
Exercise I Advanced Machine Learning MASTER 2021

1 Solution Kernels: Exercise 1.1

Using the RBF kernel, draw the isolines for one data point x1. Discuss the effect of modifying
the kernel width.

Recall that the equation of the Gaussian (RBF) kernel is:

k(x, x′) = e
||x−x′||2

2σ2 , (1)

where ||x− x′|| is the standard Euclidean norm and σ is the kernel width, its hyperparameter.
Fig. 1 shows the surface and contour representation of the function f(x) = k(x, x1), where

x1 = (50, 50).

(a) (b)

Figure 1: Gaussian (RBF) Kernel with σ = 5: (a) surface; (b) contour.

Changing the kernel width of the RBF influences the velocity with which the function decays
towards zero. Fig. 2 shows the isoline of the function f(x) = k(x, x1) for different kernel width.

(a) (b) (c)

Figure 2: Comparison of Gaussian (RBF) Kernel with different width: (a)σ = 3; (b) σ = 8; (c)
σ = 15.

1



Exercise I Advanced Machine Learning MASTER 2021

Solution Kernels: Exercise 1.2

Using the RBF kernel, draw the isolines when adding or substracting the each datapoints, namely:

� Find all x, s.t. k(x, x1) + k(x, x2) =cst.

� Find all x, s.t. k(x, x1)− k(x, x2) =cst.

We consider two kernels respectively centered in x1 = (15, 15) and x1 = (20, 20). For different
width of both kernels, Fig. 3 shows the isolines of function

f(x) = k(x, x1) + k(x, x2). (2)

(a) (b) (c)

Figure 3: Sum of two Gaussian (RBF) Kernel with different width: (a)σ = 1; (b) σ = 2; (c)
σ = 4.

The two points are regrouped through the isolines. When moving far from the datapoints,
the isolines become a tight circle, which englobes the datapoints. Observe that such a construct
can cluster the datapoint in one group delineated by one particular value of the associated
isoline. This is at the basis of Support Vector Clustering which we will see in a few lectures.

For different width of both kernels, Fig. 4 shows the isolines of function

f(x) = k(x, x1)− k(x, x2). (3)

(a) (b) (c)

Figure 4: Subtraction of two Gaussian (RBF) Kernel with different width: (a)σ = 1; (b) σ = 2;
(c) σ = 4.

The two points are well separated with positive and negative values on the isolines. Apply-
ing a threshold on the isoline zero allows to separate the two points. This is at the basis of
classification when using RBF kernel in Support Vector Machine, whereby one takes the sign of
the isoline to determine the label.
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Solution Kernels: Exercise 1.3

Using the RBF kernel, draw the isolines when combining three data-points, namely:

� Find all x, s.t. k(x, x1) + k(x, x2) + k(x, x3) =cst.

� Find all x, s.t. k(x, x1) + k(x, x2)− k(x, x3) =cst.

Observe again that you can either regroup all points when using the additive term or separate
one of the points when subtracting its contribution. Consider three RBF kernels at x1 = (−1, 0),
x2 = (1, 0) and x3 = (0, 1). Fig. 5 shows, for different length of the kernels, the isolines of the
function

f(x) = k(x, x1) + k(x, x2) + k(x, x3). (4)

Fig. 6 shows, for different length of the kernels, the isolines of the function

(a) (b) (c)

Figure 5: Sum of three RBF kernels with (a) σ = 0.5; (b) σ = 1; (c) σ = 2.

f(x) = k(x, x1) + k(x, x2)− k(x, x3). (5)

(a) (b) (c)

Figure 6: Sum and subtraction of three RBF kernels with (a) σ = 0.5; (b) σ = 1; (c) σ = 2.
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2 Solution Kernels: Exercise 2.1

Using the homogeneous polynomial kernel, draw the isolines as in previous exercise for one data
point and two data-points. Discuss the effect of the hyperparametr p on the isolines.

The equation of the homogenous polynomial kernel is:

k(x, x′) =< x, x′ >p, (6)

where < x, x′ > is the standard Euclidean dot product and p is the degree of the polynomial.

(a) (b)

Figure 7: Homogenous Polynomial Kernel p = 1: (a) surface; (b) contour.

The homogeneous polynomial kernel is the equation of a projection. The isolines are orthog-
onal to the vector pointing from the origin to x1. They are positives for all x pointing in the
same direction as x1 and negatives otherwise. This is due to the sign of the angle between the
two vectors.

We consider as reference point x1 = (5, 5). Fig. 7 shows the first order polynomial k(x, x1).
Fig. 8 shows the second order polynomial k(x, x1).

(a) (b)

Figure 8: Homogenous Polynomial Kernel p = 2: (a) surface; (b) contour.

When we elevate the kernel to the power of 2, the isolines are now all positive. Indeed, we
have k(x, x′) =< x, x′ >p= ||x||2||x1||2 cos(θ)2. The cosine term is now always positive. The
isolines are no longer equidistant. The distance decreases with the square of the distance.

When we elevate the kernel to the power of 3, the isolines are again positive and negative.
The distance decreases with the cube of the distance, see Fig. 9.

For power larger than 3, we observe the same behavior. The isolines remain lines perpendic-
ular to the datapoints and change sign only for odd number of p.

We consider now the sum and subtraction of two polynomial kernels having as reference
points x1 = (−1, 0) and x2 = (0.5, 0.5), respectively. Fig.10 shows the isolines for the sum and
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(a) (b)

Figure 9: Homogenous Polynomial Kernel p = 3: (a) surface; (b) contour.

(a) (b) (c)

Figure 10: (a) Sum of two polynomial kernels with p = 1; (b) Sum of two polynomial kernels
with p = 2 ; (c) Subtraction of two polynomial kernels with p = 2.

subtraction of polynomial kernels with different degrees. In the first case (a) two polynomials
kernel of degree 1 are computed as the following sum:

f(x) = (x1)Tx+ (x2)Tx. (7)

In the second case (b) two polynomials of second order are added up:

f(x) = ((x1)Tx)2 + ((x2)Tx)2, (8)

Calculating the isolines such a functions correspond to find the set of points where the
function yields the same value, that is:

((x1)Tx)2 + ((x2)Tx)2 = k, (9)

where k is a constant scalar.
If x is 2-dimensions, its coordinates are x = [x1, x2]

T . When we expand the previous equa-
tion, we obtain ax21 + bx22 + cx1x2. This is the equation of an ellipse. The coefficients a, b, c
determine the axes of the ellipses and are given by the coordinates of the datapoints x1 and x2,
such that we have a = (x11)

2 + (x21)
2, b = (x12)

2 + (x22)
2 and c = 4x11x

2
1x

1
2x

2
2. When the datapoints

are opposite to one another with respect to the origin, the term c is zero. In this case, the ellipse
is centered on the origin and its axis are aligned with the main axes of the frame of reference.
Otherwise, the ellipse is centered at the origin but tilted.

In the third case (c) two polynomial of second order are subtracted:

f(x) = ((x1)Tx)2 − ((x2)Tx)2 (10)

Calculating the isoline of such a function corresponds to finding the set of point where the
function yields the same value:

((x1)Tx)2 − ((x2)Tx)2 = k, (11)
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where k is a constant scalar. This equation reveals that, for x1 6= x2 the isolines (level sets) are
hyperbolas.

When we expand the previous equation, we obtain ax21 − bx22 + cx1x2. This is the equation
of an hyperbola. The coefficients a, b, c determine the direction of the hyperbola. It is also
centered at the origin and tilts depending on the location of the two points.

When we elevate to power p = 3 and p = 4, we get deformed ellipses and hyperbolas, still
centered at the origin. This is due to the fact that the main shape of the equation entailed in
the terms of the form (ax21± bx22 + cx1x2) is preserved, with a, b, c three coefficients that depend
on the location of the points. This main term is elevated to the power p − 2, i.e. we have
((ax21 ± bx22 + cx1x2)

2)p−2. The terms of higher order have the largest influence.
Fig. 11 shows the sum and the subtraction of two polynomial kernels of degree three.

(a) (b)

Figure 11: (a) Sum of two polynomial kernels with p = 3; (b) Subtraction of two polynomial
kernels with p = 3.

Fig. 12 shows the sum and the subtraction of two polynomial kernels of degree four.

(a) (b)

Figure 12: (a) Sum of two polynomial kernels with p = 4; (b) Subtraction of two polynomial
kernels with p = 4.
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3 Solution Kernels: Exercise 2.2

The equation of the inhomogeneous polynomial kernel is:

k(x, x′) = (< x, x′ > +c)p, (12)

where < x, x′ > is the standard Euclidean dot product, p is the degree of the polynomial and c
is a constant scalar.

The constant c has two effects: it shifts the origin of the system and acts as a multiplicative
factor on the terms of lower orders. The latter increases the value of the isolines. With odd order
of the polynomial, we again have negative terms due to the sign of cos. ((ax21 ± bx22 + cx1x2)

2)
Fig. 13 shows the sum and the subtraction of two inhomogeneous polynomial kernels of degree
three.

(a) (b)

Figure 13: (a) Sum of two inhomogeneous polynomial kernels with p = 2 and c = 1; (b)
Subtraction of two inhomogeneous polynomial kernels with p = 2 and c = 1.
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4 Solution Kernels: Exercise 3

Valid kernels can be constructed from the addition and multiplication of kernels. We here illus-
trated what type of complex shapes we can create through such combinations.

For the function
f(x) = kpoly(x, x1) + kRBF (x, x2), (13)

where kpoly is a homogenous polynomial kernel and kRBF is a Gaussian (RBF) kernel, Fig 14
shows the surface and the isolines when x1 = (1, 1) and x2 = (1, 1).

(a) (b)

Figure 14: Sum of a Homogenous Polynomial(p = 1) kernel at x1 = (1, 1) and RBF (σ = 0.5)
kernels at x2 = (1, 1).

The RBF allows to generate small bumps in space, while the increasing or decreasing trend
of the polynomial is preserved throughout space. As the polynomial kernel yields in general large
value whereas the RBF kernel can generate only isolines at maximum 1, it is often necessary to
add a multiplicative factor to the RBF to ensure that this term will have an influence.

For the function
f(x) = kpoly(x, x1)× kRBF (x, x2), (14)

where kpoly is a homogenous polynomial kernel and kRBF is a Gaussian (RBF) kernel, Fig 15
shows the surface and the isolines when x1 = (1, 1) and x2 = (1, 1). Fig 16 shows the surface

(a) (b)

Figure 15: Product of a Homogenous Polynomial(p = 1) kernel at x1 = (1, 1) and RBF (σ = 0.5)
kernels at x2 = (1, 1).

and the isolines when x1 = (1, 1) and x2 = (−1,−1). Fig 17 shows the surface and the isolines
when x1 = (1, 1) and x2 = (0, 0).
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(a) (b)

Figure 16: Product of a Homogenous Polynomial(p = 1) kernel at x1 = (1, 1) and RBF (σ = 0.5)
kernels at x2 = (−1,−1).

(a) (b)

Figure 17: Product of a Homogenous Polynomial(p = 1) kernel at x1 = (1, 1) and RBF (σ = 0.5)
kernels at x2 = (0, 0).
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Fig. 18 shows the isolines of the functions given by the product of a second order homogeneous
polynomial kernel and a Gaussian (RBF) kernel for three different locations of the latter. Fig. 19

(a) (b) (c)

Figure 18: Product of a Homogenous Polynomial(p = 2) kernel and RBF (σ = 0.5) kernel
respectively at (a) x1 = (1, 1) and x2 = (1, 1); (b) x1 = (1, 1) and x2 = (−1,−1); (c) x1 = (1, 1)
and x2 = (0, 0).

shows the isolines of the functions given by the product of a third order homogeneous polynomial
kernel and a Gaussian (RBF) kernel for three different locations of the latter. The sign of

(a) (b) (c)

Figure 19: Product of a Homogenous Polynomial(p = 3) kernel and RBF (σ = 0.5) kernel
respectively at (a) x1 = (1, 1) and x2 = (1, 1); (b) x1 = (1, 1) and x2 = (−1,−1); (c) x1 = (1, 1)
and x2 = (0, 0).

the Gaussian (RBF) kernel is preserved whenever we have multiplication by an even order
homogeneous polynomial kernel (the kernel remains positive in all the space). Multiplication by
an odd homogeneous polynomial kernel changes the sign of the Gaussian kernel depending on
its location. In the examples shown for first and third degree of the homogeneous polynomial
the RBF kernel yields positive values if located in the first quadrant negative values if located
in the third quadrant.
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