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INTRODUCTION

Functional electrical stimulation (FES) is a rehabilitative
technique where low level electrical voltages and currents
are applied to an individual in order to improve or restore
function lost to injury or disease. In its broadest definition,
FES includes electrical stimulation technologies that, for
example, are aimed at restoration of a sense of hearing for
the deaf, vision for the blind, or suppression of seizures in
epilepsy or tremors for people with Parkinson’s disease.
Most FES devices and systems are known then as “neu-
roprostheses” because through electrical stimulation they
artificially modulate the excitability of neural tissue in
order to restore function. While sometimes used synony-
mously with FES, the term functional neuromuscular
stimulation (FNS) is most commonly used to describe only
those FES technologies that are applied to the neuromus-
cular system in order to improve quality of life for people
disabled by stroke, spinal cord injury, or other neurological
conditions that result in impaired motor function (e.g., the
abilities to move or breathe). Another technology closely
related to FES is that of therapeutic electrical stimulation
(TES), wherein electrical stimulation is applied to provide
healing or recovery of tissues (e.g., muscle conditioning and
strengthening, wound healing). As will be seen, some FES
and FNS technologies concurrently provide or rely upon
such therapeutic effects in order to successfully restore lost
function. For illustrative purposes, much of this article is
centered on FNS and related TES devices and technologies.
For a wider exposure to additional FES approaches and
neural prosthetic devices, the reader is referred to this
article’s Reading List, which contains references to a num-
ber of general books, journal articles, and on-line resources.

An important consideration in most all FNS technolo-
gies is that significant neural tissue remains intact and
functional below the level of injury or disease so that
electrical stimulation can be applied effectively. Indivi-
duals exhibiting hemiplegia (i.e., paralysis on one side of
the body) due to stroke, for example, will exhibit paralysis
in an impaired limb due to loss of control from the central
nervous system (CNS), not because the peripheral nervous
system (PNS) innervation of skeletal muscles in the limb
has been lost. Similarly, while spinal cord injury (SCI)
destroys motor neurons at the level of injury either par-
tially or completely, many motor neurons below the level of
injury may be spared and remain intact. Therefore, in
stroke or SCI the axons of these intact motor neurons
can be artificially excited by introducing an appropriate
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electrical field into the body using electrodes located on the
skin surface, or implanted within the body. Artificial exci-
tation of motor nerves by electrical excitation can generate
action potentials (propagating excitation waves) along
axons that, when they arrive at synaptic motor-endplate
connections to skeletal muscle fibers, act to generate mus-
cle force much as the intact nervous system would. Thus,
lower extremity FNS systems often have the objective of
restoring or improving mobility for stroke or SCI indivi-
duals. Upper extremity FNS systems often are designed to
restore or augment reaching and grasping movements for
SCI subjects. Both FNS and TES technologies are of course
not a cure for stroke, spinal cord injury or diseases (e.g.,
cerebral palsy or multiple sclerosis where FNS also has
been used). They are also not universally beneficial, and
must be carefully matched by a clinician to an individual
and their medical condition (1). On the other hand, as will
be seen in the remainder of this article, FES and TES
systems can provide greatly improved quality of life for
many people who use them.

THEORY AND APPLICATION

In 1961, Liberson and co-workers proposed the usage of
electrical stimulation in what was called functional elec-
trotherapy to restore or augment movement capability that
has been lost or compromised due to injury or disease (2).
Specifically, Liberson’s group developed the first electrical
stimulation system for correction of hemiplegic drop foot: a
gait disability occurring in some stroke survivors (for an
excellent review of the history of development of neural
orthoses for the correction of drop foot see Ref. 3). Moe and
Post subsequently coined the term functional electrical
stimulation to describe such techniques (4).

Electrical stimulation devices and systems now have been
developed to activate paralyzed muscles in human subjects
for a variety of applications in both the research lab and the
clinic. Both FES and FNS systems have seen their greatest
use as a tool for long-term rehabilitation of persons with
neurological disorders (e.g., spinal cord injury, head injury,
stroke) (5-10). For example, implanted electrical stimulation
devices have been developed that can restore hand-grasp
function to people with tetraplegia (11). Stimulation devices
that utilize percutaneous electrodes (thin wires that cross the
skin) have been developed to provide individuals with thor-
acic-level spinal cord injury with the ability to stand and step
(12-14). Other devices that utilize electrodes placed on the
surface of the skin can restore standing and locomotor func-
tion to individuals with spinal cord injury or other neuro-
muscular disorders (6,8,15,16). One system that uses surface
electrodes (Parastep, SigmedicsInc.) isFDA approved for use
by people with thoracic level spinal cord injury and has been
used at several rehabilitation centers worldwide. These
efforts have clearly demonstrated that neuromuscular sti-
mulation can be effectively used to activate paralyzed mus-
cles for performing motor activities of daily living.

The basis by which all neuromuscular stimulation sys-
tems function is artificial electrical activation of muscle
force, usually through excitation of the nerve fibers that
innervate the skeletal muscle(s) of interest.

Excitation, Recruitment, and Rate Modulation

The nerve fibers that innervate skeletal muscle fibers are
myelinated in nature, which means that they are regularly
along their lengths ensheathed within layers of Schwann-
cell derived myelin separating exposed axonal membrane
at nodes of Ranvier. Myelination enables increased propa-
gation velocities via saltatory conduction in such nerve
fibers. The cell bodies of these alpha motor neurons lie
within the ventral horn of the spinal cord. The efferent
axons of these cells (~ 9-20 pm in diameter) pass out from
the spinal cord via the ventral roots and project then to
muscle fibers within peripheral nerve trunks. When spared
during damage or disease of the nervous system, alpha
motor neurons and their axons usually form the substrate
of electrical activation of skeletal muscle force in FNS
applications. This may come as something of a surprise
to the reader, in that skeletal muscle cells are themselves
also excitable. Why then is indirect stimulation of the
innervating nerve fiber generally the mechanism by which
force is generated rather than direct stimulation of the
muscle cells themselves? The reason is that large myeli-
nated nerve fibers are usually excited at lower stimulus
amplitudes (voltage or current) and with shorter stimulus
pulse widths than are skeletal muscle cells (assuming
similar spatial separations of electrodes to cells) (17).
Electrical stimulation of myelinated nerves to threshold
occurs when a critical extracellular potential distribution
is created along or near the cell. At threshold, outward
transmembrane currents are sufficient to depolarize the
nerve cell membrane voltage to the level where an action
potential is generated.

In normal physiology, there exist two natural control
mechanisms to regulate the force a single muscle pro-
duces—recruitment and rate coding. Motor units are
recruited naturally according to the Size Principle
(18,19). Small alpha motor neurons innervating slow motor
units have a low synaptic threshold for activation, and
therefore are recruited first. As more force is demanded by
an activity, progressively larger alpha motor neurons that
innervate fast motor units are recruited. The second
method of natural force regulation is called rate coding.
Within a given motor unit there is a range of firing fre-
quencies. Alpha motor neurons innervating fast-twitch
motor units have firing rates that are higher than those
that innervate slow-twitch units (20,21). Within that
range, the force generated by a motor unit increases with
increasing firing frequency. If an action potential reaches a
muscle fiber before it has completely relaxed from a pre-
vious impulse, then force summation occurs. Twitches
generated by the slow motor units have a fusion frequency
of 5-10 Hz and reach a tetanic state at 25—-30 Hz. The fast
motor units may achieve fusion at 80-100 Hz (21,22).

The contractile properties of the muscle are largely
dependent on the composition of the skeletal muscle (i.e.,
the muscle fiber types). The composition of muscle fibers
varies across species. The composition of muscle fibers in
the hindlimbs of the rat are predominantly fast fibers (23)
whereas, human skeletal muscle is composed of a hetero-
genous collection of muscle fiber types (24). This is also
indicated in the differences in fusion frequencies observed
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Table 1. Skeletal Muscle Fiber Types and Their Characteristics

Skeletal Muscle Fiber Types and Characteristics

Fiber type Type I Type Ila Type IIb
Other names Slow red Fast red Fast white
Slow oxidative (SO) Fast oxidative (FOG) Fast glycolytic (FG)
Slow (S) Fast resistant (FR) Fast fatigable (FF)
Motor unit size Smallest Moderate Largest
Firing order 1 2 3
Stimulation threshold Lowest Moderate Highest
Force production Lowest Moderate Highest
Resistance to fatigue Highest Moderate Lowest
Contraction time Slowest Fast Fastest
Mitochondrial density High High Low
Capillary density Highest Moderate Lowest

in the two species. The fusion frequency for muscles in the
human is 25 Hz (25) and those for the muscles in the rat are
higher (~ 75 Hz) (26). As summarized in Table 1, from
various mammalian studies, skeletal muscle fibers have
been grouped into many different types according to phy-
siological, ultrastructural, and metabolic properties. Based
on histochemical measurements of adenosinetriphospha-
tase (ATPase) reactivities, muscles were classified into
type I, type IIA, and type IIB (27). A differentiation based
on combination of physiological and metabolic properties
categorized muscle fibers as SO-, FOG-, FG- (28). Based on
twitch speed and fatigue resistance, muscle fiber types
were identified as S, FR, and FF (29). There is also an
intermediate type of fast muscle fiber in certain muscles
denoted type IIAB or FI (Fast Intermediate resistance to
fatigue). The different muscle fiber types vary in the
amount of force generated, speed of contraction, and fatig-
ability. The slow fiber types (SO, Type I, S) generate lower
force, but for a prolonged duration. They are very fatigue
resistant. The fast fiber types (FG, IIB, and FF) are on the
other end of the spectrum with greater force generating
capacity, but briefer intervals of time. Also, these fatigue
very quickly compared to slow fibers. Therefore, there is a
trade off between the ability to produce force quickly and
powerfully or slowly and steadily. Though slow fibers are
able to generate a steady force for long periods of time, their
force output is less. Fast fibers on the other hand can
generate quicker, greater forces, but they fatigue very fast.
Some fibers are classified in between the two extremes of
slow and fast and are termed intermediate fibers. These are
fast fibers, but with fatigue resistant capability (FOG, IIA,
FR, IIAB, FI). The properties of these intermediate fibers
lie between those of slow fibers and fast fibers. The force
generated by these fibers is less that those generated by
fast fibers and greater than the force produced by slow
fibers.

The heterogeneity of muscle fibers within the muscle is
in part due to the hierarchy of motor unit recruitment order
(the Size Principle, described above) (30) indicating the
influence of motor neuron activity upon muscle fiber phe-
notypes. The fiber-type composition within a muscle can be
altered by altering the excitation patterns delivered to the
muscle (induced by various exercise regimes). The best
documented effects of such transformations are those that

occur after chronic, low frequency stimulation (CLFS) of a
predominantly fast muscle using implanted electrode sys-
tems. The fast skeletal muscles of a number of mammalian
species have been shown to change to the slower phenotype
in response to chronic electrical stimulation (31-39).
The muscle phenotype can be manipulated to enhance
fatigue resistance at the expense of contractile power
and speed (40-45). Changes in metabolic activity, and
muscle mass have been documented too (38,46). These
transformations are also dose dependent. A continuous
stimulation of rabbit fast muscle at 10 Hz completely
transform the muscle fibers to the slow phenotype, but
lower frequencies of stimulation produce an intermediate
state of conversion. However, stimulation at 2.5 Hz for 12
weeks (47,48) or 10 months (49) results in a whole muscle
consisting mainly of the fast phenotype.

CLFS has been shown to affect human muscle in a
manner similar to that in animals (50-57). Electrical sti-
mulation has shown to increase strength—force and build
fatigue resistance in muscles in both healthy and SCI
individuals (56,58-63). An increase in passive range of
motion has also been observed (64). Electrical stimulation
has been shown to prevent the shift and loss of fibers in
patients with paralyzed muscles thereby increasing fatigue
resistance (60,65-67). A well-defined progression of
changes is observed, whereby the muscle changes first
its metabolic and then its contractile properties to become
slow muscle (68). This has been documented in different
species and muscles suggesting that probably the effects
observed are not species or muscle specific. Following
transformation, the new slow fibers are indistinguishable
from normal slow skeletal muscle fibers. Also, from time
series studies (69) and single fiber biochemistry (70,71) it is
clear that the changes that occur result from transforma-
tion at the level of the single fiber and not from fast-fiber
degeneration with subsequent slow-fiber regeneration.

From the above sections, it is clear that skeletal muscle
is very adaptive, and therefore provides an opportunity for
conditioning and therapy after an injury. Electrical stimu-
lation based exercise has gained much significance in
toning and conditioning muscles. Even though electrical
stimulation techniques are being used increasingly for
rehabilitation and therapy, note that in general electrical
stimulation systems generate activation patterns and
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Figure 1. Typical force recruitment curves obtained from the ankle dorsiflexor muscle (Tibialis
anterialis) of a rat through intramuscular stimulation. The recruitment curves indicate two
techniques of force—torque modulation (a) pulse width modulation (PWM) and (b) pulse amplitude
modulation (PAM). Single, symmetric, charge balanced, biphasic (cathodic first) pulses at an interval
of 60 s were delivered. The currents were chosen as multiples of the twitch threshold current at 40 us.

recruitment characteristics quite different from the nor-
mal physiological mechanisms. With electrical stimula-
tion, physiological muscle force regulation is controlled
either by spatial summation or by temporal summation
(72). Spatial summation (or electrical recruitment) is
achieved by increasing the pulse width (Fig. 1a) and/or
the pulse amplitude (Fig. 1b) of the electrical stimulus—
extending the excitatory extracellular potential distribu-
tion further out from the stimulating electrode(s) to greater
numbers of nerve fibers, and/or longer in time. Force
recruitment curves are in general quite nonlinear. The
isometric recruitment curve (IRC) of a muscle can be
defined as the static gain relation between stimulus level
and output force/torque when the muscle is held at a fixed
length. The features of a typical IRC are an initial dead-
zone region, a high slope, monotonically increasing region,
and a saturation region (73,74). These features can be
explained by recognizing that the slope of the IRC is
primarily a function of the electrode-nerve interface.
The shape is dictated by the location and size distributions
of the individual motor unit axons within the nerve with
large diameter axons having a lower stimulus activation
threshold than small diameter axons. The IRC depends on
the past history of muscle activation and location of the
electrode relative to the motor point. The motor point
functionally is defined as the location (on the skin surface,
or for implanted electrodes on the muscle overlying its
innervation) where stimulation thresholds are lowest for
the desired motor response. There is a drop in the max-
imum magnitude and slope of the monotonic region of the
IRC on muscle fatigue (73,75). The IRC is also influenced
by the muscle length tension curve (76) and, if muscle force
is estimated by measuring joint torque, by the muscle
nonlinear moment arm as it crosses the joint. Because of
these factors, the IRC shape will be different for each
muscle and set of experimental configurations and will
also vary between subjects.

Temporal summation (also called rate modulation) var-
ies the stimulus frequency or the rate of action potential
firing on the nerve fiber(s). When electrodes are located

closer to the motor point for stimulation, enhanced spatial
selectivity can be achieved because the electric field intro-
duced can be focused closer to the a motor neuron fibers of
interest. Another aspect of recruitment selectivity is fiber
diameter, which relates to the tendency to stimulate sub-
populations of nerve fibers based on their size. In electrical
stimulation of myelinated fibers, there will be a tendency to
recruit large axons at small stimulus magnitudes and then
smaller axons with increased stimulus levels unlike during
normal physiological recruitment—this is often dubbed
reverse recruitment (77-79). Such reversed recruitment
of motor units will inappropriately utilize fast, more read-
ily fatigued muscle fibers for low force tasks. Slower fatigue
resistant muscle fibers will only be recruited at higher
stimulus levels. This also results in an undesirable steep
relation between force output and stimulus magnitude.
After injuries causing paralysis and disuse of muscle, many
fatigue resistant muscle fibers tend to shift their metabo-
lism toward less oxidative and more anaerobic, more read-
ily fatigued mechanisms. Electrical stimulation therapy in
such instances will recruit the faster muscle fibers first
thereby inducing fatigue at a very early stage in the
therapy.

FES DEVICES AND SYSTEMS

As illustrated in Fig. 2, all modern FES and FNS devices
and systems incorporate (1) surface or implanted electro-
des to generate an excitatory electric field within the body,
(2) a regulated-current or regulated-voltage output stage
that delivers stimulus pulses to the electrodes, (3)
the stimulator pulse conditioning circuitry that creates
the desired pulse shape, amplitude, timing, and pulse
delivery (often within trains of pulses at set frequencies
and for intended intervals), and (4) an open- or closed-loop
stimulator controller unit. Systems may be completely or
partially implanted and often incorporate a microcontroller
or computer interface. Smith and colleagues at the Cleve-
land FES Center, for example, have developed an externally
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Figure 2. The FES systems typically incorporate control signals
from the user that a Controller stage acts upon. Patterns of stimulation
pulses are shaped with a pulse conditioning module that in turn feeds
pulse information to an output stage that delivers regulated-current or
regulated-voltage pulses of the desired amplitudes and timing to one
or more channels of electrodes which are in contact with, or implanted
within, the body.

powered, multichannel, implanted stimulator with teleme-
try for control of grasp and release functions in individuals
with cervical level (C5 and C6) spinal cord injuries (80). Wu
et al. designed a PC-based LabView controlled multichannel
FES system with regulated-current or regulated-voltage
arbitrary stimulation waveform pattern capability (81).
Commercialized FES systems include, for example, the
Bioness, Inc. H200/Handmaster. This U.S. Food and Drug
Administration (FDA) approved device incorporates micro-
processor controlled surface stimulation into a portable,
noninvasive hand—wrist orthosis for poststroke rehabilita-
tion [see, e.g., (82)]. The FreeHand System, commercialized
by NeuroControl Corporation in Cleveland, implements
implanted receiver-stimulator, external controller, elec-
trode, and sensor technologies (Fig. 3) developed through
the Cleveland FES Center into a system for restoration of
control of hand grasp and release for C5/C6 level spinal
cord injured individuals. Compex Motion (Fig. 4), a pro-
grammable transcutaneous electrical stimulation product
of Compex SA, is designed as a multipurpose FES system
for incorporation into rehabilitation therapies (83). The
Parastep System developed by Sigmedics, Inc. is designed
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to enable independent, unbraced standing and walking for
spinal cord injured people. Parastep is a noninvasive sys-
tem that incorporates a battery-powered, microcomputer
controlled stimulator unit (Fig. 5), surface electrodes, and a
control and stability walker with finger activated control
switches.

Electrode Designs for Electrical Stimulation

In the implementation of FES and FNS techniques, surface
or implanted electrodes are used to create an excitatory
electric field distribution within the targeted tissues.
Researchers over the years have identified a number of
important criteria for stimulation electrode selection and
have developed a variety of electrode designs in order to
meet specific application requirements (for an excellent
recent review see Ref. 84).

Criteria for Electrode Selection. A few of the important
factors identified for long-term applications are anatomical
and surgical factors, mechanical and electrochemical char-
acteristics, biocompatibility, long-term stability, and eco-
nomics. Anatomical and surgical factors include ease of
identification of stimulation site, either on the skin surface
or through implantation. In the event of damage to
the electrode, any implanted region should be easily acces-
sible for retrieval and replacement. The mechanical prop-
erties of electrodes are important particularly with respect
to implants whose lifetime is measured in years. Electrodes
that are flexible, and consequently smaller in diameter,
induce less trauma to muscles during movement. Instead
of straight wires, coiled electrode wires provide for greater
tension, and reduce the stress. The use of multistranded
wires reduces breakage or provides redundancy if some
wires should fail.

The electrical stability of the electrode is usually judged
based upon reproducibility of muscle force recruitment
curves. These depict some stimulation parameter (e.g.,
pulse width or current) against muscle force or torque
output. As we have seen, the normal order of recruitment
is generally reversed (larger motor units are activated
before smaller ones). The threshold and the steepness of
the curve are important properties that vary with electrode
design, fiber size, and strength duration relations.

Another important criterion of consideration for choice
of electrodes that are chronically implanted and tested over
time is biocompatibility. The charge carriers in the elec-
trode material (metal) are electrons unlike in our body
wherein the charge carriers are ions. This results in a
change of charge carriers when currents cross the
metal-body interface. A capacitive double layer of charge
arises at the metal—electrolyte interface; the single layer in
the metal arises because of its connection to the battery,
whereas that in the electrolyte is due to the attraction of
ions in the electric field (85,86). These layers are separated
by the molecular dimensions of the water molecule so the
effective capacitance (being inversely proportional to
charge separation) is quite high. At sufficiently low levels,
the current will be primarily capacitive. But for high
currents that exceed the capabilities of the capacitance
channel, irreversible chemical reactions will take place
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Figure 3. (a) Diagram of compo-
nents for the implanted stimulation
system developed at the Cleveland
FES Center and commercialized as
the Freehand neuroprosthesis by Neu-
roControl Corp. In the hand-grasp
example shown, shoulder position is
transduced for use as the command
input. (b) The external control unit
(ECU) provides the transducer inter-
face, user control algorithm, multicha-
nnel stimulus coordination, and power
for the implanted receiver-stimulator
system. (¢) The implanted receiver-
stimulator provides multiple channels
of stimulus output via the leads seen in
thefigure. It also transmitsimplantable
sensor data to the ECU, and is powered
through an inductive link that forms a
coreless bidirectional transformer.
Intramuscular or epimysial electrodes

implanted in the forearm or hand are T Gy

attached to the stimulator leads (not
shown). (Courtesy of the Cleveland
FES Center.) (b)

that are undesirable since they are detrimental to
the tissue or electrode or both. Therefore, the electrode
material must have little impact on the electrochemistry at
the electrode-tissue interface. For biocompatibility and to
avoid local tissue damage induced by high current levels,
the electrode materials used are essentially inert (e.g.,
platinum, platinum—iridium, and 316LVM stainless
steel).

The above mentioned criteria for electrode selection are
a general guideline for either skin surface or chronically
implanted electrode systems. However, the choice of elec-
trode is also application dependent. For example, during
stimulation of the brain, of particular concern is prevention
of breakdown of the blood—brain barrier. For nerve stimu-
lation circular (82) electrodes can be placed within an
insulating cuff; consequently, smaller amounts of current
are required because the field is greatly confined. Also,
lower current tends to minimize unwanted excitation of
surrounding tissue. Finally, intramuscular electrodes,
because of the implant flexing that must be withstood,
are usually of the coiled-wire variety discussed above.

Electrode Classification. In general, electrodes designed
to deliver electrical pulses to excitable tissue are classified
based on the site of stimulation or placement of electrodes.
Motor nerves can be stimulated through -electrodes

=Y

Transmitting coil

Shoulder position
K transducer

%;al control unit

(a)

,,,,,

placed on the surface of the skin (surface electrodes) or
implanted within the body. Implanted electrodes include
those placed on or in the muscle (epimysial or intramus-
cular electrodes, respectively); as well as within or adjacent
to a motor nerve (intraneural or extraneural electrodes).
Electrodes that stimulate the spinal cord and BIONS (elec-
trodes integrated with sensing and processing and pack-
aged into a capsule) are recent additions to the family of
implanted electrode technologies. The above classification
of electrodes is further described below and summarized in
Table 2.

Surface Electrodes. Surface electrodes as the name
implies are placed on the surface of the skin and are the
earliest of the electrodes to be used for applications in
electrotherapy. These consist of conductive plates and
are available in many types including conductive rubber
patches coated with electrolyte gel, metal plates contacting
the skin via thin, moist sponges and flexible, disposable,
stainless steel mesh or rubber electrodes with self-adhesive
conductive polymers (98-100). They do not need any
implantation and are therefore noninvasive and relatively
easy to apply and replace. An excellent description on the
placements of these electrodes can be found in the Rancho
Los Amigos Medical Center’s practical guide to neuro-
muscular electrical stimulation (101). Surface electrodes
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Figure 4. The Compex Motion FES system, manufactured by the
Swiss based company Compex SA, is a general purpose progra-
mmable transcutaneous electrical stimulation device. Seen are the
stimulator unit, three memory chip-cards that are inserted into the
stimulator and used to store all pertinent information for a specific
protocol, two EMG sensors, and two surface electrodes. (Reprinted
from Ref. 83 with permission from the Institute of Physics and
Engineering in Medicine.)
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Figure 5. The neuromuscular stimulation unit for the Parastep
system manufactured by Sigmedics, Inc. is battery-powered and
microcomputer controlled. Cables connect the unit to surface
electrodes, as well as to finger activated control switches on a
walker. (Courtesy of Sigmedics, Inc.)
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do have some disadvantages. They offer relatively poor
selectivity for stimulation, have elevated threshold levels,
may activate skin pain receptors, and do not have highly
reproducible positioning capability. When higher currents
are delivered to stimulate deeper muscles, spill over of
charge to the nontargeted superficial muscles occurs. It
is sometimes difficult to anchor surface electrodes in mov-
ing limbs and electrical properties at the skin—electrode
interface can be variable.

Surface electrodes have been used for both lower limb
and upper limb motor prosthesis, including the aforemen-
tioned Parastep system for ambulation (Fig. 6). WalkAid
was designed for the management of foot drop to help toe
clearance during the swing phase of walking (102). A single
channel stimulator, the Odstock Dropped Foot Stimulator
(ODFS) and later a two channel stimulator (O2CHS)
designed for foot drop correction, used self-adhesive skin
surface electrodes placed on the side of the leg (103,104).
MikroFES was another orthotic stimulator for correction of
foot drop in paralyzed patients (9). The Hybrid Assist
System (HAS) (105) and the RGO system (106) use surface
stimulation along with braces. Upper extremity applica-
tions include the Handmaster (107), the Belgrade Grasp
System (BGS) (108), and the Bionic Glove (109) which focus
on improving hand grasp.

Implanted Electrodes. Implanted electrodes can either
be in direct contact with a muscle or peripheral nerve,
within a muscle and only separated by muscle tissue from
the motor nerves innervating the muscles, or within the
spinal cord. Since peripheral electrodes are closer to the
motor nerves than surface electrodes, they allow for better
selectivity and more repeatable excitation. Their position-
ing and implantation is more permanent. Implanted elec-
trodes have the advantage of place and forget by
comparison to surface electrodes. That is, once the system
is implanted, the user potentially can forget it is there. The
chances of spill over are reduced since the electrodes can be
placed close to the target muscle or nerve. The sensation
to the user is usually much more comfortable as the
implantation is away from the cutaneous pain receptors
and the threshold current amplitude is lower. However, the
implant procedure is invasive and in case of implant failure
an invasive revision procedure can be required. Improper
design and implantation can lead to tissue damage and
infection. Insufficient tensile strength, high threshold
levels, highly nonlinear recruitment curves, poor selectiv-
ity of activation and repeatability and adverse pain sensa-
tion (110-112) indicate failure. Excess encapsulation and
infection (113); mechanical failures of electrode lead break-
age and corrosion of electrodes and the insulator (114,115)
can also impair the system.

Electrodes in or on the Muscle: Intramuscular and Epimysial
Electrodes. Implanted electrodes that are placed on or in
the muscle consist of intramuscular (87,88,116-121) and
epimysial electrodes (89,122—-125). Intramuscular electro-
des (88,126) can, for example, be fabricated from multi-
stranded Teflon coated stainless steel wires. This
configuration provides good tensile strength and flexibility.
They are implanted by injecting a hypodermic needle
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Table 2. Electrical Stimulation Electrode Classifications and Types

Location/Type Features and Advantages Example References
Surface Metal plate with electrolyte gel, noninvasive WalkAid, ODF'S, MikroFES, HAS, RGO,
Handmaster, BGS, Bionic Glove
In/On Muscle lower thresholds and better selectivity compared
to surface electrodes
Intramuscular Implanted in the muscle, multistranded Teflon 87,88
coated stainless steel wire, monopolar and
bipolar configurations, good tensile strength,
and flexibility
Epimysial Implanted under the skin: on the muscle, 89
monopolar and bipolar configurations, less
prone to mechanical failure
BIONs Injected into or near the muscle, hermetically 90
sealed glass/ceramic capsule integrated with
electronics
Near/On Nerve Lower threshold levels and better selectivity
than the above mentioned electrodes
Nerve Cuffs Monopolar, bipolar and tripolar configurations, 91,92
good power efficiency, improved selectivity,
comparatively stable
FINE Reshape or maintain nerve geometry 93
Intrafascicular Penetrate the epineurium and into the fascicle,
selective stimulation, lower current and
charge levels
LIFE Stable, suitable for stimulating and recording 94
SPINE Reduced nerve damage 95
Intraspinal
Microwires Near to normal recruitment, reduced fatigue, 96,97

highly selective stimulation
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Figure 6. Examples of self-adhesive, reusable surface electrodes.
The electrodes shown are used in the Parastep neuromuscular
stimulation system. (Courtesy of Sigmedics, Inc.)

either nonsurgically or through an open incision. A
fine needle probe used by itself or in conjunction with a
surface probe is used to detect the motor point; the motor
point for an intramuscular electrode is usually just below
the muscle surface beneath the motor point position as
defined by surface electrode. These electrodes can elicit a
maximal muscular contraction with only ~ 10% of the
stimulus charge required by equivalent surface electrodes
(25). Figure 7 depicts a Peterson type intramuscular elec-
trode developed at Case Western Reserve University (121).

Both monopolar and bipolar intramuscular electrodes
have been used. Bipolar intramuscular electrodes that

“h-

Figure 7. A “Peterson” type intramuscular electrode design. This
is a helically wound PFS insulated multistranded 316 LVM stainless
steel wire design that is attached to a barb-like anchoring structure
constructed of polypropylene suture material. The wound section of
the electrode is ~ 800 pm in diameter and is partially loaded into a
hypodermic needle. (Courtesy of J.T. Mortimer and reproduced by
permission of World Scientific Publishing Co.)

straddle the nerve entry point can be as effective at acti-
vating the muscles as a nerve cuff. If bipolar electrodes do
not straddle the nerve entry point, full recruitment of the
muscle can require large stimulation charge and stimula-
tion cannot be achieved without activating the surround-
ing muscles. In contrast, monopolar stimulation is less
position dependent, though it cannot match the selectivity
obtained with good bipolar placement (127). The size of the



muscle will determine the limit of electrode size, although
large electrodes are more efficacious.

A recent development in the intramuscular stimulating
electrode world are BIONs (for BIOnic Neurons), that can
potentially provide precise and inexpensive interfaces
between electronic controllers and muscles (90). The
BIONSs consist of a hermetically sealed glass—ceramic cap-
sule with integral capacitor electrodes for safety and relia-
bility (128). The internal electronics include an antenna
coil wrapped around a sandwich of hemicylindrical ferrites
over a ceramic microprinted circuit board carrying a cus-
tom integrated circuit chip. In animal studies, these elec-
trodes have demonstrated long-term biocompatibility (129)
and ability to achieve selective muscle stimulation (130).
The first generation of BIONs, BION1, generates stimula-
tion pulses of 0.2—-30 mA at 4-512 s duration. This system
is now in clinical trials to provide therapeutic electrical
stimulation to patients with disabilities (131-135). The
second generation BION, BION2, is under development.
BIONZ2s are expected to sense muscle length, limb accel-
eration and bioelectrical potentials for feedback control in
FES (136-138).

Intramuscular electrodes have been used to activate
paralyzed muscles that retain a functional motor neuron
in the muscles of the upper extremity (139,140), lower
extremity (118,140,141) and the diaphragm (142). Muscles
also have been stimulated to correct spinal deformities in
the treatment of scoliosis (143).

Epimysial electrodes (89,110) are positioned on the sur-
face of a muscle below the skin but not within the muscle.
They have a smooth circular disk on one side and a flat,
insulating backing, reinforced with mesh. The motor point
is usually identified by moving a stimulating electrode
across the muscle surface to locate the surface position
that requires the least amplitude to fully excite the muscle.
Replacing this electrode in the event of failure is compara-
tively easier. The stimulation levels and impedance are
also similar to that of intramuscular electrodes. A per-
ceived advantage of epimysial electrodes over intramus-
cular electrodes is that they are less prone to mechanical
failure and less likely to move in the hours and days
immediately after implantation.

Epimysial electrodes also can be used either in the mono-
polar mode or the bipolar mode (89,108,119,120,123). Use
of a monopolar epimysial electrode close to the motor
nerves results in reduced threshold stimulus amplitude,
higher gain and selectivity, and decrease in length depen-
dent recruitment. When a bipolar epimysial electrode is
used, the stimulus current is constrained to regions closer
to the two electrodes. Compared to the results with mono-
polar electrodes, the threshold is increased, relative gain
decreased, and though greater selectivity is found with
stimulation current levels close to twitch threshold poorer
selectivity is present in the stimulus range needed for
maximum activation of the muscle (108).

Epimysial electrodes have been used for a number of
years in the implementation of upper extremity assist
devices for C5 or C6 adult subjects with tetraplegia
(Fig. 8), including incorporation into the FDA approved
FreeHand System (144) and more recently for providing
the capability of standing after paraplegia (117).
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Figure 8. An example implantable epimysial electrode (right)
with intramuscular electrode (left), typical of those used with the
Cleveland FES Center’s implanted hand-grasp system. (Courtesy of
the Cleveland FES Center.)

Implanted Nerve Electrodes. Electrodes that are placed
in contact with the nerve include extraneural and intra-
neural electrodes. Extraneural electrodes do not penetrate
the epineurium and include varying designs of nerve cuffs
(91,92,145-149) and the recently investigated flat interface
nerve electrodes (FINE) (93,150,152). Intraneural electro-
des penetrate the epineurium and include intrafascicular
and interfascicular electrodes (94,95,153-157). Nerve elec-
trodes have several potential advantages over intramus-
cular electrodes—including, lower power requirements,
the ability to control several muscles with a single implant,
and the ability to place the electrodes far from contracting
muscles (158).

Electrodes placed on the surface of the nerve, and
housed in an insulative carrier that encompasses the nerve
trunk, are cuff electrodes (91,151,159,160). The cuff mate-
rial is often silicone rubber and sometimes reinforced with
Dacron. Cuff-type electrodes hold the stimulating contacts
in close proximity to the nerve trunk. Holding the target
tissues close to the stimulating contacts offers opportu-
nities for power efficiency and improved selectivity. Less
power is spent on electrical conduction through space
between the electrode and target tissues. Improved selec-
tivity is possible because the electric potential gradient is
larger when the spacing between the stimulating contact
and the target tissue is least. Further, these electrodes are
less likely to move in relationship to the target tissues after
implantation (161-164). However, while nerve cuffs sti-
mulate effectively and selectively they require invasive
surgery for implantation. They may also damage the
nerves they enclose unless carefully designed, sized, and
implanted.
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Figure 9. A self-sizing cuff electrode design fabricated using
PMP (polymer—-metal-polymer) technology and laser machining.
(Courtesy of J.T. Mortimer and M. Tarler.)

To overcome potential problems with a fixed cuff-size,
nerve cuff electrodes have been designed with different
configuration. The Huntington nerve cuff (165), is a helix-
type nerve electrode system that has exposed metal sec-
tions as stimulating contacts along the internal diameter of
the helix. The open helix design can accommodate some
swelling. Other self-sizing cuff electrode designs some-
times have a spiral configuration that enables opening
or closing to accommodate a range of different diameter
nerves (91). Figure 9, for example, is a photo of a self-sizing
nerve cuff fabricated at Case Western Reserve University
using PMP technology and laser machining. Both cuff and
spiral electrode configurations can be used in various
monopolar, bipolar or tripolar configurations (91,164). Cuff
electrodes with multiple electrical contacts can produce
selective activation of two antagonistic muscle groups
innervated by that nerve trunk (166). Increased function
and additional control of muscles with minimum number of
electrodes can be achieved. Self-sizing nerve-cuff electro-
des, with multiple contacts in a tripolar configuration, have
been shown to produce controlled and selective recruit-
ment of some motor nerves in a nerve trunk (145,158,167—
170). A monopolar electrode with four radially placed con-
tacts can work as well as a tripolar electrode with four
radially placed tripoles (171,172). A four contact self-sizing
spiral cuff electrode has been described as a tunable elec-
trode that is capable of steering the excitation from an
undesirable location to a preferred location (92).

The flat interface nerve electrode, or FINE system as
seen in Fig. 10, has been introduced in an attempt to
improve the stimulation selectivity of extraneural electro-
des (151). The goal with the FINE is to create a geometry
that optimizes stimulation selectivity. In contrast to cylind-
rical electrodes, the FINE either reshapes the nerve into, or
maintains the nerve in, an ovoid geometry. Chronic studies
in rats have demonstrated that nerves and fascicles can be
safely reshaped (150,173). Also, acute experiments and
finite element models have demonstrated that it is possible
to selectively activate individual fascicles in the cat sciatic
nerve using this electrode (151,152,174). This could be
important in both reducing fatigue and selectively activat-
ing individual muscles (153,175). A potential disadvantage

0.8mm

Figure 10. The FINE nerve cuff design, intended to flatten
peripheral nerve trunks into a layering of nerve fascicles. Electrode
contacts are seen as small dots within the overall structure. (Courtesy
of D. Durand.)

is that a fibrous capsule with electrical properties different
from the surrounding tissues will envelope the electrode
(176,177), potentially rendering the recruitment properties
unstable, although a recent study has shown that both
selectivity measurements and the recruitment curve char-
acteristics can remain stable for a prolonged implant
period (93).

Intraneural electrodes are positioned to penetrate the
epineurium around the nerve trunks. Intraneural electro-
des utilize a conductor that invades the epineurium. Max-
imal contraction is elicited at stimulation levels an order of
magnitude lower than with nerve cuff electrodes (200 pA,
pulse duration 300 ws). However, connectors, fixation, and
neural damage are still not completely resolved to allow
routine clinical usage. Intraneural multipolar sword type
electrodes have been made out of solid silicon with golden
contacts and can be very selective (178). Such electrodes
could minimize the needs for using many electrodes for
activation of different muscles that are innervated from a
single nerve (179).

A subset of intraneural electrodes are meant to enter
the perineurium around the fascicles and go between
the nerve fibers: These are so-called intrafascicular elec-
trodes. Intrafascicular electrodes place stimulating ele-
ments inside the fascicles, in close proximity to axons
(126,153,160,175,178,180,181). They have been shown to
produce axonal recruitment with almost no excitation of
muscles that are not targeted (181). A variation of the
intrafascicular electrode is the longitudinal intrafascicular
electrode (LIFE) (94,153). Compared with extraneural
electrodes, LIFEs have many advantages and can be
implanted into any of the fascicles of peripheral nerves
to selectively stimulate a single fascicle thereby offering
highly selective stimulation. Also they serve as excellent
recording electrodes. When LIFEs are used as recording
electrodes, the amplitudes of motor evoked potentials
(MEPs) recorded by LIFEs implanted in fascicles are much
larger than those of EMGs recorded from the skin by
surface electrodes and the signals recorded are not affected
by external electrical fields (155,182). Therefore, the sig-
nals recorded by LIFE can be used to control a prosthetic
limb more accurately than those controlled by EMGs (183).
In addition, LIFEs have excellent biocompatibility with
peripheral fascicles (156,184,185).



While intrafascicular electrodes can provide high
degrees of selectivity, it remains unclear whether pene-
trating the perineurium will lead to long-term nerve injury
(126,186). Interestingly, an intraneural electrode system
dubbed the slowly penetrating interfascicular electrode
(SPINE) has been developed, which has been reported to
penetrate a peripheral nerve within 24 h without evidence
of edema or damage of the perineurium and showed func-
tional selectivity (95).

In general, compared to externally placed electrodes,
the current and charge stimulation requirements for intra-
neural electrodes are low since they are positioned inside
the nerve trunk to be excited. Also, the stimulation selec-
tivity is high compared to extraneural electrodes where
stimulation selectivity suffers from the relatively large
amount of tissue interposed between the stimulating con-
tacts and the target axons.

Micro wires: Electrodes for Intraspinal Stimulation
Spinal circuits that are shown to have the capacity of
generating complex behaviors with coordinated muscle
activity can be activated by intraspinal electrical stimula-
tion (187-190). Microwires that are finer than a human
hair have been used to stimulate the spinal cord neurons
to control single muscles or small group of synergists
(96,97,191-193). Stimulation through single wires in a
few sites has been shown to have the ability to elicit
whole-limb activation sufficient to support the animal’s
weight (191,192,194-196). The stimuli were not perceived
but were able to produce strong coordinated movements.
Near normal recruitment order, minimal changes in kine-
matics and little fatigue and functional, synergistic move-
ments induced by stimulation in the lumbosacral cord
(97,194,196) are some of the promising advantages of
stimulating the spinal cord with microwires. However,
the clinical and long-term feasibility of implanting many
fine microwires into the spinal cord remains questionable.
In addition, stimulating the spinal cord results in steep
recruitment curves compared to muscle and nerve stimu-
lation thereby limiting the degree of control achievable.

Controllers and Control Strategies

Besides stimulating the paralyzed muscles, it is also impor-
tant to control and regulate the artificial movements
produced. The control task refers to specification of the
temporal patterns of muscle stimulation to produce the
desired movements; and the regulation task is the mod-
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ification of these patterns during use to correct for unanti-
cipated changes (disturbances) in the stimulated muscles
or in the environment. A major impediment to the devel-
opment of satisfactory control systems for functional neu-
romuscular stimulation has been the nonlinear, time
varying properties of electrically activated skeletal muscle
that make control difficult to achieve (7,76,197). With FNS,
the larger, fatigable muscle fibers are recruited at low
levels of stimulation before the more fatigue-resistant
fibers are activated thereby inducing rapid fatigue (56).
It is important that the output of any FNS control system
results in stable, repeatable, regulated muscle input—
output properties over a wide range of conditions of muscle
length, electrode movement, potentiation, and fatigue. To
improve control strategies to provide near physiological
control, inherent muscle characteristics (force-activation,
force-length, and force-velocity), muscle modeling studies,
studies on understanding how to model the patterns of
neural prostheses and how neural prostheses respond to
disturbances have been performed (197-200).

As depicted in Fig. 11 (201), FNS control methods
include feedforward (open-loop), feedback, and adaptive
control. Feedforward control requires a great deal of infor-
mation about the biomechanical behavior of the limb. The
control algorithms specify the stimulus parameters (mus-
culoskeletal system inputs) that are expected to be needed
to produce the desired movement (system outputs). In an
open-loop control system these parameters are often iden-
tified by trial and error (6,13,202—205). The same stimula-
tion pattern, which is often stored in the form of a lookup
table, is delivered for each cycle of movement.

Three major problems exist with this form of fixed-
parameters, open-loop control (204—206). First, the process
of specifying the parameters for a single stimulation pat-
tern for a single user often requires several extensive
sessions involving the user, therapist, physician, and engi-
neer. This process is often expensive, time consuming, and
often only minimally successful in achieving adequate
performance. Second, the fixed parameter stimulation pat-
tern may not be suitable after muscles fatigue that is
exacerbated by the stimulation paradigm itself. The third
problem is that the open-loop stimulation pattern does not
respond to changing environments (e.g., slope of walking
surface) and external perturbations (e.g., muscle spasms).

To address the limitations of open-loop control systems
feedback control was implemented (12,14,207,208). In a
feedback control system, sensors monitor the output and
corrections are made if the output does not behave as
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desired. The corrections are made based on a control law,
which is a mathematical prescription for how to change the
input to reduce the difference (error) between the desired
output and the actual output. Feedback control requires
output sensors, and compensation is generally slower than
in feedforward control since an output error must be pre-
sent to generate a controller response. Thus feedback
control might best be used for slow movements and for
maintaining a steady posture. Since the output of the
feedback controller is highly dependent on sensor signals,
the quality of the control that is achieved will be compro-
mised by the relatively low quality of sensors that are
available. Feedback control has been successful in regulat-
ing hand grasp (209) and standing posture (12), but it
appears that another strategy, adaptive feedforward con-
trol, is likely to be required for dynamic activities such as
locomotion.

To improve performance of feedback control systems,
adaptive control strategies were developed that automati-
cally adjusted the overall system behavior (i.e., the com-
bined response of the controller and the system) so that it is
more linear, repeatable, and therefore predictable (75,210—
213). These techniques adjust the parameters of the control
system and attempt to self-fit the system to the user in
order to make it easier to use and learn to use
(206,212,214). The control system developed by Abbas
and Chizeck has a pattern generator (PG) and a pattern
shaper (PS) (211,215). The PG generates the basic rhythm
for controlling a given movement. The PS adaptively filters
those signals and sends its output to the muscles. The
adaptive properties of the PS provide the control system
with the ability to customize stimulation parameters for a
particular individual and to adjust them on-line to account
for fatigue. In some of the computer simulation experi-
ments a proportional-derivative feedback controller was
also active. Studies have shown that the pattern generator/
pattern shaper (PG/PS) adaptive neural network controller
is able to account for nonlinear and dynamic system prop-
erties and muscle fatigue (73,75,213). To summarize, adap-
tive control systems have replaced other developed control
system strategies because this strategy can (I) provide the
ability to automatically customize the stimulation pattern
for a given user, (2) automatically adjust stimulation para-
meters to account for fatigue, and (3) automatically adjust
to allow the voluntary motor commands to recover control
of the movement pattern (in the case of partial recovery in
a person with an incomplete spinal cord lesion).

Apart from the above other strategies, such as fuzzy
logic (216) and proportional-integral-derivative (PID)
controllers (217) have also been implemented to investigate
automatic fatigue compensation. However, fatigue remains
one of the major factors limiting utility of FES/FNS
because such adaptive systems can adjust for fatigue only
up to the contractile limits of the muscle.

Rather than initiating and modulating control of FES
systems indirectly through residual motor function (e.g., as
in the Freehand system for grasping, where paralyzed
hand closure and opening were command controlled
through sensing of opposite shoulder position), future
FES devices might be controlled directly through
thought—Dby tapping into the subject’s remaining cortical

intent to move via a brain—machine interface (BMI) [or
sometimes brain—computer interface (BCI)]. So-called
direct brain—-machine interfaces utilize arrays of intracor-
tical recording electrodes to sense action potentials from a
host of individual neurons in regions of the brain where
cells code for movement and its intent. A number of
research teams have in recent years demonstrated the
feasibility of recording and processing movement related
signals from cortex (in both animals and in humans), and
then enabling the subject to control computers or devices
directly through such processed thought (218-220). Ulti-
mately, BMI technologies hold promise that paralyzed
individuals might one day be able to control FES devices
for movement restoration with little or no effort or learning
other than forming the simple intent to move (221).

THERAPEUTIC EFFECTS OF ELECTRICAL STIMULATION

While this article is focused mainly on electrical stimula-
tion therapies for restoring lost function, it is important to
recognize that electrical stimulation techniques are used
also for therapeutic reasons. A recent review summarizes
the current state of therapeutic and neuroprosthetic
applications of electrical stimulation after spinal cord
injury and identifies some future directions of research
and clinical and commercial development (222). Functional
electrical stimulation therapy individually and in combi-
nation with other rehabilitation therapies also is being
utilized after incomplete spinal cord injury to influence
the plasticity within the nervous system for improved
recovery (9,223—-228).

Therapeutic electric stimulation (TES) can affect the
restoration of muscle strength (229). Therapeutic electric
stimulation in humans has been shown to prevent muscle
atrophy thereby increasing muscle cross-sectional area,
torque, and force (230-234). Such electrical therapy has
been effective in reversing the increased fatigability
associated with the change in fiber type in both animals
(31-37) and humans (56,59-61,65-67) after spinal cord
injury. Electrical stimulation has also been able to reduce
spasticity among patients with neurological disorders
(reference).

While osteoporosis has been prevented in the limbs of
paralyzed individuals, in menopausal women, and in the
elderly and fracture patients through electrical stimula-
tion therapy (235-240), certain other studies have shown
little or no change in bone density (235,241-244). These
contradictory results suggest the importance of other char-
acteristics, such as the stimulation patterns, specifications
for training (intensity, duration, loading), and the time
postinjury. Enhancing fracture—wound healing is another
therapeutic application of electrical stimulation (245-249).
The theory here is to attract negatively or positively
charged cells into the wound area, such as neutrophils,
macrophages, epidermal cells, and fibroblasts that in turn
will contribute to wound healing processes by way of their
individual cellular activities (250). Electrical stimulation
may also play a role in wound healing through improved
blood flow (251,252), prevent occurrence of pressure sores
thereby improving general tissue health (253). A recent



review details all the theories suggested and experimental
studies and clinical trials performed on wound healing
through electrical stimulation (254).

Recent applications of electrical stimulation have also
been successful in altering neural function. For example,
deep brain stimulation (DBS) is being used to treat a variety
of disabling neurological symptoms, most commonly the
debilitating symptoms of Parkinson’s disease (PD), such
as tremor, rigidity, stiffness, slowed movement, and walking
problems [for a review, see (255,256)]. Deep brain stimula-
tion uses a surgically implanted, neurostimulator approxi-
mately the size of a stopwatch. The implanted device
delivers electrical stimulation to targeted areas in the brain
that control movement, blocking the abnormal nerve signals
that cause tremor and PD symptoms. Vagal nerve stimu-
lator (VNS), approved by the FDA in 1997 are used to treat
patients with intractable epilepsy. These devices controls
seizures by sending electrical pulses to the vagus nerve
(257,258). Transcutaneous electrical nerve stimulation
(TENS), wherein electrical signals are sent to underlying
nerves, can relieve a wide range of chronic and acute pain
(259). The TENS devices are small battery-powered stimu-
lators that produce low intensity electrical signals through
electrodes on or near a painful area, producing a tingling
sensation that reduces pain. Chronic electrical stimulation
of the GI tract has been found to be a potential therapy for
the treatment of obesity (260—262). It is clear that in future
development of electrical stimulation technologies many
devices will be designed to achieve both therapeutic and
functional outcomes.
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