

SOLUTION 5

Exercise 1: The space charge is given by $Q_{sc} \approx qN_D W_D$. N_D is the donor concentration and W_D is the depletion width. We begin to solve Poisson's equation in order to have an expression for W_D as a function of ψ_{bi} that is the built-in potential in the semiconductor, defined as (see figure 1):

$$\psi_{bi} = \phi_n(0) - \phi_n(W_D) \quad (1)$$

We use the approximation of abrupt junction: $\rho \approx qN_D$ for $x < W_D$ and $\rho \approx 0$ ($E = 0$) for $x > W_D$ to solve Poisson's equation:

$$\frac{d^2\phi(x)}{dx^2} = -\frac{dE(x)}{dx} = \frac{\rho(x)}{\epsilon_s} \quad (2)$$

By integrating it one time, we get:

$$E(x) = -\frac{\rho(x)x}{\epsilon_s} + c_1 \quad (3)$$

$$E(x) = -\frac{qN_D x}{\epsilon_s} + c_1 \text{ for } x < W_D \quad (4)$$

(5)

Because the electric field has to be continuous at $x = W_D$ we have:

$$E(W_D) = 0 = -\frac{qN_D W_D}{\epsilon_s} + c_1 \quad (6)$$

$$c_1 = \frac{qN_D W_D}{\epsilon_s} \quad (7)$$

$$E(x) = -\frac{qN_D(W_D - x)}{\epsilon_s} \text{ for } x < W_D \quad (8)$$

By integrating a second time we get:

$$\phi(x) = \frac{qN_D W_D x}{\epsilon_s} - \frac{qN_D x^2}{2\epsilon_s} + c_2 \text{ for } x < W_D \quad (9)$$

$c_2 = 0$ because $\phi(0) = 0$ for the abrupt junction approximation. Using (1) we get:

$$\psi_{bi} = \phi(0) - \phi(W_D) = \frac{qN_D W_D^2}{2\epsilon_s} \quad (10)$$

$$W_D = \sqrt{\frac{2\epsilon_s \psi_{bi}}{qN_D}} \quad (11)$$

And finally:

$$Q_{sc} \approx qN_D W_D = \sqrt{2\epsilon_s \psi_{bi} qN_D} = \sqrt{2\epsilon_s qN_D (\phi_{Bn0} - \phi_n)} \quad (12)$$

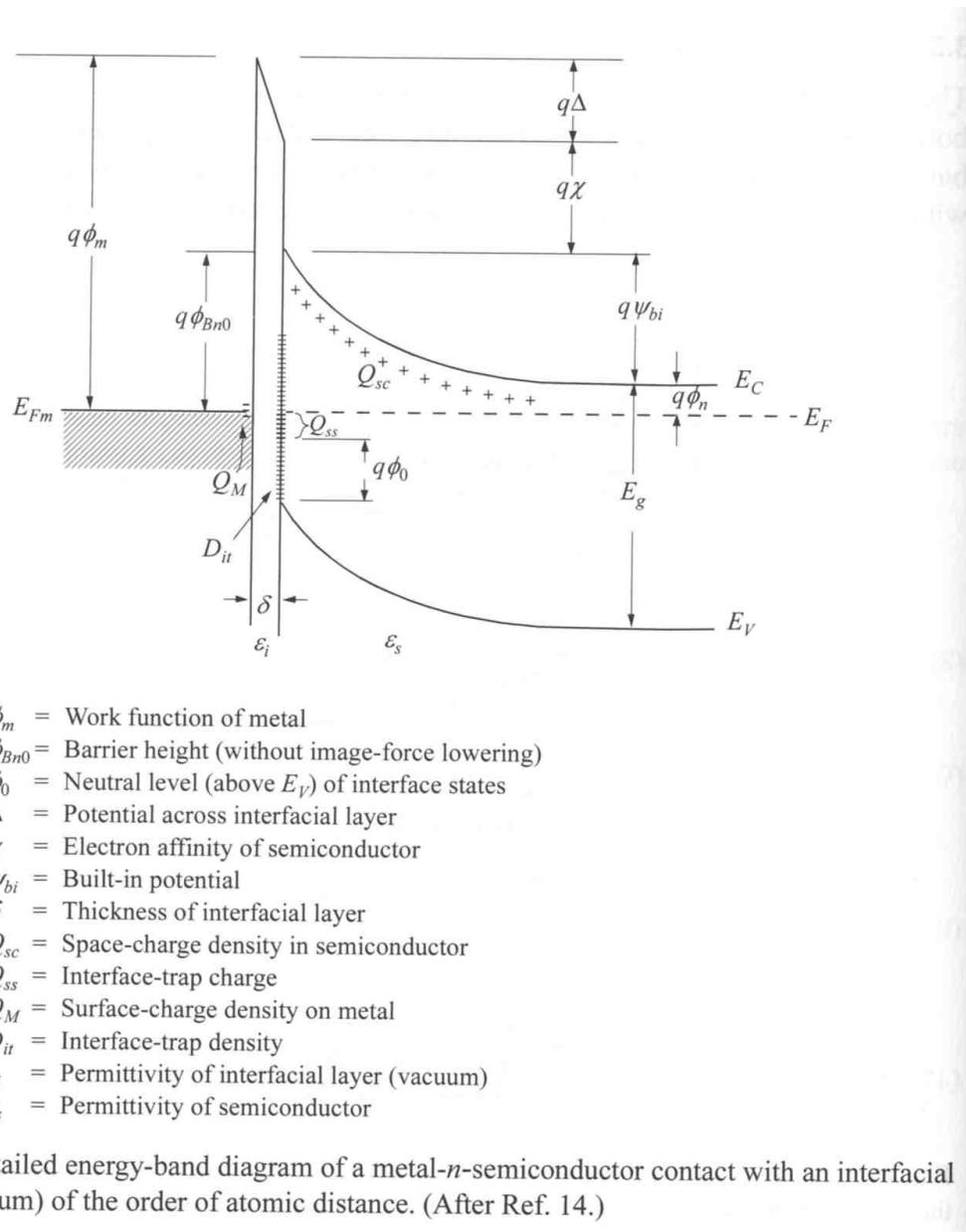


Figure 1: Schottky junction with interfacial layer.

By looking carefully on figure 1 we obtain for the interface-trap charge density:

$$Q_{ss} = -qD_{it}(E_g - q\phi_0 - q\phi_{Bn0}) \quad (13)$$

The quantity in parentheses is the energy difference between the Fermi level at the surface and the neutral level of interface states above E_V (ϕ_0). The interface-trap density D_{it} times Q_{ss} yields the number of surface states above the neutral level that are full.

Δ is obtained by again looking on the band diagram figure 1:

$$\Delta = \phi_m - (\chi + \phi_{Bn0}) \quad (14)$$

This relation results from the fact the Fermi level must be constant throughout this system at thermal equilibrium.

By combining equation (14), (12), (13), $\Delta = -(\delta Q_m / \epsilon_i)$, $\psi_{bi} = \phi_{Bn0} - \phi_n$ and $Q_M = -(Q_{sc} + Q_{ss})$ we obtain:

$$\phi_m - (\chi + \phi_{Bn0}) = \sqrt{\frac{2\epsilon_s q N_D \delta^2}{\epsilon_i^2} (\phi_{Bn0} - \phi_n)} - \frac{q D_{it} \delta}{\epsilon_i} (E_g - q\phi_0 - q\phi_{Bn0}) \quad (15)$$

If we replace some constants with:

$$c_1 = \frac{2q\epsilon_s N_D \delta^2}{\epsilon_i^2} \quad (16)$$

and

$$c_2 = -\frac{\epsilon_i}{\epsilon_i + q^2 \delta D_{it}} \quad (17)$$

we obtain:

$$\phi_m - (\chi + \phi_{Bn0}) = \sqrt{c_1 (\phi_{Bn0} - \phi_n)} - \frac{c_2 + 1}{q} (E_g - q\phi_0 - q\phi_{Bn0}) \quad (18)$$

This equation can be rearranged to express ϕ_{Bn0} as a function of ϕ_m . We let this last calculation to the math lovers.

In the case of a-Si:H, Wronski and Carlson got a linear relation between ϕ_{Bn0} and ϕ_m . As one can observe on the graph, the workfunctions of the studied metals vary from 4 to 5.5 eV, but the induced barrier heights vary only from 0.7 to 1 eV. Thus, we conclude that Q_{sc} and Q_{ss} attenuate significantly the effect of ϕ_m .