)

where the two regularisation parameters 7, and 7 control the flexibility in
the two feature spaces. - ]

Notice that 7,, 75 interpolate smoothly between the maximisation of the
correlation and the maximisation of the covariance described in Section 6.3.
Dualising we arrive at the following optimisation problem.

Computation 6.35 [Kernel regularised CCA] The dual regularised CCA
is solved by the optimisation

MmaXa, o, KoKt
subject to (1 — 7o) K20, + T, Koo, =1
and (1 — 1) ajKZop + oo Kpop = 1.
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Note that as with ridge regression we regularised by penalising the norms
of the weight vectors. Nonetheless, the resulting form of the equations ob-
tained does not in this case correspond to a simple addition to the diagonal
of the kernel matrix, the so-called ridge of ridge regression.

Solving dual regularised CCA Using the Lagrangian technique, we can
now obtain the equations

K Ky — (1 —7a) Koog — AoKata = 0
and KyKqaq — A (1 — 7)) Kpay = ATpKpay = 0,

hence forming the generalised eigenvalue problem
0 KaKb aa
KbKa 0 ap
_ 2 (Q-Td) K2 +7.K, 0 AY
0 (l—Tb)Kg-!-Tbe Oy

One difficulty with this approach can be the size of the resulting generalised
eigenvalue problem, since it will be twice the size of the training set. A
method of tackling this is to use the partial Gram-Schmidt orthonormali-
sation of the data in the feature space to form a lower-dimensional approx-
imation to the feature representation of the data. As described in Section
5.2 this is equivalent to performing an incomplete Cholesky decomposition
of the kernel matrices

Ka = R;Ra and Kb = RZR[,,

with the columns of R, and R, being the new feature vectors of the train-
ing points in the orthonormal basis created by the Gram—-Schmidt process.
Performing an incomplete Cholesky decomposition ensures that R, € Rnaxt
has linearly independent rows so that Rq R/ is invertible. The same holds
for RpR}, with R, € R™*.

We can now view our problem as a primal canonical correlation analysis
with the feature vectors given by the columns of R, and R;. This leads to
the equations

R.,Rjwp — A (1 —7a) R.R,w, — Ar,w, = 0 (6.25)
and RbR;Wa — A (1 == "-b) Rszwb = ATbWb = 0.

From the first equation, we can now express wg as

1 -
wo = 3 (1~ 7o) BB + D) ™ RRjw,
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which on substitution in the second gives the normal (albeit non-symmetric)
eigenvalue problem

(1 = 74) ReR} +7oD) " ReRy (1 7a) RaRo + 7oI) T RaRywy = Xwp
of dimension ny X .nb. After performing a full Cholesky decomposition
R'R = ((1—75) ReR;, + 1)
of the non-singular matrix on the right hand side. we then take
u, = Rwy,

which using the fact that the transpose and inversion operations commute
leads to the equivalent symmetric eigenvalue problem

(R) " ReR,, (1 - 7a) RaR + 7o) RoRGR 1y = M,

By symmetry we could have created an eigenvalue problem of dimension
Ng X Nq. Hence, the size of the eigenvalue problem can be reduced to the
smaller of the two partial Gram—Schmidt dimensions.

We can of course recover the full unapproximated kernel canonical cor-
relation analysis if we simply choose n, = rank (K,) and np = rank (Kp).
Even in this case we have avoided the need to solve a generalised eigenvalue'
problem, while at the same time reducing the dimension of the problem by
at least a factor of two since min (n,.np) < £. The overall algorithm is as
follows.

Algorithm 6.36 [Kernel CCA] Kernel canonical correlation analysis can
be solved as shown in Code Fragment 6.3. ' =

This means that we can have two views of an object that together create
a paired dataset S through two different representations or kernels. We
use this procedure to compute correlations between the two sets that are
stable in the sense that they capture properties of the underlying distribution
rather than of the particular training set or view.

Remark 6.37 [Bilingual corpora] Example 6.28 has already mentioned as
examples of paired datasets so-called parallel corpora in which each docu-
ment appears with its translation to a second language. We can apply the
kernel canonical correlation analysis to such a corpus using kernels for text
that will be discussed in Chapter 10. This will provide a means of projecting
documents from either language into a common semantic space. =
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Input kernel matrices K, and K, with parameters 7, and Ty

Process | Perform (incomplete) Cholesky decompositions:

K, =R,R, and K; = R} R; of dimensions nq and np:
perform a complete Cholesky decomposition:

(1 —Tb)RbRg-FTbI:R’R

solve the eigenvalue problem:

(R) " RyR, (1 — 7o) RaR, + 7al) 7 ReRER ™y = My -
to give each A;. u{; A _ ‘

compute w, = R~1uy. wi = wi/[lwill

w) =3+ ((1 - 7o) RaR; + 7.1) T R, R, w]

w) = wi/llwil

Output | eigenvectors and values wi. wi and A; > 0..

Fo= Lyeens min (ng,.ns)

. Code Fragment 6.3. Pseudocode for the kernel CCA algorithm.

Remark 6.38 [More than 2 representations] Notice that a simple manipu-
lation of equation (6.22) gives the alternative formulation

Cos Cab W (Caa 0 ) <Wa>
=(1+A
(Cba Cbb> (Wb) ( ) 0 Cr) \Wp

which suggests a natural generalisation. namely seeking correlations between
three or more views. Given k multivariate random variables. it reduces to
the generalised eigenvalue problem

Cii Ci2 - Cuip\ (W1
Coi Coa : :
Cui - - Cmk \Wk
Ci O cor 0 \ Wi
0 Coy -+ O .
= Pl : -
0 0 Ckk/ Wi

where we use Cj; to denote the covariance matrix between the ith and jth
views. Note that for & > 2 there is no obvious way of reducing such a
generalised eigenvalue problem to a lower-dimensional eigenvalue problem
as was possible using the Cholesky decomposition in the case k = 2. ]




