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Band tails and conductivity 

in disordered materials
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Disorder in amorphous silicon

• Waves with short wavelengths (high energy) feel short range order 

similar to the periodic crystal (four fold coordination of nearest neighbours)

• Waves with long wavelengths (low energy) are disturbed 

by lack of long range order (localization)

Consequence in Si:

- similar high energy interactions

- low energy interactions will be modified (properties close to band edges!)
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DC-conductivity in a-Si and a-Si:H
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sputtered a-Si

LeComber, JNCS 11, p219 (1972)

PE-CVD a-Si:H

Temperature dependence of the conductivity

Arrhenius plot: slope => activation energy of transport process
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Hopping conductivity

If g(E) is high within the gap (sputtered material): 

hopping between localized states around EF:

Mott, Phil. Mag. 19, p835 (1969)

variable range hopping

(very low temperature):

)(,)( 22
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/
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nearest neighbour hopping
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Extended state conductivity

For high T and low g(E) within the gap (PECVD-material): extended 

state conduction (conduction by delocalized states around EC or EV):

kTEE

MB
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dEETEfEgeenT

/)(
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==




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





(E0-EF) ≈ 0.6 - 0.8 eV, activated transport similar 

to crystalline semiconductors
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Activation energy

MNF EEE
e

/)(

000
0−=

Attention: E0 in the conductivity is close to, but not equal to, the band gap

Spear’s data suggest a 

relation between 

the activation energy 

Ea= (E0-EF) and the 

pre-factor σ0 (statistical shift)

Meyer-Neldel relation, 

EMN ≈ 50 meV

Spear, JNCS 8-10, p727, (1972)

Underlying reason : 

presence of band tails!
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Drift mobility

Equilibrium mobility too low for Hall effect => Use non-eq. drift mobility

• excite with a short pulse of (blue) light

• injection of hot carrier distribution Δ𝑛 (and Δ𝑝) close to surface

LeComber, JNCS 11, p219 (1972)

𝐸

𝑓𝐹𝐷 𝐸

𝐸𝐹,𝑒𝑞 𝑛0

𝐸

𝑘

dark flashed

𝐸 𝐸

𝑘

𝑓ℎ𝑜𝑡 𝐸
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Drift mobility

• after thermalisation (~ps) => two quasi eq. distributions with two QFLs

• apply bias voltage 𝑉 across thickness 𝑑 of the film 

• Drift velocity 𝑣𝑑 = 𝜇𝐸, measure transit time 𝑡𝑇 to other side; 𝑣𝑑 = 𝑑/𝑡𝑇

LeComber, JNCS 11, p219 (1972)

𝐸

𝐸𝐹,𝑛 𝑛0 + Δ𝑛

𝐸

𝑘

𝑘 = 0

thermalised

𝐸

𝐸𝐹,𝑛 𝑛0 + Δ𝑛

𝐸

𝑘

𝑘 = 𝑚𝑣𝑑/ℏ

with bias

𝐸𝐹,𝑝 𝑝0 + Δ𝑛𝐸𝐹,𝑝 𝑝0 + Δ𝑛
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Example: drift in organic semiconductor

Chen, JJAP (2000)

Drift mobility: 

𝜇𝐷 =
𝑣

𝐸
=

𝐷

𝑡𝑇𝐸
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Temperature dependence of drift mobility
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LeComber, JNCS 11, p219 (1972)

Note: non-equilibrium process, 

different from Hall mobility

Arrhenius plot: 

Linear region around RT: Eact ≈ 0.2 eV

hopping 

region

activated 

region
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Thermally activated drift mobility: trap level

EV

Et

log(g(E))

E(k)

EF

Assumption: only free carriers in 

bands can contribute to transport

Occupancy of CB (at 𝐸 = 0), 

taking into account Nt trap levels: 

mobility

E

μe

EC

μh

mobility 

gap

band 

gap

Model assumes a mobility gap (sharp change close to band edge)

𝑄 =
𝑁𝑐𝑘𝑇𝑒

−
0
𝑘𝑇

𝑁𝑐𝑘𝑇𝑒
−
0
𝑘𝑇 + 𝑁𝑡𝑒

−
−𝐸𝑡
𝑘𝑇

𝜇𝑑 = 𝜇0
𝑁𝑐𝑘𝑇

𝑁𝑐𝑘𝑇 + 𝑁𝑡𝑒
𝐸𝑡
𝑘𝑇

𝜇𝑑 = 𝜇0
𝑛𝑓𝑟𝑒𝑒

𝑛𝑡𝑜𝑡𝑎𝑙
= 𝜇0

𝑛𝑓𝑟𝑒𝑒

𝑛𝑡𝑟𝑎𝑝𝑝𝑒𝑑 + 𝑛𝑓𝑟𝑒𝑒
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Drift mobility (non-equilibrium)
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LeComber, JNCS 11, p219 (1972)

Et approximately 0.2 eV, approximation makes 

little difference in temperature range of interest

Model:

Boltzmann-like approximation

𝜇𝐷 = 𝜇0
𝑁𝑐𝑘𝑇

𝑁𝑐𝑘𝑇 + 𝑛𝑡𝑒
𝐸𝑡/𝑘𝑇

𝜇𝐷 ≈ 𝜇0
𝑁𝑐𝑘𝑇

𝑛𝑡
⋅ 𝑒−𝐸𝑡/𝑘𝑇
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Second thoughts about drift experiments

Tiedje, in Physics of Hydrogenated a-Si (1984)

Pulse shape not rectangular 

Two decay regimes

measured in a-Si(H)

𝑡𝑇

Tiedje, SSC 37 p49, (1980)

Tiedje, PRL 46(21) p1425, (1981)

1x104 V/m

2x104 V/m

n-type

Mobility value depends on field 

(higher mobility for faster sweep)
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Improved model: multiple trapping conduction

Trap occupation: equilibrium between trapping and thermal release

=> maximum density of trapped carriers at an energy  Et below  EC

Et depends on 

• temperature (thermal activation)

• time (release from deep states can happen, but takes longer)

Tiedje, SSC 37 p49, (1980)

Tiedje, PRL 46(21) p1425, (1981)

EC

Et

x

E

EF

Assumptions:

Exponential distribution of states

Residence time depends on trap depth

because of thermal release

𝑁𝑡 𝐸 = 𝑁𝐶𝑒
𝐸/𝑘𝑇0

𝑡 = 𝜈−1𝑒𝐸𝑡/𝑘𝑇
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Time evolution of trapping statistics

Thermal excitation

of upper part (and 

extraction)

First trapping event: 

a share of 𝜎 (cross

section) gets filled

The most probable trap 

energy 𝐸𝑡 sinks deeper 

into the band tail

Excitation

into 

CB

𝑡 = 𝜈−1𝑒𝐸𝑡/𝑘𝑇 <=> 𝐸𝑡 𝑡 = −𝑘𝑇 ⋅ ln 𝜈𝑡

𝐸𝑡,1 𝐸𝑡,2

𝐸𝐹

𝑔 𝐸𝑔 𝐸𝑔 𝐸𝑔 𝐸

𝐸𝐸𝐸𝐸
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Effective value for trap density

first trapping event Quasi-equilibrium at later time: 

• upper part: thermal excitation

into conduction band 

• lower part: complete trapping

Tiedje, SSC 37 p49, (1980)

E

Et

E

log slope: 1/kT0

0)0( kTNN ttrap = 

log slope above Et: 

1/kT0 - 1/kT = -(1-T/T0)/kT

0/
)(

kTE

Ct eNEN =
occupation above Et: 

kTEkTE
eeEQ // 0~)( −

trap occupation: 

0/
)(

kTE
eEQ =

g(E) g(E)

0

0
/1

)()(
TT

kT
ENkTENN tttttrap

−
+=
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Drift mobility with trapping into band tail

kT

E

ttc

c
D

t

e
TT

kT
kTENkTN

kTN










−
++

=

)/1(
)(

0

0

0/
)(

kTE

Ct eNEN =Use band tail density

tkTtEt ln)( −=

))/1/(1/()(1

1

00

)1(0
TTTTt

D
−++

=
−



Put most probable level Nt into occupation statistics of single trap level

and “sinking” trap level

Time dependent mobility (α=T/T0), result depends on measurement time!

)1(

0 )()1(  −−− tD
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Cross-check with measurement

Scher, PRB (1975)

Jakobs, PRB (1993)

Initial phase: transport with trapping 

from CB into sinking level (Tiedje)
)1(

0 )()1(  −−− tD

Later phase: hopping with trapping 

and delayed release (w/o derivation)

)1()(~  +−tD

Here: α = 0.5, T0 ≈ 320 K
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Band tail slope from drift mobility

Tiedje, PRL 46(21) p1425, (1981)
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0.027 eV

Holes

500 K

0.043 eV

The detailed time- and temperature dependence of the signal 

dispersion yields the band tail slopes
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Drift mobility shows transition between dispersive (low T) and 

non-dispersive transport (high T); transition at T0
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XPS – direct measurement of bands tails

c-Si

a-Si:H

X-ray photoelectron spectroscopy (XPS)

excite e- from filled states (VB)

inverse XPS: use light to pump electrons 

into empty states (CB), excite from there 

Determine density of states (DOS) for a-Si:H

Jackson, PRB 31(8) p5187, (1985)
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Detail: band edges of c-Si and a-Si
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High resolution XPS

Jackson, PRB 31(8) p5187, (1985)

Detailed band edge structure reveals band tails

(already suggested earlier on the basis of charge transport measurements) 

lin. scale log. scale

a-Si

a-Si:H
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Optical signature of band tails

Band tail region 1.4 eV < E < 1.7 eV: absorption due to exponential tail

Low energy < 1.3 eV: defect absorption (see defect lecture)

High energy > 3.5 eV: similar to direct transition in c-Si

Band edge region 1.8 eV < E < 3.5 eV: non-direct gap, disorder
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Band tail absorption

Absorption processes:

1. VB to CB tail

2. VB tail to CB

3. VB tail to CB tail

Redfield, SSC 44(9) p1347, (1982)

=> Slope of Urbach absorption is dominated by valence band

EC=0.027 eV 

EV=0.043 eV

EU=0.045 eV
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Band tails

• band tails are a direct consequence of disorder

• several observations confirm their presence

– dispersive transport

– Urbach tail (band tail absorption)

– Valence band structure in XPS

• the band tails are asymmetric

• in good material (PE-CVD grown):

– VB tail slope 50 meV

– CB tail slope 30 meV
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Drift mobility in IGZO

Lee, APL (2012)

RT: 

CB transport w.

trapping

LT:

hopping transport

w. trap distribution

Dependence on bias voltage

(related to faster sweep over 

trap sites, similar to a-Si:H)
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XPS analysis of VB structure in IGZO

Nomura, JAP (2011)

VB tail

deep state 

(oxygen vacancy)

metastable shallow state? 

(not trapping active in TFTs)
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Emerging picture

Lee, IEEE IEDM (2011)

Similar transport processes (trapping into tail states)

IGZO: steeper CB tail, lower values for 𝑁𝑉 and 𝑁𝐶

XPS suggests deep states


