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Microcrystalline silicon
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µc-Si: a new form of TF-Si

• Discovered for “rather high deposition powers”

• Different from a-Si because: 

– high conductivity (0.01 … 0.1 Ωcm)

– doping yields low 𝐸𝑎𝑐𝑡 (0.02 … 0.05 eV)

– diffraction peaks in XRD

• Later also found for:

– high hydrogen dilution

– high deposition temperature

– “depleted” plasma conditions

Usui, JNCS (1979)

Matsuda, JJAP (1980)
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Conductivity vs. doping

conductivity ca. 10 - 100x higher 

than a-Si:H, 

naturally n-type (similar to a-Si)

here: oxygen impurity

activation energy 10x lower  than 

a-Si:H, typically 20 to 50 meV

Wang, IEEE PVSC (1990)

Spear, J. Phys. C (1981)

Alpuim, JAP (1999)
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Structure of µc-Si

Large columnar structures, 

conglomerates of 

crystallites (grains) 

with similar orientation

=> should be called

nanocrystalline (nc-Si)

because of grain size

50nm
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Structural characterization: Raman effect

Principle: Energy loss spectroscopy

- illuminate with laser (e.g 514 nm)

- excite vibrations (loss of phonon energy)

- measure reflected spectrum (sharp filter to suppress direct reflection)
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Raman signature of µc-Si

Mixture of amorphous, 

disordered and crystalline Si

Crystalline Volume fraction: 

𝐶𝑉𝐹 =
𝐼 512 + 𝐼(520)

𝐼 480 + 𝐼 512 + 𝐼(520)

Smit, JAP (2003)

a-Si

480  cm-1

disordered Si

512  cm-1

c-Si 

520 cm-1 (same as bulk)
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Deposition conditions

80 sccm

50 sccm

10 sccm

30 sccm

5 sccm

350°C

250°C

200°C

100°C

25°C

Transition with H dilution Transition with dep. temperature

Wang, IEEE PVSC (1990)

• Hydrogen etching 

model: 

a-Si etched more 

easily by H-plasma 

than c-Si

=> occasionally a 

grain nucleates, 

survives, and grows

• Nucleation preferably 

on H-free sites:

=> lower H-coverage 

at high T
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Absorption coefficient
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Vis: behaves like mix of 

amorphous and c-Si

NIR: very similar to c-Si
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Conductivity vs. doping

high conductivity 

(10 - 100x higher than a-Si:H)

naturally n-type (similar to a-Si)

here: oxygen impurity

activation energy typically 20 to 50 meV

(10x lower  than a-Si:H)

Wang, IEEE PVSC (1990)

Spear, J. Phys. C (1981)

Alpuim, JAP (1999)
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Hall effect

Bronger, TSF (2007)

Backhausen, MRS Proc (1996)

High carrier density w/o 

compensation, thermally activated 

(not same as std. semiconductors)

Higher mobility for higher doping

indicative of GB transport

RTRT
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𝑑

𝜙𝑏

GB transport (polycrystalline Si e.g. n-type)

Seto, JAP (1975)

grains fully depleted

(all carriers in GB traps)

inc. doping => inc. 𝜙𝑏

(curvature ~ 𝑁𝐷)

grains partially depleted

inc. doping => dec. 𝜙𝑏

(eventually tunnelling)

shift due to smaller grain size

𝜙𝑏
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Percolation transport

Schematic arrangement of 

grains (3-5 nm) into clusters

=> a-Si tissue between grains

Transport by percolation if 

CVF > 40%

Shimakawa, J. Mat. Sci. (2004)
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𝜙𝑏 = 0.25 eV𝜙𝑏 = 0.7 eV

Excursion: contact formation (idealized)

4.9 eV
3.8 eV

Eact = 0.6 eV

Vbi = 0.1 V

4.05 eV

1.1 eV

Eact = 0.05 eV

Vbi = 0.2 V

Low active doping density

wide depletion region

=> thermionic field emission

High doping density

narrow depletion region

=> tunnelling becomes likely

1.8 eV

after contact after contact

ITO a-Si(p) µc-Si(p) vacuum level

similar 𝑉𝑏𝑖, but 𝑑 =
2𝜖𝜖0

𝑁𝐴
𝑉𝑏𝑖
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Excursion: contact resistivity of HIT solar cells

Nogay, JPV ( 2016)

Cell requires intrinsic buffer layer for passivation (material with low defect density)

Doped µc-Si: formation of  small columnar grains, size between 3 and 5 nm 
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Excursion: contact resistivity of HIT solar cells

Nogay, JPV ( 2016)

Large temperature dependence: close to thermionic emission

No temperature dependence: tunnelling transport (field emission)

Intermediate temperature dependence: thermionic field emission

Padonvani SSE (1966), Yu SSE (1970)On transport processes and contact resistivity: 


