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This paper shows that multiple-trapping-dominated transport quantities such as mobility and
diffusion exhibit a Meyer-Neldel relation (MNR), an exponential relation between the prefactor
of a thermally activated process and its activation energy. From these results, the Meyer-Neldel
parameters can be related to the energy distribution of trapping sites and microscopic transport
properties. The MNR for both the mobility of charge carriers and the annealing rate of metasta-
ble defects in hydrogenated amorphous silicon are quantitatively explained.

In the study of disordered materials, various properties,
e.g., conductivity or diffusion, are found to exhibit ex-
ponential thermally activated (Arrhenius) behavior.
Surprisingly, there is quite often an exponential relation
between the activation energy and the preexponential fac-
tor for the various processes known as the Meyer-Neldel
relation! (MNR). This relation has been observed in a
wide variety of materials for a number of quantities. Ex-
amples of properties exhibiting the MNR include the elec-
trical conductivity in powdered semiconductors' and hy-
drogenated amorphous silicon? ¢ (a-Si:H), trap emission
rates for defects in binary and trinary alloys,” and the
photocurrent in polycrystalline solar cells.® A typical ex-
ample, presented in Fig. 1, is the annealing rates of meta-
stable defects in a-Si:H for a large number of defects.®!°
For properties exhibiting the MNR, the prefactor ¢q¢ and
activation energy E, of the relevant property are related
by a characteristic relation go=qoo exp(E/E,), where Eg
is remarkably constant between various material systems
having a value of 0.03-0.1 eV and qqo is a constant. Al-
though the MNR is similar in a variety of materials sug-
gesting a common underlying mechanism, its origin is un-
clear. It is often associated with disorder of some form
within the material. In the case of dc electrical conduc-
tivity in a-Si:H, a time-independent equilibrium process,
the MNR is due to the statistical shift of the Fermi lev-
el.>'112 However, the MNR is often observed for non-
equilibrium time-dependent properties such as the mobili-
ty in time-of-flight experiments which do not depend on
the equilibrium Fermi distribution or a statistical shift.'*

Independently, significant progress has been made in
understanding transport in disordered systems in terms of
multiple trapping (MT) of mobile species.!*”!¢ The
transport is dominated by frequent trapping into and
thermal release from localized states. MT has been highly
successful at explaining the time and temperature depen-
dence of electrical transients,'® ~!¢ photoinduced absorp-
tion,'” etc., in many disordered materials'>!¢ and explains
transport by both drift and diffusion.

This paper demonstrates that there is a close connection
between MT and the MNR for a certain class of quanti-
ties: namely, time-dependent transport properties. When-
ever a MT-dominated transport process (i.e., time depen-
dent) is observed over fixed distances as a function of tem-
perature, a MNR should be observed for this transport
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quantity. This important result is first derived by consid-
ering dispersive diffusion of hydrogen and quantitatively
predicts the MNR for the attempt-to-anneal frequency of
light-induced metastable defects and the annealing activa-
tion energy (results in Fig. 1) due to hydrogen motion in
a-Si:H. The connection between the MNR and MT is
then further investigated by considering the field depen-
dence of the drift mobility of carriers in a-Si:H.

Consider first the diffusion of hydrogen in a-Si:H. Re-
cent measurements have demonstrated that hydrogen ex-
hibits dispersive diffusion given by '%!

D(t) =Dy wt) "¢, n

where Dq is a microscopic diffusion constant (weighted
by a density-of-states ratio),  is the hydrogen attempt
frequency, and a is the temperature-dependent dispersion
parameter which is given by a=1—=1—T/T,. The
quantity kT is the characteristic energy of the exponen-
tial hopping distribution in dispersive transport, and T is
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FIG. 1. The attempt frequency for annealing of various de-
fects in a-Si:H vs the defect annealing energy from various
sources. The crosses and solid dots represent electron and hole
trapping defects, respectively, from Ref. 9 and the open circles
represent the prefactors and annealing energies of dangling-
bond defects in various films containing impurities from Ref. 10.
The solid line represents the relation predicted by the hydrogen
diffusion data of Ref. 18 into Eq. (8).
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the measurement temperature. Because of the limited
spatial resolution to measure hydrogen diffusion (=3 nm)
and finite annealing times, measurements of the tempera-
ture dependence of the diffusion must be performed such
that the diffusion distance is kept nearly constant for the
various annealing temperatures.!® For time-dependent
diffusion, the time ¢, to diffuse a distance L is given by 2’

Lz-j;tLD(t’)dt'. )

Solving Eq. (2) for 7, and substituting into Eq. (1) using
the dependence of the dispersion parameter on tempera-
ture, the diffusion constant D(7) can be written in the
form

D(ty) =Dgexp(—Eqg/kT) , 3)
where Dg=L?0w(1 —a)/4 and

Edm-kToln{[L 2(0(1 - a)]/(4D00)}

="kT()lll(Do/Do()) (4)
or
Dy "Dooexp(Ediﬂ‘/kTo) . (5)

The relations given by Egs. (3)-(5) are important because
they demonstrate that the diffusion for a constant
diffusion distance is activated with an activation energy
Egig. The prefactor for diffusion, Dy, depends exponen-
tially on the activation energy according to the MNR
where Eo=kT¢ and the prefactor ggo=Dq is the micro-
scopic diffusion coefficient. The only assumption involved
in the above derivation is that the motion is dispersive.

Physically, the origin of the MNR is as follows. The
activation energy Egig is the depth of the deepest trap
visited during diffusion over a distance L.'® The prefactor
Dy is the diffusivity for the hydrogen if the release time
from these deepest traps is just the attempt frequency
without any thermally activated waiting time, and D¢ de-
pends inversely on the number of traps at this energy. For
longer distances, the hydrogen transport is controlled by
deeper traps causing E g to increase. Because the num-
ber of these traps decreases exponentially as the trap
depth, the prefactor increases exponentially as a function
of the controlling trap depth. The MNR between the pre-
factor and the activation energy follows immediately,
demonstrating that the MNR and MT are manifestations
of the same phenomenon.

These results can be quantitatively tested using defect
annealing and creation kinetics?! which requires the
derivation of a relation between hydrogen diffusion and
defect kinetics. Consider the case where defects of densi-
ty, n(z), are removed by conversion due to the diffusion of
H to the defect. Examples include the conversion of dan-
gling Si bonds to fourfold Si or fourfold donors to three-
fold nondoping donor.?! The rate of change of the defect
density is given by %22

dn(t)/dt=—AD(t)n(z), (6)

where A =4xNry, N is the density of diffusing hydrogen
atoms, r¢ is the capture radius of the defect, and D(z) is
the diffusion coefficient which depends on time. Solving
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Eq. (6) usin E%. (1) yields the characteristic stretched
exponential %222

B
n(t)-n(O)exp[— [f] ] )

where B=T/T, as before, r=19exp(E./kT), 0=1/w,
and E, is given by

1/79=(ADoo/B) exp(E./kTo) . ®8)

Because the T dependence of B in the prefactor is small,
Eq. (8) demonstrates that the parameter 7 for defect an-
nealing kinetics exhibits a MNR.

Equations (7) and (8) can now be quantitatively com-
pared with the experimental data. The diffusion of hydro-
gen in 10 ~3 P-doped material from Ref. 18 is corrected to
a constant diffusion distance using Egs. (3) and (4).
From this data, it is found that for L =100 nm, and
To=600 K, the activation energy is Egig=1.4 eV, and
Do=0.03 cm? sec ~!. For a 10 ~2 P-doped material, the
activation energy is the same but the prefactor is approxi-
mately twice as large'® so that Dp=0.06 cm?’sec !
Equation (5) Yiclds a microscopic diffusion constant of
Doo=5%10"1 cm 2/sec. Using the relations Do=L2w/4
and 7o=1/w, gives 79 =410~ '® sec, comparing well with
the observed value of 2x10 ™' sec.!®?* The capture ra-
dius of a diffusing H atom by a dangling bond is approxi-
mately the bond length of 0.2-0.3 nm, and the diffusing
hydrogen density is approximately 102! c¢cm ™3, giving
A=2.5%10'"* cm ~2. The resulting calculated activation
energy for 7 is E,=0.95 eV from Eq. (11) while the ob-
served value is 0.93 eV, 1924

The previously unexplained MNR between annealing
energy and attempt-to-anneal frequency of metastable de-
fects shown in Fig. 1 can now be quantitatively derived
from the hydrogen diffusion data using Eq. (8) which pre-
dicts that there is a MNR between the defect annealing
energy and the prefactor. The exponential energy should
be E¢=0.05 eV compared to the observed value of 0.05
¢V.>!% Furthermore, the Meyer-Neldel prefactor is given
by qoo=AD/B. From the data in Ref. 18, Dgo=2
%10 ! cm?/sec for undoped and the predicted Meyer-
Neldel prefactor ggo is approximately between 1 sec ™!
for undoped and 30 sec ™' for P-doped films using the
value for 4 from above. The result of Eq. (8) (solid line
Fig. 1) is in excellent agreement with the data.*!® Sum-
marizing, dispersive diffusion quantitatively explains the
MNR between the attempt frequency and anneal energy
of metastable defects as well as the difference in the ac-
tivation energy of the stretched exponential parameter ¢
(0.95 eV) and the apparent activation energy of hydrogen
diffusion (1.4 eV).

The above arguments show that dispersive diffusion
gives rise to the annealing MNR; they apply to other
dispersive transport processes as well. As a further test of
this connection, consider MT-dominated transport across
a sample of thickness L. The mobility is dispersive and is
giv&n} g)y relations quite similar to Egs. (1) and (2): name-
ly,"®

u(t) =poo(wt) @ )
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and T '
tL ' ’
L=f " u)Edr, (10) Al 7
where ¢; is the transit time, oo is the microscopic mobili- =
ty (weighted by a density-of-states ratio), and E is the 8 o
field. Because the carriers traverse a constant distance, 3 ) -
the measured mobility will exhibit a MNR t ~ T
;l(tL)'/,toexp(—Emobility/kT) (11) ‘_c’_, 1 .. |
where g § T .
Zo.3} -
wo=Low(l —a)/E (12) 3
and 103 1;0& 1705
«am-1
Emobimy"kToln{[La)(l —a)]/(Euoo)]} 00 2 ' 4

=kToln(uo/poo) . 13)

The hole drift mobility data presented previously in
Ref. 13 are analyzed to test Eqs. (11)-(13). The hole
mobility versus temperature for different fields on a single
sample was fit to Eq. (11). A plot of uo vs 1/E (Fig. 2)
yields a reasonable straight line as expected from Eq. (12)
with a slope of Lo =4.6x10" cm/sec or ©=10"! Hz—a
result in good agreement with 1-3x10'! Hz obtained on
the same sample from time-of-flight measurements.'
The linear relation between E mobiliy and InE (inset, Fig.
2) expected from Eq. (13), yields kT9==30 meV com-
pared with the 37 meV obtained on the same sample. '3
The derived value of ugo (after inclusion of the appropri-
ate density-of-states ratio) is consistent with the previous-
ly reported microscopic hole mobility of 1-10
cm?V “'sec "L 1315 Although these mobility equations
are implicit in the previous work on drift mobility,'3 !¢
Egs. (9)-(13) demonstrate explicitly that a MNR follows
immediately from MT for transport processes.

It is important to point out that the arguments in this
paper demonstrate that the MNR follows from MT for
fundamental quantities such as diffusion and mobility.
Other quantities can depend on nontransport properties
which may or may not exhibit a MNR. Conductivity, for
example, depends on the density of carriers as well as the
mobility. The conductivity in a-Si:H exhibits a MNR be-
cause the statistical shift causes the carrier density to fol-
low a MNR as well as the mobility.>!""!? A different den-
sity of states could give rise to a non-MNR for the con-
ductivity in other materials. Thus, while multiple trap-

E'(10%em V)

FIG. 2. The hole mobility prefactor vs electric field. Dots are
data from dispersive transport of Ref. 13 and the solid line is
predicted from Eq. (12). The inset represents the mobility ac-
tivation energy vs electric field from the transport data of Ref.
13 and verifies the linear relation given by Eq. (13).

ping implies a MNR for time-dependent transport pro-
cesses, the converse does not hold. It should be noted that
experimentally the microscopic quantity ugo (and Dgo by
the Einstein relation) are quite constant, independent of
doping, deposition conditions, and even for different amor-
phous covalent materials.!>2> Hence, the MNR holds for
films deposited under different deposition conditions and
doping.

In conclusion, this paper has demonstrated that there is
a fundamental connection between time-dependent trans-
port and the Meyer-Neldel relation for multiple trapping
dominated processes. The energy factor of the MNR is
related to the energy distribution of the traps while the
prefactor is related to the microscopic transport proper-
ties. These results explain in a natural way the difference
in the activation energy for hydrogen diffusion and the
stretched exponential time constant for the decay of ex-
cess carriers as well as the time, temperature, and field
dependence of carrier transport in disordered materials.

Stimulating discussions with R. Street, J. Kakalios, and
K. Winer are gratefully acknowledged.
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