

EXERCISE 7

Exercise 1: Given the $I(V)$ characteristics of the best a-Si:H cell ($V_{oc} = 890\text{ mV}$, $I_{sc} = 16.8\text{ mA/cm}^2$, $FF = 68\%$, $Eff = 10\%$) and c-Si cell ($V_{oc} = 740\text{ mV}$, $I_{sc} = 41.8\text{ mA/cm}^2$, $FF = 82.7\%$, $Eff = 25\%$), discuss the benefit (or loss) of stacking these cells to form a tandem device:

- a) For a 2 terminal device?
- b) For a 4 terminal device?
- c) Discuss the differences with the a-Si/ μ c-Si tandem cell case.

Exercise 2: Consider two solar cells a and b that are not interconnected monolithically but as a 4-terminal tandem device, such that the $I-V$ curves of each cell could be measured independently of the other one:

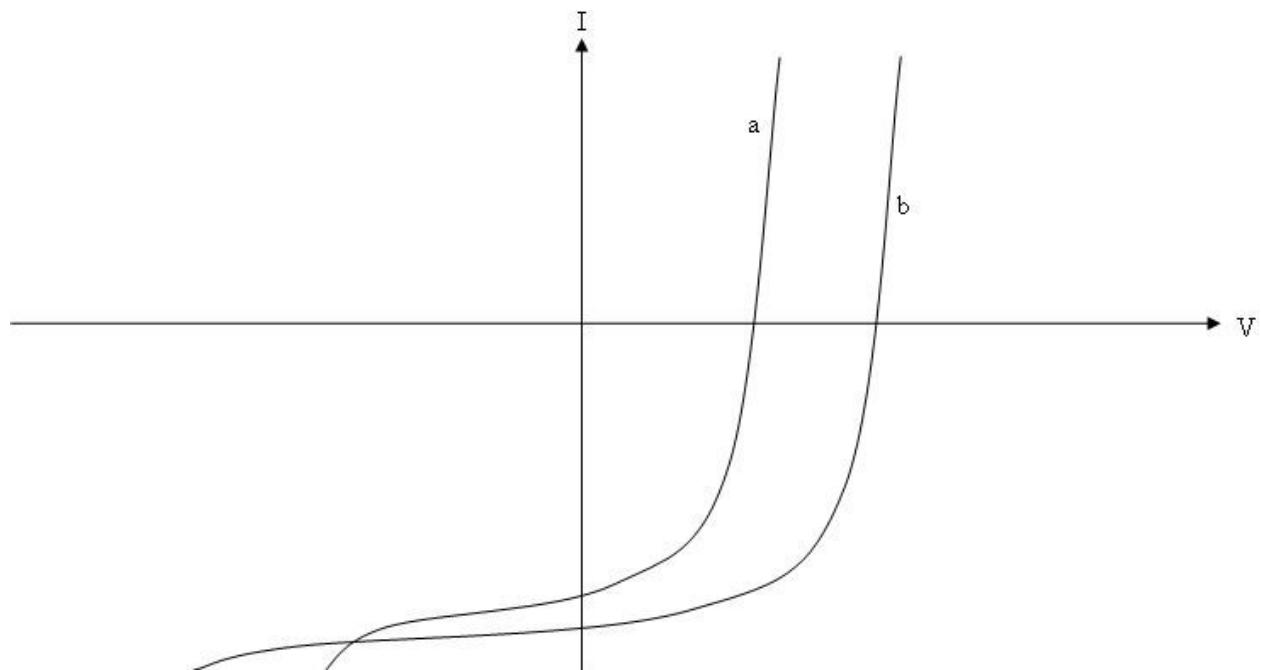


Figure 1: $I-V$ curves of two solar cells a and b that are used together in a tandem device.

Imagine now that you interconnect the two cells monolithically.

- a) Which cell is the top/bottom cell and why?
- b) Draw the $I-V$ curves of the cell [ab] (or [ba] according to your answer a)).
- c) Which cell is the limiting one and why?

Exercise 3: Consider a pin-junction in dark with abrupt separation between the layers. Furthermore, assume the following constant density of charged dangling bonds N_{db} through the i layer of thickness d :

$$\rho(x) = \begin{cases} +qN_{\text{db}} & \text{for } x \in [-d/2; 0] \\ -qN_{\text{db}} & \text{for } x \in]0; d/2] \end{cases}.$$

The built-in voltage in the junction is given by V_{bi} .

a) Calculate the electric field distribution $E(x)$ within the i-layer by solving Poisson's equation for this configuration by choosing appropriate boundary conditions. Poisson's equation is given by:

$$\frac{\partial^2 \phi(x)}{\partial x^2} = \frac{\rho(x)}{\epsilon_0 \epsilon_r}$$

where

$$\frac{\partial \phi(x)}{\partial x} = -E(x).$$

b) Which value is required for N_{db} to have a vanishing field in the middle of the layer if d is 200 nm and 600 nm ? Take $\epsilon_r = 11.68$ and $V_{bi} = 1.2 \text{ V}$.

c) Compare the value obtained in b) with N_{db} of a degraded material.

d) Discuss what could happen under illumination.