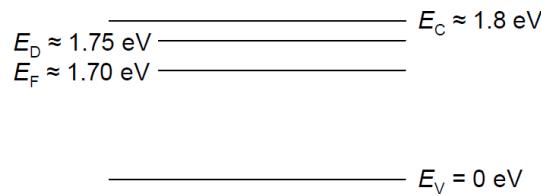


SOLUTION 3

Exercise 1: Occupation function of a donor state

a) In the figure below you can see the band diagram of n -type doped amorphous silicon with approximative values for the requested energy levels. The position of these levels — namely E_D and E_F — depend on various parameters such as the dopant concentration and shall only give an idea of the order of magnitude.



The choice of $E_V = 0$ as reference is absolutely arbitrary.

b) With only one energy level between the valence and the conduction band at E_D close to E_F , an electron will occupy most likely that level. As a fermion, the electron can occupy this level in two different spin configurations (spin up and down) with the same probability, we call these states D_{up} and D_{down} . The next probable state is with an electron at the conduction band edge, we call it C.

When the system is in thermal equilibrium (i.e. the probability that a hypothetical state at E_F is occupied is exactly 50 %, we consider the energy of the system to be 0. Therefore, the system with an electron at $E_{D_{\text{up}}} = E_{D_{\text{down}}}$ has the energy $E_D - E_F$, the system with an electron at E_C has the energy $E_C - E_F$.

c) In a system with j states that have the energy E_j , the probability that the system is in state i is given by

$$p_i = \frac{e^{-\frac{E_i}{k_B T}}}{\sum_j e^{-\frac{E_j}{k_B T}}}. \quad (1)$$

For the states D_{up} and D_{down} , this is

$$p_{D_{\text{up}}} = p_{D_{\text{down}}} = \frac{e^{-\frac{E_D - E_F}{k_B T}}}{2 \cdot e^{-\frac{E_D - E_F}{k_B T}} + e^{-\frac{E_C - E_F}{k_B T}}}. \quad (2)$$

The probability that the system is in the state D — be it spin up or down — is therefore

$$p_D = 2 \cdot p_{D_{\text{down}}} = \frac{2 \cdot e^{-\frac{E_D - E_F}{k_B T}}}{2 \cdot e^{-\frac{E_D - E_F}{k_B T}} + e^{-\frac{E_C - E_F}{k_B T}}} \quad (3)$$

$$= \frac{1}{1 + \frac{1}{2} \cdot e^{-\frac{E_C - E_F}{k_B T} + \frac{E_D - E_F}{k_B T}}} \quad (4)$$

$$= \frac{1}{1 + \frac{1}{2} \cdot e^{-\frac{E_C - E_D}{k_B T}}} \quad (5)$$

$$= 93\% \text{ with } k_B T = 0.026 \text{ eV at room temperature.} \quad (6)$$

The probability that the system is in the state C is

$$p_C = 1 - p_D = 7\% \text{ or} \quad (7)$$

$$= \frac{e^{-\frac{E_C - E_F}{k_B T}}}{2 \cdot e^{-\frac{E_D - E_F}{k_B T}} + e^{-\frac{E_C - E_F}{k_B T}}} \quad (8)$$

$$= \frac{1}{2 \cdot e^{-\frac{E_D - E_F}{k_B T} + \frac{E_C - E_F}{k_B T}} + 1} \quad (9)$$

$$= \frac{1}{2 \cdot e^{-\frac{E_D - E_C}{k_B T}} + 1} \quad (10)$$

$$= 7\% \quad (11)$$

d) Under the assumptions that

- the phosphorus concentration is $c_P = 10^{-6}$ which corresponds to $N_P = c_P \cdot N_{\text{Si}} = 5 \times 10^{16} \text{ cm}^{-3}$,
- the doping efficiency is 100% (i.e. all dopants substitute a silicon atom in the «lattice» and can contribute an electron to the conduction band),
- the formula derived above is still valid for a multi-state system, and
- thermal excitation from other energy levels than the dopant level (e.g. from the valence band) into the conduction band is negligible.

the electron density in the conduction band is $N_e = p_C \cdot N_P = 4.3 \times 10^{15} \text{ cm}^{-3}$.

e) The derived equation is nothing else than the occupation function of energy states introduced by impurities or dopants. The Fermi-Dirac distribution

$$F_{\text{F-D}}(E) = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}} \quad (12)$$

can be derived exactly the same way but for states that can be occupied only once. To do so, we consider a state at energy E , either filled (1) or empty (0), in exchange with a “reservoir” at E_F :

$$F_{\text{F-D}}(E) = p_E = \frac{e^{-\frac{E - E_F}{k_B T}}}{e^{-\frac{0 \cdot (E - E_F)}{k_B T}} + e^{-\frac{1 \cdot (E - E_F)}{k_B T}}} = \frac{1}{1 + e^{\frac{E - E_F}{k_B T}}} \quad (13)$$

Exercise 2: Meyer-Neldel behaviour in the conductivity of a-Si:H

We assume that $T \neq 0$, i.e. $\alpha \neq 1$.

a) We compute

$$\begin{aligned} L &= \frac{\mu_{00}E}{\omega^\alpha} \int_0^{t_L} t^{-\alpha} dt \\ &= \frac{\mu_{00}E}{\omega^\alpha} \frac{t_L^{1-\alpha}}{1-\alpha}. \end{aligned}$$

Thus we get:

$$t_L^{1-\alpha} = \frac{L\omega^\alpha (1-\alpha)}{\mu_{00}E} \quad (14)$$

and

$$t_L = \left(\frac{L\omega^\alpha (1-\alpha)}{\mu_{00}E} \right)^{\frac{1}{1-\alpha}}. \quad (15)$$

b) In the following, we'll use the fact that $\omega^\alpha = \frac{\omega}{\omega^{1-\alpha}}$, and hence (with (14))

$$(\omega t_L)^{1-\alpha} = \frac{L\omega (1-\alpha)}{\mu_{00}E}.$$

Thus,

$$\omega t_L = \left(\frac{L\omega (1-\alpha)}{\mu_{00}E} \right)^{\frac{1}{1-\alpha}}. \quad (16)$$

We now calculate

$$\begin{aligned} \mu(t_L) &= \mu_{00}(\omega t_L)^{-\alpha} \stackrel{(16)}{=} \mu_{00} \left(\frac{L\omega (1-\alpha)}{\mu_{00}E} \right)^{-\frac{\alpha}{1-\alpha}} \\ &= \mu_{00} \left(\frac{L\omega (1-\alpha)}{\mu_{00}E} \right)^{\left(\frac{1-\alpha}{1-\alpha} - \frac{1}{1-\alpha} \right)} \\ &= \mu_{00} \left(\frac{L\omega (1-\alpha)}{\mu_{00}E} \right) \cdot \underbrace{\left(\frac{L\omega (1-\alpha)}{\mu_{00}E} \right)^{-\frac{1}{1-\alpha}}}_{(\omega t_L)^{-1}} \\ &= \underbrace{\frac{L\omega (1-\alpha)}{E}}_{\mu_0} \frac{1}{\omega t_L}. \end{aligned}$$

c) Using (16) and the definition of μ_0 , we start with the previous result and calculate:

$$\begin{aligned}
 \mu(t_L) &= \mu_0 \frac{1}{\omega t_L} \\
 &= \mu_0 \left(\frac{\mu_0}{\mu_{00}} \right)^{-\frac{1}{1-\alpha}} \\
 &= \mu_0 \left(\frac{\mu_0}{\mu_{00}} \right)^{-\frac{T_0}{T}} \\
 &= \mu_0 \exp \left[-\frac{T_0}{T} \ln \left(\frac{\mu_0}{\mu_{00}} \right) \right] \\
 &= \mu_0 \exp \left[-\frac{kT_0 \ln \left(\frac{\mu_0}{\mu_{00}} \right)}{kT} \right] \\
 &\stackrel{\text{def}}{=} \mu_0 \exp \left(-\frac{E_{\text{mob}}}{kT} \right) \\
 &= \mu(T).
 \end{aligned}$$