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=PFL 11c-Si: a new form of TF-S;i
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« Discovered for “rather high deposition powers”

Different from a-Si because:
— high conductivity (0.01 ... 0.1 Qcm)
— doping yields low E . (0.02 ... 0.05 eV)

— diffraction peaks in XRD

Later also found for:
— high hydrogen dilution

— high deposition temperature
— “depleted” plasma conditions
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=PrL Conductivity vs. doping
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conductivity ca. 10 - 100x higher
than a-Si:H,

naturally n-type (similar to a-Si)
here: oxygen impurity
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activation energy 10x lower than
a-Si:H, typically 20 to 50 meV

Wang, IEEE PVSC (1990)
Spear, J. Phys. C (1981)
Alpuim, JAP (1999)
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Structure of pc-Si
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Large columnar structures,
conglomerates of
crystallites (grains)

with similar orientation

=> should be called
nanocrystalline (nc-Si)
because of grain size




=PrL - Structural characterization: Raman effect
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Transmission

Principle: Energy loss spectroscopy
illuminate with laser (e.g 514 nm)
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excite vibrations (loss of phonon energy)
measure reflected spectrum (sharp filter to suppress direct reflection)
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Raman signature of pc-Si

Raman intensity

| 520 cm! (same as bulk)
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Mixture of amorphous,
disordered and crystalline Si

Crystalline Volume fraction:
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V= 1a80) 71512 + 1(520)

Smit, JAP (2003)
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=PFL Deposition conditions
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Wang, IEEE PVSC (1990)

Hydrogen etching
model:

a-Si etched more
easily by H-plasma
than c-Si

=> occasionally a
grain nucleates,
survives, and grows

Nucleation preferably
on H-free sites:

=> |lower H-coverage
athigh T
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PrL Absorption coefficient

Absorption coefficient (cm™)

1 2 3
Photon energy (eV)
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Vis: behaves like mix of
amorphous and c-Si

NIR: very similar to c-Si
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=PrL Conductivity vs. doping
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high conductivity
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here: oxygen impurity
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activation energy typically 20 to 50 meV
(10x lower than a-Si:H)

Wang, IEEE PVSC (1990)
Spear, J. Phys. C (1981)
Alpuim, JAP (1999)
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=PrL Hall effect
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Higher mobility for higher doping
indicative of GB transport

Bronger, TSF (2007)
Backhausen, MRS Proc (1996)
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EPFL GB transport (polycrystalline Si e.g. n-type)

grains fully depleted
(all carriers in GB traps)
Inc. doping =>inc. ¢,
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grains partially depleted
iInc. doping => dec. ¢,
(eventually tunnelling)

Seto, JAP (1975)

shift due to smaller grain size
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=PrL Percolation transport

Grain cluster Disorder
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Schematic arrangement of Transport by percolation if
grains (3-5 nm) into clusters CVF > 40%
=> a-Si tissue between grains
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Shimakawa, J. Mat. Sci. (2004)
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=Pl Excursion: contact formation (idealized)

ITO a-Si(p) pc-Si(p) vacuum level
| |
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similar V,;, but d = 2;;" Vi;
Low active doping density High doping density
wide depletion region narrow depletion region
=> thermionic field emission => tunnelling becomes likely
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=PFL Excursion: contact resistivity of HIT solar cells

Cell requires intrinsic buffer layer for passivation (material with low defect density)
Doped pc-Si: formation of small columnar grains, size between 3 and 5 nm

m Large Area Electronic Materials — Microcrystalline Silicon

Nogay, JPV ( 2016)
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Nogay, JPV ( 2016)

Intermediate temperature dependence: thermionic field emission

=PFL Excursion: contact resistivity of HIT solar cells
Large temperature dependence: close to thermionic emission
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On transport processes and contact resistivity:

Padonvani SSE (1966), Yu SSE (1970)

F.-J. Haug



