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Solution 1

Exercise 1: Let d be the thickness of the silicon layer, A the total area of the modules,

n the lifetime of the modules, η the average efficiency of the modules (taking into account
temperature effects, cable losses,...) and Einc,y the annual incident irradiation.
The total annual produced energy by the modules (Ey) is then:

Ey = η · Einc,y · A. (1)

For a rough estimate of the area of the modules, we use:

VSi =
mSi

ρSi
= A · d. (2)

Thus,

A =
mSi

ρSi · d
. (3)

We finally obtain the total energy for one gram silicon,

Etot,1 g Si =
η · Einc,y ·mSi · n

ρSi · d

=
0.07 · 2500 kWh/m2/y · 10−3 kg · 30 y

2.3× 103 kg m−3 · 200× 10−9 m
∼= 11 413 kW h ∼= 4.1× 1010 J

The rest energy of 1 g Si is given by

E = m · c2 = 0.001 kg · (3× 108 m s−1)2 = 9× 1013 J = 2.5× 107 kW h
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Exercise 2:

a) Let a = 5.430 95�A be the lattice parameter. With easy calculations, we get:

Neighboring atoms Distances [Å]

quarter cube diagonal
√
3
4
a = 2.35

half face diagonal
√
2
2
a = 3.84

(1/4, 1/4, 1/4) to (1, 1/2, 1/2)
√
11
4
a = 4.50

cube face length a = 5.43095

(0, 0, 0) to (3/4, 3/4, 1/4)
√
19
4
a = 5.92

(0, 0, 0) to (1, 1/2, 1/2)
√

3
2
a = 6.65

(1/4, 1/4, 1/4) to (1, 1, 1) 3
√
3

4
a = 7.06

face diagonal
√

2a = 7.68

cube diagonal
√

3a = 9.41

Table 1: Distances between neighbors in a c-Si unit cell. The coordinates are normalized
and the origin is on the lower left corner of the cube (for example (1/4, 1/4, 1/4) denotes
the nearest neighbor of the atom on the origin that is shown on the figure).

The following peaks in the given experimental data correspond to distances beyond a
single unit cell:

Neighboring atoms Distances [Å]

(0, 0, 0) to (5/4, 3/4, -1/4)
√
5
√
7

4
a = 8.03

(0, 0, 0) to (3/2, 0, 1/2)
√
5
√
2

2
a = 8.59

(0, 0, 0) to (3/4, 3/4, 5/4)
√
43
4
a = 8.90

(0, 0, 0) to (5/4, 1/4, 5/4)
√
51
4
a = 9.70

Table 2: Some distances between neighbors in more than one unit cell.

b) The following relation holds for the angle β:

sin
β

2
=

1/2 of the distance to the second next nearest neighbour

distance to the nearest neighbour

leading to β = 2 arcsin
(√

2a
2·2 ·

4√
3a

)
= 2 arcsin

(√
2
3

)
= 109.5°.

c) As in the case of c-Si, the first peak at 2.35 Å is clearly visible. In the given reference1,
it is shown that the first bond length is the same (within 0.005 Å) for c-Si and a-Si.

The interpretation of the second-neighbor peak is less clear (unknown contribution of
the third peak). The next peaks are not clearly resolved as well (broadening of the

1K. Laaziri et al., Physical Review B 60 19, 520-533 (1999)
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peaks), indicating a major difference compared to c-Si. This can be understood in
terms of small variations in β leading to deviation from the ideal network structure.
Amorphous silicon has still a tetragonal (short-range) configuration, but no longer
long-range order!

In this paper, it is also shown that vacancies are the major contribution to the smaller
density of a-Si with respect to c-Si (the density of a-Si is about 2% less than the one
of c-Si). In fact they find a coordination number (number of first next neighbours) of
about 4 for c-Si, whereas the value for a-Si is slightly less (about 3.8-3.9).

Exercise 3 (Vacancies and voids in Si):

a) In each unit cell, there are 8 Si atom (see fig. 1: 8 · 1
8

+ 6 · 1
2

+ 4 · 1). The density ρV is
then simply given by

ρV =
#Si atoms

volume
=

8

a3
∼= 5× 1022 cm−3.

Figure 1: The colors highlight the different contribution of the atoms to the atomic density
of a unit cell.

b) Here again, it is easier to work with the unit cell. On the (100) equivalent planes, each
surface atom has 2 dangling bonds (DB) pointing out of the bulk, so two hydrogen
atoms per atom, assuming full passivation (a hydrogen atom on each DB). However,
with the help of fig. 2, on can see that there are 4 DB per unit cell on a (100) plane
(The other 6 point out of the unit cell). This gives a surface density ρS of

ρS =
#DB

unit cell surface
=

4

a2
∼= 1.356× 1015 cm−2.
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Figure 2: Only the atoms 1,2,3 contribute to DBs inside of a unit cell.

c) In first approximation and for an average value, the above density values within a
sphere will be used, thus:

#Si atoms = ρV · V = ρV ·
4

3
πr3 ∼= 8 atoms.

For the hydrogen, and using the rough approximation that each Si atom around the
void has two hydrogen atoms, one gets:

#H atoms = ρS · S = ρS · 4πr2 ∼= 18 atoms,

leading to δ ∼= 0.44.

For mono-, bi-, and trivacancies, this δ can be calculated exactly (see lecture). However,
when getting experimental datas (e.g. void volume from SAXS expermients2), it is not
trivial to find out the corresponding microscopic configuration.

2Mahan et al., Solar Cells 27, 465–476, 1989.
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