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Solution 12

Exercise 1: Particle detectors

a) Direct detection

I) No space charge in the intrinsic layer of the diode (i.e. uniform field):

Our intuition tells us: All electrons move with the same velocity towards the
collection point. Therefore, the number of collected electrons per unit time (the
current) should be constant.
However, this is wrong.
According to Ramo’s theorem 1 as soon as one electron starts to drift, it induces an
electron to flow in the external circuit. This effect can be compared to a charging
capacitor: The more electrons gather on one plate, the more holes accumulates
on the other plate, until equilibrium is reached.
Therefore, coming back to our detector, immediately after the charge generation
throughout the sensing element, the electrons movement induce a pulse. This
pulse is immediately at its maximum and eventually it decreases in intensity as
more and more electrons are collected at the n-layer.

i. As the photon velocity in silicon is much larger than the electron drift ve-
locity, cλSi >> veldrift, the generation of the e−/h+-pairs can be considered to
be instantaneous all over the diode. Therefore, the maximum pulse height
Imax is measured immediately after the X-ray beam crossing when all gener-
ated electrons are moving. With n = 100 pair/µm the number of generated
e−/h+-pairs per µm, d = 10 µm the diode thickness, Q the generated charge,
Vbias = 100 V , veldrift the drift velocity and µel

drift = 1 cm2 V−1 s−1 the mobility
of electrons, it is

Imax = q · n · veldrift = q · n · µel
drift · E = q · n · µel

drift ·
Vbias
d

(1)

= 1.6× 10−19 C · 100 el/µm · 1 cm2 V−1 s−1 · 100 V

10 µm
= 16 nA (2)

ii. Neglecting the hole contribution (which generates another pulse smaller in
intensity but longer in time), the pulse length Tpulse is determined by the
electrons generated near the n-i interface that have to travel through the
whole intrinsic layer:

Tpulse =
d

veldrift
=

d

µel
drift · E

=
d

µel
drift ·

Vbias
d

(3)

=
(10 µm)2

1 cm2 V−1 s−1 · 100 V
= 10 ns (4)

1S. Ramo, ”Currents Induced by Electron Motion”. Proc. I.R.E, 1939, vol. 27, p. 584.
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iii. From the considerations above (veldrift = const) it is clear that the current
decreases linearly within Tpulse from Imax to 0.

iv. The X-ray beam has enough energy to cross the detector and generates

N = n · L = 100 pairs/µm · 10 µm = 1000 pairs. (5)

If all the electrons are collected, the totally collected charge is

Q = −
∫ Tpulse

0

I dt = −80× 10−18 C. (6)

Another way to calculate Q is

Q = −1

2
· q ·N = −1

2
· 1.6× 10−19 C/el · 1000 el = −80× 10−18 C (7)

Where does the factor 1
2

come from? We are considering here only the pulse
caused by electrons. In fact, the second pulse much weaker and longer from
the holes is superposed to the fast electron one. If one consideres the charges
collected by both pulses, the factor 1

2
vanishes. Another way to explain the

same physical behaviour is that the electrons move in average only through
half the detector, therefore, only the charge of half an electron is measured
in average for each electron.

II) Uniform defect density of Ndb = 2× 1016 cm−3 with all dangling bonds
polarized in the space charge region:

In contrast to the case discussed above, the electric field is no more constant
within the intrinsic layer with charged dangling bonds. Poisson’s equation

∂E

∂x
=

ρ

ε0εr
=
±q ·Ndb

εrε0
=
±1.6× 10−19 C · 2× 1016 cm−3

10 · 8.6× 10−12 A s V−1 m−1
≈ ±3.7× 105 V cm−1 µm−1,

(8)
tells us that the constant electric field E0 = 100V

10µm = 105 V cm−1 of exercise a) is re-

duced (in absolute values from the p/i and i/n interface) by 3.7× 105 V cm−1 µm−1

or

Eshield(∆x) =

∫ x2

x1

∂E

∂ξ
dξ. (9)

Therefore, the total electric field within the charged regions is

E(x) = E0 − Eshield(∆x) = E0 −
∣∣∣∣∫ x2

x1

∂E

∂ξ
dξ

∣∣∣∣ . (10)

Under the given assumptions, E0 = Eshield or E = 0 at a distance Lshield from the
i-layer borders:

E(Lshield) = E0 −
∫ Lshield

0

∂E

∂ξ
dξ (11)

= 105 V cm−1 − Lshield · 3.7× 105 V cm−1 µm−1 (12)
!

= 0 (13)

⇒ Lshield = 0.27 µm. (14)
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Therefore, the electric field is

E(x) =


105 V cm−1 − x · 3.7× 105 V cm−1 µm−1 for 0 < x < Lshield

0 for Lshield < x < d− Lshield

(x+ Lshield − d) · 3.7× 105 V cm−1 µm−1 for d− Lshield < x < d.

(15)
with a charge distribution

ρ(x) =


q ·Ndb = 3.2 µC cm−3 for 0 < x < Lshield

0 for Lshield < x < d− Lshield

−q ·Ndb = −3.2 µC cm−3 for d− Lshield < x < d.

(16)

For all further equations only electrons that are closer to the n-layer than d−Lshield

must be considered, as all other electrons recombine directly within the bulk of
the diode and do not contribute to a pulse.

i. With the same argumentation as in I), the maximum pulse is measured im-
mediately after the x-ray passing through the diode. However, with the x
dependence of E, the x dependence of v has to be considered too. As only
the electrons generated between d−Lshield and d contribute to the pulse it is

Imax =

∫ Q

0

dQ′

Lshield

veldrift(x) (17)

=

∫ d

d−Lshield

nq

Lshield

veldrift(x) dx as dQ′ = nq dx (18)

=

∫ d

d−Lshield

nq

Lshield

µel
drift · E(x) dx (19)

=
nqµel

drift

Lshield

∫ d

d−Lshield

E(x) dx (20)

=
nqµel

drift

Lshield

∫ d

d−Lshield

(x+ Lshield − d) · 3.7× 105 V cm−1 µm−1 dx(21)

=
nqµel

drift

Lshield

· 3.7× 105 V cm−1 µm−1
∫ Lshield

0

t · dt (22)

=
nqµel

drift

Lshield

· 1

2
· L2

shield · 3.7× 105 V cm−1 µm−1 (23)

= µel
driftnq · 0.27 µm · 3.7× 105 V cm−1 µm−1 (24)

= 1 cm2 V−1 s−1 · 100 el /µm · 1.6× 10−19 C/el · (25)
1

2
· 0.27 µm · 3.7× 105 V cm−1 µm−1 (26)

= 8 nA (27)

(Intuitively it is clear that the average velocity of the electrons is just half the
maximum velocity with constant spatial distribution and linearly increasing
velocity from 0.)
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ii. In analogy to I), the pulse length is given by

Tpulse =

∫ d

d−Lshield

1

veldrift(x)
dx (28)

=
1

µel
drift

∫ d

d−Lshield

1

E(x)
dx (29)

=
1

µel
drift

∫ d

d−Lshield

1

(x+ Lshield − d) · 3.7× 105 V cm−1 µm−1
dx(30)

=
1

µel
drift · 3.7× 105 V cm−1 µm−1

∫ Lshield

0

1

t
dt (31)

=
1

µel
drift · 3.7× 105 V cm−1 µm−1

[ln(Lshield)− ln(0)] (32)

→ ∞ (33)

The pulse seems to have no end. This is not physical and it comes from the
approximated approach we adopted. Anyway from point iii it comes out that:

iii. Due to I ∝ (d − x)2 (see e.g. equation (23)), the current decreases quadrati-
cally.

iv. In analogy to I) it is

N = n · Lshield = 100 pair/µm · 0.27 µm = 27 pairs (34)

If all the electrons are collected, the total charge

Q = −1

2
· q ·N = −1

2
· 1.6× 10−19 C/el · 27 el = −2.15× 10−18 C (35)

can be measured.

When compared to I), it is clear that charged dangling bonds may cause severe
problems to particle detectors as explained in the lecture!

b) Indirect detection
With a light yield γ = 50 000 ph/MeV and a Eγ = 50 keV-photon, the scintillator
irradiates Nirr = γ · Eγ, which N = 20 % · γ · Eγ = 500 photons are absorbed in the
diode. Each of these secondary photons is supposed to generate a e−/h+-pair in the
bulk of the diode.

I) From here on, this exercise is exactly the same as a) but with other numerical
values:

i.

Imax =
Q

d
·veldrift =

Q

d
·µel

drift ·
Vbias
d

=
8× 10−17 C

1 µm
·1 cm2 V−1 s−1 · 5 V

1 µm
= 40 nA

(36)
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ii.

Tpulse =
d2

µel
drift · Vbias

=
(1 µm)2

1 cm2 V−1 s−1 · 5 V
= 2 ns (37)

iii. the current decreases linearly within Tpulse from Imax to 0.

iv. Q = −q ·N = 8× 10−17 C. Such a detector would be very nice, but . . .

II) . . . more realistically the scintillator irradiates the secondary photons very slowly
and spread over a time interval of typically Tirr ≈ 1 µs.

i. As the collection within the diode is much faster than the irradiation of the
secondary photons, Tcoll << Tirr = 1 µs, the electrons can be considered
to be collected instantaneously and the pulse length Tpulse ≈ Tirr = 1 µs.
The secondary photons are homogeneously distributed over Tirr which means
with a frequency of ν = N

Tirr
= 500 ph

1µs = 0.5 ns−1 the photons arrive in the
diode where the photoelectron goes through within 2 ns . Therefore, only one
photoelectron passes the diode at once and

Imax = I (38)

=
Q

d
· veldrift (39)

= q · n · µel
drift ·

Vbias
d

(40)

= 1.6× 10−19 C/el · 1 el/µm · 1 cm2 V−1 s−1 · 5 V

1 µm
(41)

= 80 pA (42)

which is hardly of any use. However, scintillator-coupled diodes are well
suited for high particle fluxes and often used as they are cheap and easy to
use.

ii. Solved in i. already: Tpulse ≈ Tirr = 1 µs.

iii. Solved in i. already: The pulse is constant.

iv. With an EQE of 100 %, it is Q = −q ·N = −8× 10−17 C.

Exercise 2: As the paper cited on slides 48 and 49 of the course (Fortunato et al., Proc.

of the IEEE 93 (2005) 1281) seems to contain substantial mistakes, we do not consider the
formula given there but do some calculations with simplier assumptions:
The device shown in the exercise shall be biased at −1 V and consist of a continuous perfect
diode with no shunts (Rp →∞).
Therefore, one can use the diode equation

J = Js ·
[
e

qV
nkT − 1

]
(43)

with n = 2 to calculate the (constant) current through the diode that leads to the fall-off
of the laser-generated current towards the ends of the detector. Assuming a laser-line that
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generates a photocurrent of 1 mA cm−1 at x0, a current

i(x) = i0 −
∣∣∣∣∫ x

x0

Js ·
[
e

qV
nkT − 1

]
dξ

∣∣∣∣ (44)

= i0 + Js ·
[
e

qV
nkT − 1

]
· |x− x0| (45)

= 1 mA cm−1 + 10−7 mA cm−2 ·
[
e

1 eV

2·0.026 eV − 1
]
· |x− x0| (46)

= 1 mA cm−1 −m · |x− x0| (47)

flows in the upper ZnO:Al-layer perpendicular to the laser-line. This means that the current
decreases by m ≈ 10−7 mA cm−2.
Continuing with the assumptions above, we try to find the maximum size Lmax of a device
such that the smallest measured voltage V min

ph/T ≥
V0
100

, where V0 is the voltage between the p
and n layer at the illumination point.
The x dependence of the current leads to a x dependence of the voltage drop too:

dV = d(R · I(x)). (48)

Assuming a detector width of w = 1 cm (length of laser line) we get a relative resistance

r =
R

|x− x0|
=
R� · |x−x0|w

|x− x0|
=
R�

w
=

1000 Ω�−1

1 cm
= 1000 Ω cm−1 (49)

and with that

∆V (|x− x0|) =

∫ x

x0

I(x)
dR

dx
dξ =

dR

dx
·
∫ x

x0

I(x) dξ (50)

= r ·
∫ x

x0

I(x) dξ = r ·
∫ x

x0

i(x) · w dξ (51)

= r ·
∫ x

x0

{
i0 −

∣∣∣∣∫ x

x0

Js ·
[
e

qV
nkT − 1

]∣∣∣∣} · w dξ (52)

= r ·
∫ x

x0

{
1 mA cm−1 −m · |x− x0|

}
· 1 cm dξ (53)

= r · 1 mA cm−1 · |x− x0| · 1 cm− 1

2
· r ·m · |x− x0|2 · 1 cm (54)

≈ 1000 Ω cm−1 · 1 mA · |x− x0| −
1

2
· 1000 Ω cm−1 · 10−7 mA cm−2 · |x− x0|2(55)

= 1 V cm−1 · |x− x0| −
1

2
· 10−7 V cm−2 · |x− x0|2 . (56)

Assuming a maximal photogenerated voltage V0 = 1 V we require ∆V = V0 − V min
ph/T ≤

0.99V0 = 0.99 V which leads to the quadratic equation

∆V (|x− x0|) = 1 V cm−1 · |x− x0| −
1

2
· 10−7 V cm−2 · |x− x0|2 ≤ 0.99V0 = 0.99 V. (57)

This equation can numerically easily be solved and one gets a maximum detector length of

Lmax = |x− x0| ≤ 0.99 cm. (58)
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