

EXERCISE 12

Exercise 1: Particle detectors

Consider the interaction of a 50 keV X-ray photon with two different particle detectors:

a) **Direct detection**

Consider a thick a-Si:H nip diode particle detector with the following characteristics:

- diode thickness: 10 μm
- reverse bias: 100 V
- electron drift mobility: $1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
- hole contribution is neglected (low drift mobility)
- number of created e^-/h^+ pairs: $100 \mu\text{m}^{-1}$

Estimate the current transient, i.e.

- (a) the maximum pulse height
- (b) the pulse length
- (c) the pulse shape
- (d) the total collected charge

for the case of

- I) no space charge in the intrinsic layer of the diode (i.e. uniform field)
- II) a uniform defect density of $2 \times 10^{16} \text{ cm}^{-3}$. Assume that all these dangling bonds are polarized in the space charge region.

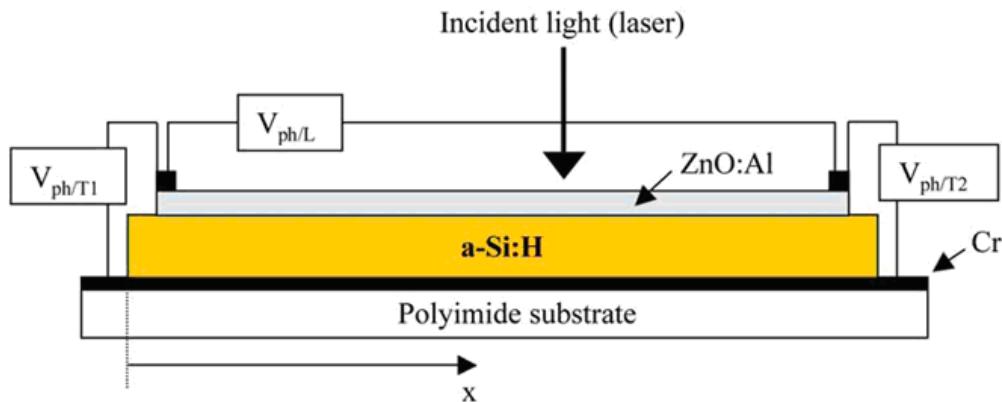
b) **Indirect detection**

Consider a thin a-Si:H nip diode particle detector coupled with a scintillator layer with the following characteristics:

- diode thickness: 1 μm
- reverse bias: 5 V
- electron drift mobility: $1 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$
- hole contribution is neglected (low drift mobility)
- light yield of the scintillator: 50 000 photon/MeV
- 20 % of the emitted photons are uniformly absorbed in the intrinsic layer of the diode

Estimate the current transient, i.e.

- i) the maximum pulse height
- ii) the pulse length
- iii) the pulse shape
- iv) the total collected charge


for the case of

- I) no space charge in the intrinsic layer of the diode (i.e. uniform field), the photons are instantaneously absorbed in the intrinsic layer of the diode and
- II) same as I) but taking into account that photo emission is spread uniformly over a $1\text{ }\mu\text{m}$ duration.

Exercise 2: Position sensitive detector

The device shown in the figure below is used for position detection. It consists of a a-Si:H diode in pin-structure biased at -1 V and detects the position of a laser spot. The current at the illuminated spot is thus dissipated (uniformly) at non illuminated places towards the side contacts. Calculate the fall-off of the current assuming a diode saturation current of $10 \times 10^{-10}\text{ A cm}^{-2}$ and a sheet resistance of 1000Ω . To restrict the problem to 1 dimension, assume the laser spot to be a line with the current dissipating perpendicular to it.

What is the largest device that can be built in order to have $V_{\text{ph/T}} \geq \frac{V_{\text{ph/T}}^{\text{max}}}{100}$?

