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The weak bond model
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Molecular orbitals: hydrogen

Chemical reaction

H + H H2

+

Ψ1(1s) + Ψ2(1s)
(Ψ1 + Ψ2)

(Ψ1 - Ψ2)

anti-bonding

high E, empty

bonding, 

low E, occupied

Wave function formation (no exchange integral)

Charge density representation (ρ =ΨΨ*)

total number of states is preserved
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Weak bond model for silicon

E

g(E)

VB CB

D0

Identify valence band and its tails with bonded molecular orbitals

bonding states (filled states) => valence band

anti-bonding states (empty) => conduction band

defect formation => create D0 state, occupied with single electron 

Stutzmann, Phil. Mag. 56(1) p63, (1987)

broken

anti-

bonding

bonding

Si Si Si Si

bonded (weakyl)
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Density of weak bonds

Assume thermal equilibrium reaction between weakly bonded silicon SiWB

and neutral defects D0 (sum remains constant)

SiWB ⇌ D0

Apply mass action law

D0 = SiWB 𝑒
−𝐸𝐵𝐵/𝑘𝑇

𝐸𝐵𝐵 is typically 0.2 - 0.3 eV, D0 ≈ 1016 cm-3. 

Thus: SiWB ≈ 1018 … 1019 cm-3. 

=> Only a part of the available silicon (~5x1022 cm-3) or hydrogen (~2…5x1021 cm-3) 

is actually involved in defect creation 

Note: SiWB + D0 = 𝑁0 , thus: 𝑁𝐷 𝐸𝐵𝐵 = 𝑁0
1

1 + 𝑒𝐸𝐵𝐵/𝑘𝑇 (c.f exercises)
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Simple density of states (DOS)

g(E)

VB CB

E

=> 𝐷𝑂𝑆 𝐸 = 𝑁0 ⋅ 𝛿 𝐸 − 𝐸𝑊𝐵 + 𝑁0
1

1+𝑒𝐸𝐵𝐵/𝑘𝑇
⋅ 𝛿 𝐸 − 𝐸𝐷 + anti-bonding state

Defect

state

Weak

bonds N0

Weak

anti-bonds

Bond breaking 

energy 𝐸𝐵𝐵 = 𝐸𝐷 − 𝐸𝑊𝐵

Weak bond state Defect density at 𝐸𝐷
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Equilibrium defect densities
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Inverse temperature [1000/K]
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N0=1.1x10
18

cm
-3

U=0.20 eV

N0=1.4x10
17

cm

U=0.17 eV

700 600 500 400

 Temperature [K]

Data: Street, PRB 40(9), p6336 (1989)

Boltzmann like:

Question: What is the quantity N0 ?

𝑁𝐷 ≈ 𝑁0 ⋅ 𝑒
−𝐸𝐵𝐵/𝑘𝑇

Fermi like: 𝑁𝐷 = 𝑁0
1

1 + 𝑒𝐸𝐵𝐵/𝑘𝑇

On the measurement procedure: 

- let sample reach equilibrium at high T

- quench (freeze) by rapid cooling

- measure defect density 

- repeat

(recall: cooling of glass)
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7

Band tail model

𝐸 from VB, fixed 𝐸𝐷
=> 𝐸𝐵𝐵 = 𝐸𝐷 − 𝐸

Take VB tail states as source of weak bonds!

remember: 𝑔 𝐸 = 𝑁𝑉 ⋅ 𝑒
−𝐸/ 𝐸𝑉

Contribution of VB slice 𝑔 𝐸 𝑑𝐸

g(E)

VB

E

𝑑𝑁𝐷 = 𝑔 𝐸 ⋅
1

1+𝑒𝐸𝐵𝐵/𝑘𝑇
𝑑𝐸

CB
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8

Band tail model

How many defects are created in total? 

Smith, PRL 59(6) p688, (1987)

Street, RPB 40(9), p6336 (1989)

Winer, PRB 41(17) p12150 (1990)

𝑁𝐷 = න
0

∞

𝑔 𝐸 ⋅
1

1 + 𝑒𝐸𝐵𝐵/𝑘𝑇
𝑑𝐸

= න
0

∞

𝑁𝑉𝑒
−𝐸/𝐸0 ⋅

1

1 + 𝑒𝐸𝐵𝐵/𝑘𝑇
𝑑𝐸

𝐸𝐵𝐵 = 𝐸𝐷 − 𝐸
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How to carry out the integration?

Fermi-Dirac type integrals: normally Sommerfeld approximation

(not allowed because of a) exponential, and b) high temperatures)

Here: use Boltzmann approximation below ED, unity above ED

𝑁𝐷 𝐸𝐷 ≈ න
0

𝐸𝐷

𝑁𝑉𝑒
−
𝐸
𝐸0𝑒−

𝐸𝐷−𝐸
𝑘𝑇 𝑑𝐸 + න

𝐸𝐷

∞

𝑁𝑉𝑒
−
𝐸
𝐸0𝑑𝐸

=
𝑁𝑉𝐸0𝑘𝑇

𝐸0 − 𝑘𝑇

𝐸0
𝑘𝑇

𝑒
−
𝐸𝐷
𝐸0 − 𝑒−

𝐸𝐷
𝑘𝑇

DE

1

1 + 𝑒(𝐸𝐷−𝐸)/𝑘𝑇

𝑒−(𝐸𝐷−𝐸)/𝑘𝑇
𝑒−𝐸/𝐸0
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10

Equilibrium defect densities

Street, PRB 40(9), p6336 (1989)

Band tail model: 

choice of E0 and ED is rather sensitive, NV =2x1021 cm-3eV-1 seems favourable

Data: Stutzmann, Phil. Mag. B 60, p531 (1989)
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Density of states

g(E)

CB

E

=> 𝐷𝑂𝑆 𝐸 = 𝑁𝑉𝑒
−
𝐸

𝐸𝑉 +
𝑁𝑉𝐸𝑉𝑘𝑇

𝐸0−𝑘𝑇

𝐸0

𝑘𝑇
𝑒
−
𝐸𝐷
𝐸𝑉 − 𝑒−

𝐸𝐷
𝑘𝑇 ⋅ 𝛿 𝐸 − 𝐸𝐷 + CB

VB

Valence band tail Neutral defect 

density at 𝐸𝐷
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Defect state with doping

anti-

bonding

bonding

Imagine a Boron atom close to a broken weak-bond state

Filling of the (weak) bonding orbitas with two electrons results in a free hole

Close to a broken weak-weak bond: one of the electrons in the defect states 

may drop to the VB and recombine with a hole, leaving behind one positive defect state

Si B
+

+
E

g(E)

VB CB

D+/0
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13

Defect state with doping

anti-

bonding

bonding

Imagine phosphorous close to a broken weak-bond state:

A free electron can drop into a broken weak-bond state, 

but it must overcome the repulsive correlation energy. 

correlation 

energy U

Si P

E

g(E)

VB CB

D0/-

0.2 eV

Recall: DOS diagrams of previous course showed that energetic 

of D− was lower, not higher!
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Occupation and defect charging

g(E)

CB

E

VB

Example I: p-doping (shift 𝐸𝐹 close to VB)

=> a hole in VB and an occupied state above 𝐸𝐹
=> need to define energetics with a new quantity: 

Formation enthalpy of charged defect: 𝐻

𝐸𝐹

𝐻(D+) = 𝐸𝐷 − 𝐸𝐷 − 𝐸𝐹 = 𝐸𝐹

put e- into 𝐸𝐷

e- can drop to VB, liberating (minus) 

excess energy w.r. to 𝐸𝐹

𝐸𝐷

Drop e- from defect to 

recombine with hole

So far: we considered electrons w.r. to a defect state.  

The Fermi-level would simply be at the defect energy (highest occupied electron state)

Now: let 𝐸𝐹 vary, e.g. by doping or by external bias voltage in a TFT 
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Occupation and defect charging

g(E)

CB

E

VB

Example II: n-doping (shift 𝐸𝐹 close to CB) 

=> free electrons in CB

𝐸𝐹 excess energy w.r. to 𝐸𝐹

correlation energy (effort  

required for putting second 

e- into defect state)

put e- into 𝐸D

𝐻 D− = 𝐸𝐷 − 𝐸𝐹 − 𝐸𝐷 + 𝑈

𝐸𝐷

I: drop e- from CB into 

free state of defect

II: overcome 

repulsion 𝑈

Formation enthalpy of D−
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Occupation and defect charging

g(E)

CB

E

VB

Original situation: 𝐸𝐹 close to the defect state at 𝐸𝐷:

𝐸𝐹

𝐻 D0 = 𝐸𝐷

No transfer on electrons

=> The formation enthalpy of the neutral defect D0

is equal to the energy of the electron in it:

𝐸𝐷
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Energetic cost of charging a defect at 𝐸𝐷

𝐻 𝐷0 = 𝐸𝐷

𝐻 𝐷+ = 𝐸𝐹

𝐻 𝐷− = 2 ⋅ 𝐸𝐷 + 𝑈 − 𝐸𝐹
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Defect density in doped a-Si:H

Data:

Street, PRB 24(2) p969 (1981)

Jackson, PRB 25(8), p5558 (1982)

Stutzmann, PRB 35(11), p 5666 (1987)
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At given 𝐸𝐹, the most likely defect is the 

one with lowest energy
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Generalization: defect pool

g(E)

CB

E

𝐷𝑂𝑆 𝐸 = 𝑁𝑉𝑒
−
𝐸

𝐸0 +
𝑁𝑉𝐸0𝑘𝑇

𝐸0−𝑘𝑇

𝐸0

𝑘𝑇
𝑒
−
𝐻(𝐷)

𝐸0 − 𝑒−
𝐻(𝐷)

𝑘𝑇 ⋅ 𝛿 𝐸 − 𝐸𝐷 + CB

VB

𝐷𝑂𝑆 𝐸 = 𝑁𝑉𝑒
−
𝐸

𝐸0 +
𝑁𝑉𝐸0𝑘𝑇

𝐸0−𝑘𝑇

𝐸0

𝑘𝑇
𝑒
−
𝐻(𝐷)

𝐸0 − 𝑒−
𝐻(𝐷)

𝑘𝑇 ⋅
𝑒
−
𝐸−𝐸𝑃

2

2𝜎2

2𝜋𝜎2
+ CB

Replace fixed defect position 𝐸𝐷
by many defect energies with 

Gaussian distribution centred at 𝐸𝑃
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Defect distribution over bandgap

find max of 𝑒
−
𝐸

𝐸0 ⋅ 𝑒
−

𝐸−𝐸𝑃
2

2𝜎2 => 𝐸𝑚𝑎𝑥 = 𝐸𝑃 − 𝜎
2/𝐸0

Maximum of defect distribution ≠ maximum of pool; where is it? 

Case I: neutral defect 𝐻 D0 = 𝐸 and  𝑘𝑇 < 𝐸0:

𝐷𝑂𝑆𝐷 𝐸 =
𝑁𝑉𝐸0𝑘𝑇

𝐸0−𝑘𝑇

𝐸0

𝑘𝑇
𝑒
−
𝐻(𝐷)

𝐸0 − 𝑒−
𝐻(𝐷)

𝑘𝑇 ⋅
𝑒
−
𝐸−𝐸𝑃

2

2𝜎2

2𝜋𝜎2

g(E)

CB

E

VB

many defect states available (max of pool), but large energetic cost

few defect states available, but likely to create
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Position of the distribution in bandgap

p-doped material:

positive defect (𝐻 D+ = 𝐸𝐹 ), same pool function: 

find max of 𝑒
−

𝐸−𝐸𝑃
2

2𝜎2

=> 𝐸𝑚𝑎𝑥 = 𝐸𝑃

n-doped material: 

negative defect (𝐻 D− = 2𝐸 + 𝑈 − 𝐸𝐹 ), but pool of doubly charged defects:

find max of 𝑒
−
2𝐸+𝑈−𝐸𝐹

𝐸0 ⋅ 𝑒
−

𝐸−(𝐸𝑃+𝑈)
2

2𝜎2

=> 𝐸𝑚𝑎𝑥 = 𝐸𝑃 + 𝑈 − 2𝜎
2/𝐸0
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Positions of the defect distributions

intrinsic material: 

D0: 𝐸 = 𝐸𝑃 −
𝜎2

𝐸0

g(E)

VB CB

E

p-doped material: 

D+: E = 𝐸𝑃
VB CB

E

n-doped material: 

D−: 𝐸 = 𝐸𝑃 + 𝑈 −
2𝜎2

𝐸0 VB CB

E

𝐸𝑃

𝐸𝐹

𝐸𝐹

𝐸𝐹

𝜎2

𝐸0

2
𝜎2

𝐸0

𝑈

reconciles positive 𝑈 with measurement
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Energetic distribution of defects

Pierz, JNCS (1987)

p-type: low Ef => absorption from VB into free states

n-type: high Ef => absorption from occupied states into CB

Defects created close to opposing band edge!

Finally explained by defect pool model!
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Excursion I: Defects in c-Si

Ma, PRB (2010)

different slopes: 

singly and doubly 

charged defects
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Excursion II: Defects at the Si/SiO2 interface
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Excursion III: Defects in CIGS

Diamond (element semiconductors: Ge and Si) 

Zincblende (optoelectronic materials: GaAs, InP, GaN)

Photovoltaic materials: 

CdTe (Zincblende)

CuInSe2 (Chalcopyrite)
Cu
In,Ga
Se

a

c
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Most common defects in Cu(In,Ga)Se2

• VCu (copper vacancy):

leaves behind one unpaired  back bond

=> acceptor type defect 

• IIICu (In or Ga anti-site)

two bonding electrons too much

=> (double) donor type defect
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Defect formation energies in chalcopyrites

Band structure calculation

Zhao, APL 85(24), p5860 (2004)

InCu (don)

VCu (acc)

GaCu (don)

VCu (acc)

Material not intentionally doped: expect intrinsic material with midgap 𝐸𝐹: 

CIS: Formation of InCu donors needs little energy => natural n-material

CGS:. VCu acceptors form spontaneously => natural p-material

CIS (1.0 eV) CGS (1.7 eV)


