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Solution 3

Exercise 1: Occupation function of a donor state

a) In the figure below you can see the band diagram of n-type doped amorphous sili-
con with approximative values for the requested energy levels. The position of these
levels — namely ED and EF — depend on various parameters such as the dopant
concentration and shall only give an idea of the order of magnitude.

The choice of EV = 0 as reference is absolutely arbitrary.

b) With only one energy level between the valence and the conduction band at ED close
to EF, an electron will occupy most likely that level. As a fermion, the electron can
occupy this level in two different spin configurations (spin up and down) with the same
probability, we call these states Dup and Ddown. The next probable state is with an
electron at the conduction band edge, we call it C.

When the system is in thermal equilibrium (i.e. the probability that a hypothetical
state at EF is occupied is exactly 50 %, we consider the energy of the system to be 0.
Therefore, the system with an electron at EDup = EDdown

has the energy ED −EF, the
system with an electron at EC has the energy EC − EF.

c) In a system with j states that have the energy Ej, the probability that the system is
in state i is given by

pi =
e
− Ei
kBT∑

j

e
−

Ej
kBT

. (1)

For the states Dup and Ddown, this is

pDup = pDdown
=

e
−ED−EF

kBT

2 · e−
ED−EF
kBT + e

−EC−EF
kBT

. (2)
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The probability that the system is in the state D — be it spin up or down — is therefore

pD = 2 · pDdown
=

2 · e−
ED−EF
kBT

2 · e−
ED−EF
kBT + e

−EC−EF
kBT

(3)

=
1

1 + 1
2
· e−

EC−EF
kBT

+
ED−EF
kBT

(4)

=
1

1 + 1
2
· e−

EC−ED
kBT

(5)

= 93% with kBT = 0.026 eV at room temperature. (6)

The probability that the system is in the state C is

pC = 1− pD = 7% or (7)

=
e
−EC−EF

kBT

2 · e−
ED−EF
kBT + e

−EC−EF
kBT

(8)

=
1

2 · e−
ED−EF
kBT

+
EC−EF
kBT + 1

(9)

=
1

2 · e−
ED−EC
kBT + 1

(10)

= 7% (11)

d) Under the assumptions that

• the phosphorus concentration is cP = 10−6 which corresponds to NP = cP ·NSi =
5× 1016 cm−3,

• the doping efficiency is 100% (i.e. all dopants substitute a silicon atom in the
�lattice�and can contribute an electron to the conduction band),

• the formula derived above is still valid for a multi-state system, and

• thermal excitation from other energy levels than the dopant level (e.g. from the
valence band) into the conduction band is negligible.

the electron density in the conduction band is Ne = pC ·NP = 4.3× 1015 cm−3.

e) The derived equation is nothing else than the occupation function of energy states
introduced by impurities or dopants. The Fermi-Dirac distribution

FF-D(E) =
1

1 + e
E−EF
kBT

(12)

can be derived exactly the same way but for states that can be occupied only once. To
do so, we consider a state at energy E, either filled (1) or empty (0), in exchange with
a “reservoir” at EF:

FF-D(E) = pE =
e
−E−EF

kBT

e
− 0·(E−EF)

kBT + e
− 1·(E−EF)

kBT

=
1

1 + e
E−EF
kBT

(13)

2



Large-area electronics 2021 Solution 3 F.J. Haug & N. Wyrsch

Exercise 2: Meyer-Neldel behaviour in the conductivity of a-Si:H

We assume that T 6= 0, i.e. α 6= 1.

a) We compute

L =
µ00E

ωα

∫ tL

0

t−αdt

=
µ00E

ωα
t1−αL

1− α
.

Thus we get:

t1−αL =
Lωα (1− α)

µ00E
(14)

and

tL =

(
Lωα (1− α)

µ00E

) 1
1−α

. (15)

b) In the following, we’ll use the fact that ωα = ω
ω1−α , and hence (with (14))

(ωtL)1−α =
Lω (1− α)

µ00E
.

Thus,

ωtL =

(
Lω (1− α)

µ00E

) 1
1−α

. (16)

We now calculate

µ(tL) = µ00(ωtL)−α
(16)
= µ00

(
Lω (1− α)

µ00E

)− α
1−α

= µ00

(
Lω (1− α)

µ00E

)( 1−α
1−α−

1
1−α)

= µ00

(
Lω (1− α)

µ00E

)
·
(
Lω (1− α)

µ00E

)− 1
1−α

︸ ︷︷ ︸
(ωtL)

−1

=
Lw(1− α)

E︸ ︷︷ ︸
µ0

1

ωtL
.
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c) Using (16) and the definition of µ0, we start with the previous result and calculate:

µ(tL) = µ0
1

ωtL

= µ0

(
µ0

µ00

)− 1
1−α

= µ0

(
µ0

µ00

)−T0
T

= µ0 exp

[
−T0
T

ln

(
µ0

µ00

)]

= µ0 exp

−kT0 ln
(
µ0
µ00

)
kT


def
= µ0 exp

(
−Emob

kT

)
= µ(T ).
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