Band tails and conductivity
in disordered materials

B Large Area Electronic Materials - Introduction

IEM NEUCHATEL

(=

F.-J. Haug



=PrL

B Large Area Electronic Materials - Introduction

IEM NEUCHAT

EL

Disorder in amorphous silicon

« Waves with short wavelengths (high energy) feel short range order

similar to the periodic crystal (four fold coordination of nearest neighbours)
« Waves with long wavelengths (low energy) are disturbed

by lack of long range order (localization)

Conseqguence in Si:
- similar high energy interactions
- low energy interactions will be modified (properties close to band edges!)
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DC-conductivity in a-Si and a-Si:H

Temperature dependence of the conductivity

Conductivty [1/Qcm]

Arrhenius plot:
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slope => activation energy of transport process
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cPFL  Hopping conductivity
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If g(E) is high within the gap (sputtered material):
hopping between localized states around Eg:

energy
barrier W

tunneling

nearest neighbour hopping  (T)=c,e™'*", o, = 2e2r2vphg(EF)e—2aLr
(below room temperature):

_B/T1/4

variable range hopping o(T)=0c,e , o, =¢er’v,g(E;)

(very low temperature):
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Extended state conductivity

For high T and low g(E) within the gap (PECVD-material): extended
state conduction (conduction by delocalized states around E or E,):

o(T) = ensu = 9(E) fo (E. T)(E)E

~ eﬂoJ- 9(E) fys (E, T)dE ~ \eﬂog(Eo)kTJe_(Eo_EF)/kT
S v

Op

(E,-Eg) = 0.6 - 0.8 eV, activated transport similar
to crystalline semiconductors

o
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Activation energy

Attention: E, in the conductivity is close to, but not equal to, the band gap

Spear’s data suggest a
relation between

the activation energy

E.= (E,-Ef) and the
pre-factor g, (statistical shift)

I (EO_EF)/EMN
Oy =0yt

Meyer-Neldel relation,
Eun = 50 meV

Underlying reason :
presence of band tails!
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Equilibrium mobility too low for Hall effect => Use non-eq. drift mobility
« excite with a short pulse of (blue) light
 injection of hot carrier distribution An (and Ap) close to surface

dark flashed
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IEM NEUCHATEL LeComber, JNCS 11, p219 (1972)
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Drift mobility

« after thermalisation (~ps) => two quasi eq. distributions with two QFLs

« apply bias voltage V across thickness d of the film
« Dirift velocity v; = uE, measure transit time t; to other side; vy = d/ty

thermalised

Ern(ng + An)

AE

EF,p (pO + An) k

(k) =0

with bias

Er ,(ng + An)

EF,p (pO + An)

<]

k
/.‘."'\ >
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LeComber, JNCS 11, p219 (1972)



=PrFL Example: drift in organic semiconductor
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=PrL Temperature dependence of drift mobility

Temperature [K]
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Arrhenius plot:
Linear region around RT: E_ = 0.2 eV

Note: non-equilibrium process,
different from Hall mobility
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Thermally activated drift mobility: trap level

Assumption: only free carriers in

bands can contribute to transport $ E() t E
= Nfree . Nfree E. _ log(g(E)) mobility
da — M0 - M0
Ntotal Ntrapped + Nfree EL— — -~ i — fle
Occupancy of CB (at E = 0), S — S IR I RN
taking into account N, trap levels: i
band mobility
0
B N kTe kT gap gap
 N.kTe T + N,e - Ey ™~ 1
crlée t€
N_kT
Ha = Ho E;
N_kT + N.ekT

Model assumes a mobility gap (sharp change close to band edge)
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Drift mobility (non-equilibrium)

Temperature [K]
400 300 200 150
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Model:

N, kT
N_kT + n,eEt/kT

Up = Ho

Drift mobiltiy [cm?/Vs]
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Boltzmann-like approximation
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Inverse temperature [1000/K]

N_.kT
Ng

Up = Uo - e~ Ee/kT

E, approximately 0.2 eV, approximation makes
little difference in temperature range of interest

LeComber, JNCS 11, p219 (1972)
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Second thoughts about drift experiments

Pulse shape not rectangular
Two decay regimes

measured in a-Si(H)
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Tiedje, in Physics of Hydrogenated a-Si (1984)

Mobility value depends on field
(higher mobility for faster sweep)
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Improved model: multiple trapping conduction

Assumptions:
Exponential distribution of states

N:(E) = NceE/¥To

Residence time depends on trap depth
because of thermal release

t = y—1pEt/kT

Er

' E

Trap occupation: equilibrium between trapping and thermal release
=> maximum density of trapped carriers at an energy E, below E.

E, depends on
« temperature (thermal activation)

« time (release from deep states can happen, but takes longer)

Tiedje, SSC 37 p49, (1980)
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=PFL " Time evolution of trapping statistics

t = v left/kKT  <=>  E.(t) = —kT - In(vt)

g(E)

Excitation First trapping event: Thermal excitation The most probable trap
into a share of o (cross of upper part (and energy E; sinks deeper
CB section) gets filled extraction) into the band tall
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cPFL Effective value for trap density

first trapping event Quasi-equilibrium at later time:

 upper part: thermal excitation
iInto conduction band

* lower part: complete trapping
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E
o(E) T o(E)

occupation above E;:

Q(E) - eE/kTOe_E/kT

log slope above E;:
/KT, - /KT = -(1-T/T)/IKT

N (E) = N.e™"*" E,

log slope: 1/kT,

trap occupation:

Q(E) — .05k

KT
= Nt(Et)'kTo + Nt(Et)'

Niap = N;(0)- o - KT, Ntrap m
0

trap

B Large Area Electronic Materials - Introduction

IEM NEUCHATEL Tiedje, SSC 37 p49, (1980)



cPFL  Drift mobility with trapping into band tail
Put most probable level N, into occupation statistics of single trap level

N KT

Hp = Hy

KT o
N.KT + N, (E,)-| kKT + ekt
1-T/T,)

Use band tail density N, (E) = N e "

and “sinking” trap level  E(t) =—KT Inut

1
1+ ()T, /T +1/QA-T/T,))

Hp = Hy

oy ~ 1y - (1= ) - (o) &

Time dependent mobility (a=T/T,), result depends on measurement time!

B Large Area Electronic Materials - Introduction

IEM NEUCHATEL

=~y

F.-J. Haug



B Large Area Electronic Materials - Introduction

IEM NEUCHAT

EL

Cross-check with measurement
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Initial phase: transport with trapping
from CB into sinking level (Tiedje)

oy ~ 1y - (- ) - (o) &

Later phase: hopping with trapping
and delayed release (w/o derivation)

Hp ~ (Ut)_(1+a)
Here:a=0.5T,=320K

Scher, PRB (1975)
Jakobs, PRB (1993)



cPFL  Band tail slope from drift mobility
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Drift mobility shows transition between dispersive (low T) and
non-dispersive transport (high T); transition at T,

Temperature [K]
400 300 200 150

Electrons

0.8

0.6

Drift mobility [cm*/Vs]
Tail parameter T/T,

Inverse temperature [1000/K] TEMPERATURE (K)

The detailed time- and temperature dependence of the signal
dispersion yields the band tail slopes
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=PFL  XPS - direct measurement of bands tails
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Detail: band edges of c-Si and a-Si

Density of states [L/cm’eV]
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=PrL High resolution XPS
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Detailed band edge structure reveals band tails
(already suggested earlier on the basis of charge transport measurements)
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cPFL  Detail of band edges

c-Si a-Si:H
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Optical signature of band tails

High energy > 3.5 eV: similar to direct transition in c-Si
Band edge region 1.8 eV < E < 3.5 eV: non-direct gap, disorder

10’
10°
10°

10*

Absorption coefficient [cm'l]
|_\
ow

Photon energy [eV]

Band tail region 1.4 eV < E < 1.7 eV: absorption due to exponential tail
Low energy < 1.3 eV: defect absorption (see defect lecture)
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cPFL Band tail absorption

Absorption processes: :
1. VB to CB tail -
2. VB tail to CB 1022
. . L E E
3. VB tail to CB tall R o
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=> Slope of Urbach absorption is dominated by valence band
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Band tails

band tails are a direct consequence of disorder

several observations confirm their presence
— dispersive transport

— Urbach tail (band tail absorption)

— Valence band structure in XPS

the band tails are asymmetric
In good material (PE-CVD grown):

— VB tail slope 50 meV
— CB tail slope 30 meV

F.-J. Haug
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Drift mobility in 1IGZ0O
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Dependence on bias voltage
(related to faster sweep over
trap sites, similar to a-Si:H)
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Lee, APL (2012)



cPFL  XPS analysis of VB structure in 1IGZO
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deep state metastable shallow state?
(oxygen vacancy) (not trapping active in TFTSs)
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E, (AOS) ' Ey (a-Si:H)
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Similar transport processes (trapping into tail states)
|GZO: steeper CB tail, lower values for N, and N,

XPS suggests deep states
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