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INTRODUCTION

The electroencephalogram (EEG) signal is the electrical
activity of the brain that is recorded by using electrodes
appropriately placed on the scalp. Then this EEG signal is
amplified, artifacts removed, and the EEG signal displayed
either itself or its clinical relevant features using suitable
monitors. The EEG signal is a waveform that varies with
time. The characteristics and properties of this waveform,
such as amplitude and frequency, vary with the change of
the brain activity (1,2). The EEG signal contains frequency
components that can be measured and analyzed. These
frequency components have meaning and valuable proper-
ties linked to brain activity. Table 1 shows the commonly
defined rhythms of EEG, their frequencies, and properties.
Hans Berger (3), the discoverer of the EEG signal in
humans, observed in 1924 all of the rhythms known today
except the 40 Hz “gamma” band, and described many of
their basic properties. Since then, our understanding of the
occurrence of the various rhythms have been refined.
However, specific extraction and use of different features
of these frequency bands for various diagnostics and mon-
itoring purposes still remain an open issue. Clinicians view
the brainwaves for diagnostic purposes and for neurologi-
cal critical care. They seek to identify patterns that are
associated with specific pathologies or conditions. Psychol-
ogists also study the EEG rhythms in association with
mental states, mental processes, and to examine various
mechanisms of how the brain processes information (4-8).

The EEG signal as a diagnostic tool has received con-
siderable attention since it is a noninvasive marker of the
ongoing cortical activity. In humans and animals, both the
raw EEG signal, as well as processed EEG, are used to
monitor alertness, coma, brain ischemia, brain death, cog-
nitive engagement, depth of anesthesia, and brain devel-
opment. Brain waves are also utilized to test drug effects
for epilepsy and convulsive disorders and to investigate
sleep disorder and seizure origin; and to locate the area of
damage following head injury, stroke, and tumor. It is
worthwhile mentioning that continuous EEG (CEEG)
monitoring is routine in the intensive care unit (ICU)
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(9,10). However, digital processing of an EEG signal seeks
to isolate the patterns that emerge during various beha-
vioral states and illustrates them in terms of one- or multi-
dimensional representations in some state space. Such
EEG analysis helps in understanding specific properties
of the brain activity, such as attention, alertness, and
mental acuity.The advantage of digital processing of
EEG arises from the fact that it involves personal compu-
ters (PC) to produce quantitative measures that are useful
for research, evaluation, and monitoring. The value of
processed EEG has been compared with others various
monitoring scores for the detection and evaluation of dif-
ferent adverse events (11). Since high speed computers and
efficient digital signal processing methodologies become
available, significant features and properties have been
extracted from the EEG signal. These features are com-
bined in a system of multivariable representation to for-
mulate various quantitative EEG (qEEG) indexes. The
features of the EEG commonly extracted and employed
for diagnostic purposes are summarized as follows (12-30):

Amplitude Power Spectrum
Subband Powers Joint time-frequency
Spectrograms Spectral edge frequencies

Coefficient-based EEG
modeling

Entropy and complexity

Coherence
Bispectrum and Bicoher-
ence

In the Classification of EEG Monitors section, the EEG
monitors are classified into two categories. The main com-
ponents of the monitor and the functions of each component
are briefly described. The section Classification of EEG
Monitors presents a description of these two categories. In
the section common specifications of the optimized Moni-
tor, the general specifications of an optimized EEG monitor
are summarized.

CLASSIFICATION OF EEG MONITORS

What Is an EEG Monitor?

A neurological EEG monitor in its most basic form is simply
a display, which shows ongoing neurological activity
recorded as the electrical potential by appropriately pla-
cing electrodes on the scalp (31,32). The origin of the
conventional monitor begins with the EEG machine, where
the electrical activity of the brain could be detected and
plotted on scaled papers. Nowadays, the neurological EEG
monitors are based on advanced technologies. They are
computer based and are employed to not only display the
ongoing raw EEG signal, but also various quantitative
indexes, which represent processed EEG. The monitors
are EEG processors, which have the capability of perform-
ing data acquisition, automatic artifact removal, EEG data
mining and analysis, saving/reading EEG data, and dis-
playing the qEEG indexes that may correlate clinically to
brain activity.

Main Components of the Neurological EEG Monitors.
Figure 1 shows a typical EEG monitor and its main compo-
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Figure 1. A typical neurological EEG monitor and its main components.
nents. These components are connected together through a receives and executes the user instructions. It also carries
microcomputer, which supervises and controls the data out the EEG processing routine. The main devices of a
flow from one device to another. The microcomputer typical monitor can be briefly described as seen in Table 1.

Table 1. EEG Rhythms, their Frequency Bands and Properties

Rhythm Frequency
Name Band, Hz Properties
Delta 0.1-3 Distribution: generally broad or diffused, may be bilateral, widespread Subjective feeling states:
deep, dreamless sleep, non-REM sleep, trance, unconscious
Associated tasks and behaviors: lethargic, not moving, not attentive
Physiological correlates: not moving, low level of arousal
Effects of Training: can induce drowsiness, trance, deeply relaxed states
Beta 4-7 Distribution: usually regional, may involve many lobes, can be lateralized or diffuse;
Subjective feeling states: intuitive, creative, recall, fantasy, imagery, creative, dreamlike, switching
thoughts, drowsy; “oneness”, “knowing”
Associated tasks and behaviors: creative, intuitive; but may also be distracted, unfocused
Physiological correlates: healing, integration of mind/body
Effects of Training: if enhanced, can induce drifting, trancelike state if suppressed, can improve
concentration, ability to focus attention
Alpha 8-12 Distribution: regional, usually involves entire lobe; strong occipital w/eyes closed
Subjective feeling states: relaxed, not agitated, but not drowsy; tranquil, conscious
Associated tasks and behaviors: meditation, no action
Physiological correlates: relaxed, healing
Effects of Training: can produce relaxation
Sub band low alpha: 8-10: inner-awareness of self, mind/body integration, balance
Sub band high alpha: 10-12: centering, healing, mind/body connection
Low Beta 12-15 Distribution: localized by side and by lobe (frontal, occipital, etc.)
Subjective feeling states: relaxed yet focused, integrated Associated tasks and behaviors: low SMR
can reflect “ADD”, lack of focused attention
Physiological correlates: is inhibited by motion; restraining body may increase SMR
Effects of Training: increasing SMR can produce relaxed focus, improved attentive abilities, may remediate
Attention Disorders.
Midrange  15-18 Distribution: localized, over various areas.
Beta May be focused on one electrode.
Subjective feeling states: thinking, aware of self and surroundings
Associated tasks and behaviors: mental activity
Physiological correlates: alert, active, but not agitated
Effects of training: can increase mental ability, focus, alertness, 1Q
High Beta 15-18 Distribution: localized, may be very focused.
Subjective feeling states: alertness, agitation
Associated tasks and behaviors: mental activity, (e.g. math, planning).
Physiological correlates: general activation of mind and body functions.
Effects of Training: can induce alertness, but may also produce agitation, and so on.
Gamma 40 Distribution: very localized

Subjective feeling states: thinking; integrated thought

Associated tasks and behaviors: high-level information processing, “binding
Physiological correlates: associated with information-rich task processing
Effects of Training: not known
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Figure 2. Schematic diagram of the ADC.

Electrodes and Electrode Placement

Electrodes represent the electrical link between the brain
of the subject or patient and the monitor. These electrodes
are appropriately placed on the scalp for recording the
electrical potential changes. Electrodes should not cause
distortion to the electrical potential recorded on the scalp
and should be made of materials that do not interact
chemically with electrolytes of the scalp. The resistance
[i.e., the resistance to direct current (DC) flow] of each
electrode should measure no more than a few ohms. This
resistance is measured when a break in the electrical link
between electrode, lead wire, and connector plug is sus-
pected. The resistance measurement is carried out by
connecting the two uninsulated ends of the electrode to
an ohmmeter. The electrode impedance [i.e., the opposition
to alternating current (AC) flow] is measured after an
electrode has been applied to the recording site to evaluate
the contact between electrode and scalp. The impedance of
each electrode should be measured routinely before every
EEG recording and should be between 100 and 5000 Q (1).
This impedance is measured by an impedance meter that
passes a weak AC from the electrode selected for testing
through the scalp to all other electrodes connected in
parallel to the meter. Most EEG machines and monitors
have provisions for testing electrode impedance during the
recording. Very low or very high impedance is undesirable.

The international 10—20 system of electrode placement
provides uniform coverage of the entire scalp. It uses the
distances between bony landmarks of the head to generate
a system of lines, which run across the head and intersect
at intervals of 10% or 20% of their total length. The use of
the 10-20 system assures symmetrical, reproducible elec-
trode placement, and allows a more accurate comparison of
EEG from the same patients, recorded in the same or
different laboratories.

Patient Cable

The patient cable attaches the electrode to the recording
machine and the monitor. It is preferable that the patient
cable should be of short length, which assures low impe-
dance and causes no distortion of the electrical potential
representing the neurological activity. Cable shielding can
reduce electrical interference.

Data Acquisition System

The data acquisition system consists of filters, amplifiers,
analog-to-digital converters (ADC) and buffers. Bandpass
filters of 0.5-100 Hz band are usually used to enhance
the quality of the EEG signal. High gain amplifiers are

required since the electrical potentials on the scalp are of
the order of microvolts. The input impedance of the ampli-
fiers should be of very large value while the output impe-
dance should be a few ohms. Figure 2 shows a schematic
diagram of the ADC. The ADC digitizes the EEG signal by
sampling (converting the continuous-time EEG into dis-
crete-time EEG as shown in Fig. 3) the continuous-time
EEG data and assigning a quantized number for each
sample. Figure 4 shows the input—output characteristic
of a uniform quantizer. The uniform quantizer with finite
length word may give rise to a noisy EEG signal. The
quantized signal is then modeled as the raw EEG signal
plus the quantization error. Hence, the signal to be stored
and processed by the monitor is the raw EEG signal plus
white noise. Portable and wireless units of the data acqui-
sition system have been employed as shown in Fig. 5. The
unit is connected to the monitor device through a standard
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Figure 3. Sampling of the EEG is carried out by selecting a
sample every T s, where T is the reciprocal of the sampling
frequency. The sampling frequency should be equal to or
greater than twice the cutoff frequency of the EEG lowpass filter.
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Figure 4. Input—output characteristic of the uniform quan-
tization system.
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Figure 5. Infinite Biomedical Technologies (IBT) touch-screen
central monitor, and wireless patient data acquisition module.

wireless communication routine. This makes the monitor
more compatible to the patients environment and conve-
nient to be used by technicians.

Microcomputer

The microcomputer represents the command module of the
EEG monitor. It controls the data flow from each device to
another. It reads the EEG data from the buffers of the data
acquisition card. It also hosts the qEEG signal processing
software and the artifact removal programs. Mathematical
operations and analysis are carried out by the microcom-
puter. After processing the EEG signal, the microcomputer
sends the EEG signal and its qEEG index to the display.
When the microcomputer receives instruction to save the
EEG session and the associated qEEG index, it sends the
data to the hard copy device. It also sends the EEG session
to the printer for making a printable report.

Graphics Display

The graphics display is employed to showcase the ongoing
EEG signals and the online qEEG assessment. Such dis-
plays help neurologists and healthcare attendants to follow
and track in real time the changes in the brain activity and
to monitor the brain development in the ICU.

Hard Copy Output Device

This device is connected to the microcomputer and is used to
store a version of the EEG data for future use. It could be on a
hard drive, computer CD, or a printer/plotter for plotting
either version of the EEG or the gEEG index to be investi-
gated by neurologists and to be a part of the patient record.

User Input Device

Through this device, the user can communicate and inter-
act with the monitor. Instructions and various parameters
required for the EEG analysis are sent to the microcom-
puter through this input—output interface device as well.

CLASSIFICATION OF EEG MONITORS

The EEG monitors can be classified into two main cate-
gories based on either their applications or the quantitative

EEG measures derived for assessment and tracking of the
brain electrical activity. Accordingly, the most popular

monitors can be categorized as follows (12,33).

Application-Based
Monitors

Cerebral function monitor
(CFM)

Cortical injury monitor
(CIM)

Anesthesia monitor
BrainMaster 2E monitor

EEG Index-Based
Monitors

Amplitude integrated
(aEEG) index

Spectral index

Spectral edge frequency
(SEF) index

Median power frequency

(MPF) index
Bispectral index (BIS)
Narcotrend index (NI)
Patient state index (PSI)

Entropy and complexity
index

In this section, a brief description of both monitor
categories is presented. This description gives the neuro-
logical applications of the monitor and the gEEG measures
employed. The description is in relatively nonmathemati-
cal form to provide an intuitive understanding of the
techniques used. The essential equations have been
described in Table 2 and referenced along with the descrip-
tion of each method and its application.

Cerebral Function Monitor

The cerebral function monitor (CFM) enables continuous
monitoring of the cerebral electrical activity. This occurs
over long periods due to the slow recording speeds (23). The
cerebral electrical signals picked up by the electrodes
attached to the scalp are registered in the form of a curve,
which fluctuates to a greater or lesser extent depending on
the recording speed. The examination of the height of the
curve with respect to zero gross indicates the voltage of the
cerebral activity (64). It is thus possible to monitor varia-
tions in cerebral activity over a prolonged period during
anesthesia as well as during the revival phase with the
monitor of cerebral function. The CFM may find applica-
tion in ICU environments. To bring the CFM into a sophis-
ticated polygraphy environment the hardware processing
and paper write-out have to be implemented in software.
The processor comprises a signal shaping filter, a semilo-
garithmic computation, a peak detector, and lowpass filter.
After taking the absolute value of the filtered EEG signal,
the signal is compressed into a semilogarithmic value. A
small value is added as an offset to the absolute value
before taking the logarithm. The envelope of the resultant
signal is detected. Writing the resulting signal on a pix-
elized computer screen at a speed of 6 cm-h™! yields 200
pixels-h ™! gives 18 s per pixel. At a sample rate of 200 Hz,
3600 samples are written to the same pixilated column. An
amplitude histogram per pixel column is built and plotted
as a color plot. To give more information, the median and
the fifth and ninety-fifth percentile as bottom and peak
estimates are shown. The CFM may be useful for seizure
detection, neonatal monitoring, in emergency room and for
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Figure 6. Color CFM of ~ 2.5 h, red is high density, blue low
density, and black zero. Vertical scale from 0 to 5 wV linear, from 5
to 100 wV logarithmic. The median is given in black and the
percentiles in white. As only 1 h of data was available and to
test the reproducibility of the process, a repeated playback mode
was used for this picture. The low median episodes are neonatal
State 1 (Quiet Sleep) within the beginning trace-alternant (high
peaks followed by low amplitude EEG) with half ways diminishing
peak heights and a neonatal State 2 (REM Sleep) with symmetrical
continuous EEG (65).

the assessment of other brain disorders (24,26). The CFM
trace may require a specialist for its interpretation. An
EEG atlas providing a summary for the interpretation of
the trace is available. Figure 6 shows an example for
neonatal EEG monitoring. Various studies have shown
that when CFM is used in combination with standard
neurological examination the clinician’s ability to identify
the presence of seizures or to monitor infants EEG and
other EEG applications is enhanced (64,65).

Cortical Injury Monitor

The lack of blood and oxygen flow to the brain due to
cardiac arrest causes brain ischemia. This causes brain
cells to die and consequently alters brain activity. It has
been demonstrated by many studies that brain ischemia
slows the brain’s electrical activity (27,28). Analysis of the
EEG after cardiac arrest shows that brain injury may
cause suppression of the high frequencies (12). The cortical
injury monitor (CIM) has been developed and used for the
detection and tracking of brain ischemia postcardiac arrest
(66). The advantage of the CIM arises from the fact that it
provides a quantitative measure extracted from the pro-
cessed EEG signal for the assessment of the severity of
brain injury after cardiac arrest. It may aid neurologists in
providing better care for patients with cardiac arrest and to
provide these patients with therapeutic intervention, such
as hypothermia. The monitor, different from other injury
assessment, provides assessment of the brain function
during the early recovery periods after cardiac arrest
(12,57,66,67).

Anesthesia Monitor

Patients receive general anesthesia during surgery.
Anesthesia causes a reduction of the brain activity and
concussions. The depth of anesthesia should be evaluated
and tracked in real-time fashion to prevent total suppres-
sion of the brain activity. Different quantification mea-
sures or indexes for the depth of anesthesia have been
derived from the EEG signal (5,22,30,32,47,53,58,68).
Monitoring and evaluation of these EEG-based indexes
help the anesthesiologist to generally maintain the anes-

thetic depth during general anesthesia and thus assure
suppression of pain, awareness or consciousness or mem-
ory or the surgery. The anesthesia monitoring indexes
include the BIS index, the narcotrend, and the patient
state (PS) analyzer. To compute the BIS index, the depen-
dence or interact between the frequencies of the EEG
signal is employed. The BIS index is a qEEG measure
based on the bispectrum of the EEG signal. The BIS index
varies from 0 to 100, where 0 is isoelectric and 100 awake
and is used for measurement of hypnotic effects of anesthe-
sia. The EEG classifications made by the narcotrend index
(ND) is 6 letters: A (awake), B (sedate), C (light anesthesia),
D (general anesthesia), E (general anesthesia with deep
hypnosis), F (general anesthesia with increasing burst
suppression) (29,69,70). The electrodes associated with
the narcotrend EEG index are similar to those associated
with the BIS index and are positioned on the patient’s
forehead. The PS index is computed by using derived
quantitative electroencephalogram features in a multivari-
ate algorithm that varies as a function of hypnotic state
(71,72). The patient state index (PSI) is a computed EEG-
based variable that is related to the effect of anesthetic
agent.

BrainMaster 2E Monitor

The BrainMaster is a general-purpose brainwave monitor
(73). It connects to a PC in the same way that a modem
does. It is immediately utilizable for applications in
research, education, biofeedback, art, performance related,
brainwave-controlled systems, and virtual reality. It pro-
vides many of the basic EEG functions. Its capabilities
include recording one or two channels of brainwaves or
related signals, data storage and retrieval, real-time signal
processing and display, plus various forms of control and
feedback. It includes various graphical display modes. It is
possible to interface directly with the software, so that
various external programs can control the BrainMaster,
as well as be controlled, enabling user-developed applica-
tions to interact with live brainwave data. Control and data
interfaces to Visual Basic, Pascal, C, and C++ are also
provided. With the BrainMaster monitor, one can digitally
record, store, process, display, and work with brainwaves
using any PC with Windows and a spare serial port. A
person is able to monitor and display waveform character-
istics, such as alpha, beta, delta, or theta energy and the
amount of bilateral symmetry in the brainwaves. The
monitor is optically isolated from the PC. The monitor
contains two EEG amplifiers, a microprocessor controller,
and the interface to the PC. The Windows software is used
to communicate with the monitor, acquire brainwave sig-
nals, and process and display them.

Amplitude-Integrated EEG (aEEG) Monitor

Various brain activities appear to cause evident changes in
the normal EEG. These changes might be in the amplitude,
power, frequency, BIS index, entropy, and complexity. In
fact, since EEG has become available, visual investigation
of EEG has been used to asses the neurological function.
Continuous EEG is sensitive, though it is a nonspecific
approach to monitoring brain function and its use in cere-
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Figure 7. Amplitude-integrated EEG (aEEG) of normal EEG (a) and severely injury-related EEG (b). It is obvious the suppression of the
amplitude due to injury. These two examples have been pricesly selected to demonstrate the aEEG as an injury index. The aEEG fails to
make distinguish between normal EEG and mildly injury-related one; and between the mild and the sever injuries.

brovascular disease is limited. Visual interpretation of
EEG is also not an easy test and needs a well-trained staff,
which is not available all the time in the ICU. Besides,
information that can be extracted by visual investigation is
limited.

The EEG amplitude, shown in Fig. 7 by the amplitude-
integrated EEG (aEEG), is a primary feature, which has
received attention of the neurologists and researchers
alike. It is obvious that no clear difference exists between
the aEEG associated with the normal and ischemic injury
EEGs. The CFM uses the aEEG extracted from one chan-
nel. The aEEG can show bursts and suppression of the
EEG. The CFM is often used for seizure detection and
neonatal monitoring (23,24,26). However, the EEG ampli-
tude shows low capacity for EEG classification. To clarify
this poor utility capability, a study has tried to answer the
question: Does isolectric EEG mean brain death or even
coma? In this study, from 15 patients with clinical diag-
nosis of brain death, EEG was isoelectric in 8 patients
while the remaining 7 patients showed persistence of brain
electrical activity (75). Comatose patients also show pre-
sence of brain electrical activity in the alpha band (8-13
Hz). Such diagnosis is referred to as alpha coma. This
means that investigation and monitoring of the EEG
amplitude may not be as reliable a confirmation for the
lack of brain function and coma.

Spectrogram-Based Monitor

A number of studies have given considerable attention to
prognostication based on the frequency content and the
power spectrum of EEG (7,25,56,76). Various brain activ-
ities and processes, such as sleep, awake cycles, seizures,
performing mental tasks, and ischemic injury, change the
frequency content of the EEG. Consequently, many
approaches have employed the EEG frequency content
for developing a diagnostic tool or index. Monitoring the
real-time spectrum (i.e., the power—frequency distribution
as a function of time), the powers associated with the EEG
rhythms as a function of time and the joint time—frequency
analysis have been employed as well. The joint time—fre-
quency analysis is a signal analysis technique that pro-
vides an image of the frequency content of a signal as a
function of time. Several methods (or time—frequency dis-
tributions) can be used, one of which is the spectrogram.

The spectrogram is the power spectrum of the investigated
signal “seen through” a time window that slides along the
time axis. Figure 8 shows a segment of sleep EEG signal (a)
and its spectrogram. It is obvious that the spectrogram
shows a sleep spindle at 15 Hz. The spectrogram shows the
times where the spindle are activated. The time—frequency
analysis is a helpful tool that facilitates the EEG inter-
pretation.

Normalized Separation-Based Monitor

The normal EEG of adults often shows three spectral peaks
in delta, theta, and alpha. A common observation in
ischemic injury, for example, is the slowing of background
frequencies by increasing of the power of the delta rhythm
and decreasing the powers of theta and alpha rhythms
(27,48,49,57). Numerous approaches have been employed
to convert the frequency content of the EEG signal into a
diagnostic tool or index (57). In animal studies, the spectral
distance between a baseline (i.e., normal) EEG and the
underlying injury-related one has been employed as a
metric for injury evaluation and monitoring (57). The
spectral distance has the disadvantage of using the entire
frequency content. This may increase the likelihood of the
existence of artifact-corrupted spectral content. Thus,
ischemic injury manifests itself in the EEG by slowing
the background activity and reducing the high frequency
power. Such injury-related changes can be used for
the separation of the normal EEG from the injury-related
one. An approach, called the normalized separation, has
shown some monitoring capability (66,67). The normalized
separation is a spectral-based qEEG measure for assess-
ment of the normality of brain activity. It uses the most
relevant spectral information related to the normal EEG
signal. The normal EEG has a power spectral density
showing three fundamental spectral peaks as shown in
Fig. 9a. After normalization of the spectral density (mark-
ing the average power unity), the spectral peak values are
determined and normalized to the corresponding spectral
peaks of a baseline. The normalized separation is computed
as the sum of the difference between the normalized peaks
divided by the sum of all normalized peaks. This implies
that 0 value occurs when the investigated EEG is similar to
the baseline and 1 occurs when the investigated EEG is
abnormal. The normalized separation goes to 1 as the EEG
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Figure 8. The EEG fragment with isolated 15 Hz “spindles”, which are clearly visible in the spectrogram. The spectrogram also shows that

the spindles are alternated by short periods of 9 Hz activity (74).

becomes more abnormal. The normalized separation then
employs the principal features of the spectrum and ignores
the minor features, which are more sensitive to noise and
artifacts.

The EEG signal is commonly modeled as an autoregres-
sive process (i.e., the output of a linear phase system driven
by broadband random process). The autoregressive coeffi-
cients are computed utilizing the autocorrelation sequence
of the EEG signal. Therefore, the EEG phase status does
not exist in the model. Figure 10 shows three EEG signals
and their corresponding normalized separations. The first
EEG signal is very close to normal and provides a normal-
ized separation of 0.2. In the second EEG spectrum, the
third peak diminishes and for that the normalized separa-
tion is 0.55. In the third EEG spectrum, both second and
third spectral peaks become relatively small in comparison
with the maximum peak causing the EEG to be separated
from the normal EEG by 0.98.
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Spectral Edge, Spectral Peak, and Median Frequencies Monitor

Another approach is to calculate the spectral edge fre-
quency of the EEG signal for assessing and monitoring
the cortical activity and brain dysfunction. The median
frequency and the frequency edges provide 90 and 95% of
the power; have been reported to be useful (27,77). The
spectral mean and peak frequencies have also been
employed (5,47). The success of computation of the time-
varying spectral edge frequencies depends on the best
estimation of the time-varying power spectrum. The FFT
is a commonly used approach for computing the real-time
power spectrum. However, the FFT-based power spectrum
provides poor frequency resolution since the resolution is
proportional to the reciprocal of the analysis window. The
model-based power spectrum estimate, such as the time-
varying autoregressive (TV-AR) provides a high resolution
and a low variance estimate of the power spectrum.
Akaike’s information criterion (AIC) is used online for
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Figure 9. Power spectral density of EEG computed using the autoregressive (AR) method applied to a 4 s window and averaged over 10
windows. (a) A normal EEG signal and (b) an abnormal EEG signal. It is obvious that abnormality of the EEG is related to reduction of the

high frequencies and slowing of the background.
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Figure 10. Normalized separation for three EEG signals. Panel (a) is for a normal EEG that shows three spectral peaks. Panel (b) is for a
mildly injury-related EEG. Panel (c) is for a severely injury-related EEG. It is obvious that the spectral-based normalized separation makes

significant distinction between these three EEG classes (66,76).

determing the autoregressive model order. Figure 11
shows the normalized power spectrum of a simulated
signal. It shows the spectral peak and edge frequencies.
The frequencies are computed as a function of time by
computing the power spectrum over a sliding window and
by searching this online power spectrum for the frequency
corresponding to the spectral peak or the spectral edge.

Bispectral Index Monitor

Simply explained, just as the power spectrum of a zero-
mean process is the FT of the correlation sequence, the BIS
is the two-dimensional FT of the third correlation sequence
known as the third cumulants. The BIS can be computed
using the FFT X({ of the EEG signal by
X(f)X()X (fi + fo), where ““” means a complex conjuga-
tion. It is obvious that this measure captures the interac-
tion between f; and f5, and this is why the BIS provides
phase information. The power spectrum is often used for
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Figure 11. Normalized power spectral density (PSD) showing the

spectral peak frequency (SPF) and the 90% spectral edge
frequency.

describing the frequency content of the EEG modeled as a
sum of noncoupled harmonics (22,51-53). In such a situa-
tion, the BIS index is identically zero. However, if the focus
is on the frequency contents of coupled harmonics (quad-
ratic phase coupling harmonics), BIS is often used. The BIS
index is a quantitative EEG index developed and employed
for measuring the depth of anesthesia. It is based on third-
order statistics of the EEG signal, specifically BIS density,
and is commercially used for monitoring anesthetic
patients. The index quantitatively measures the time-
varying BIS changes in the EEG signal acquired from
the subject before and during anesthesia. The BIS index
is a number between 0 and 100 (100 represents the fully
awake state, and zero represents no cortical activity). The
BIS index correlates with the depth of sedation and
anesthesia, and can predict the likelihood of response to
commands and recall. The BIS value has been shown to
correlate with end-tidal volatile agent concentrations, such
as propofol and with blood anesthetic concentrations. It is
not very good at predicting movement in response to pain-
ful stimuli. There have been recent studies, that show BIS
information is not necessary and power spectrum is satis-
factory for describing EEG signal calculations (53,78).

Narcotrend Index and Patient State Index

The narcotrend index provides 6 letters: A (awake), B
(sedate), C (light anesthesia), D (general anesthesia), E
(general anesthesia with deep hypnosis), F (general
anesthesia with increasing burst suppression) (29). The
index is used for assessment of the depth of anesthesia.
Many studies have compared the BIS index with the NI.
The electrodes associated with the narcotrend EEG index
are similar to those associated with the BIS index, posi-
tioned on the patient’s forehead. The PS index is computed
by using derived quantitative EEG features in a multi-
variate algorithm that varies as a function of the hypnotic
state. The PSI is thus a proprietary computed EEG-based
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variable that is related to the effect of the anesthetic agent.
The PS index has proved that it is useful in the operating
rooms (OR), ICU, and clinical research laboratories.

Entropy- and Complexity-Based Monitor

Since the brain processes information, the brain’s total
electrical activity probably corresponds to totality activity
in the brain. This assumption was used to study the
entropy or “self-information” associated with the EEGs
of anesthetic patients, postcardiac arrest, in sleep research
and seizure (8,18,27,33,41,58,79,80). Entropy measures
how much information can be represented by a random
event. Shannon’s entropy of event X is defined as the
negative sum, over all possible outcomes x of the product
of the probability of outcome x times the log of the prob-
ability of x. This implies that deterministic event (i.e,
nonrandom event, the event with outcomes probability is
equal 1 or 0) has an entropy of 0. Such an event carries no
information. Tsallis entropy is also employed as an EEG-
based index (33). It depends on an additional real para-
meter. Tsallis entropy coincides with Shannon entropy. If
the parameter is selected < 1, the rare outcomes contribute
much more in Tsallis entropy, and vice versa. Figure 12
shows the EEG and Tsallis entropy of an asphyxic piglet. It
is obvious that the entropy goes down with asphyxic brain
injury and slowly becomes normal with the recovery of the
animal. The approximate entropy (ApEn) measure is com-
puted as the log of the number of similar patterns with
length m and similarity r to the number of similar pattern

0.2 T T T

with length m + 1 and similarity r. The regular signal
provides a minimum ApEn (28).

Since brain activity is a random and time-varying sig-
nal, entropy measures can be used for tracking the EEG
signal. Time-dependent entropy (TDE) can be carried out
by viewing the EEG within a sliding window as outcomes of
a random event (33). Spectral entropy has also been used
by viewing the normalized power spectral density esti-
mated over the EEG sliding window as the probability
density of the frequency (5,48,49). It has been shown that
normal control subjects provide larger entropy values than
those showing ischemic injury postcardiac arrest. The
entropy starts to increase with the recovery of brain
function. That is, entropy is a relevant indication of the
brain order—disorder following cardiac arrest. The
subject under anesthesia provides low entropy, while
the awake subject shows high entropy (8,16—
18,33,48,49,57,67,80—84). An EEG-based index, called
complexity, measure, has also been used for the assess-
ment and monitoring of the brain activity [Ref]. In fact,
there is no absolute “complexity”. As Lempel and Ziv (81)
mention the complexity measure of a finite sequence is the
measure of the randomness of this sequence. In other
words, the complexity of finite fully specified sequence is
a measure on the extent to which the given sequence
resembles a random one. Various approaches to measure
the EEG complexity have been employed, such as embed-
ding-space decomposition, a chaos-based complexity, and
entropy-based complexity.
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Figure 12. EEG and Tsallis entropy of an asphyxic brain injury piglet. The first 300 s show the base line EEG and entropy. With asphyxic
brain injury the entropy reduces sharply and becomes normal slowly with the animals recovery.



COMMON SPECIFICATIONS OF THE OPTIMIZED
MONITOR

The EEG monitor specifications are the hardware and
software properties that make the monitor capable of
acquiring the EEG signal, removing of artifacts, storage/
reading EEG signal, processing EEG signal, and perform-
ing efficient assessment and classification of the cortical
activity. Such a monitor provides an all-in-one device. The
optimized monitor should also have very sophisticated
signal processing techniques that are capable of achieving
most operations for processing the EEG, from filtering and
artifact removal to different EEG index calculation cap-
abilities. These various indexes may be employed for diag-
nostic applications. Thus, such a versatile device is then a
multi index and multiapplications monitor. The common
specifications of such all-in-one EEG monitor may include
the following:

Compact design that is rugged and lightweight.

Automatic classification of EEG.

Off- and online qEEG indexes.

Automatic recognition and removal of artifacts.

Easy operation via friendly touch screen.

Continues testing of the electrodes to ensure a constant
high quality of the EEG signal; variable electrode
position.

Interface to external monitors and documentation sys-
tems.

Wireless communication between various sensors
attached to the human.

Provides a secure way to transmit and store measured
data.

High speed data processing.
Large amount of memory.
On-board Ethernet connection.

CONCLUSION

This article, presents a descriptive review of neurological
EEG monitors. The EEG monitor is simply a research and
medical instrument employed for recording, processing,
and displaying the EEG signal. The processing of the
EEG signal often results in a qEEG index that also can
be displayed. The computation of the qEEG index is based
on the clinically relevant features acquired from the EEG
signal. The typical neurological EEG monitor consists of
essential hardware for data-acquisition and software for
running and controlling these devices and for executing the
EEG processing routine. A brief review of these devices,
their functions and specifications, has been presented. We
have classified the monitors into two main categories. The
first category is based on basic monitoring applications
while the second one is based on expanded qEEG analysis
capability achieved by processing the EEG signal and
employing it for the assessment of the cortical dysfunc-
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tions. The review article concludes by briefly describing the
most common specifications of an optimized monitor.
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