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Optical properties:

Dispersion and absorption
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Dispersion (frequency dependence)

Very simple model: oscillator with damping  

e.g. movement of electrons against cores 

+

-
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Dipole moment and macroscopic polarization:

Find dielectric function:

𝑚 ሷ𝑥 + 2𝛽 ሶ𝑥 + 𝜔0
2𝑥 = 𝑒𝐸0𝑒

−𝑖𝜔𝑡
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Dispersion
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Photon energy (eV)

normal anomal normal

Shape of permittivity 

dispersion: Lorentzian

normal dispersion: 

higher permittivity for 

higher energy;

necessary for spectral splitting 

of prisms, also shine or “lustre” 

of diamonds

anomal dispersion: 

opposite trend, normally not 

observed because in absorbing

region

𝜖′ + 𝑖𝜖′′ = 𝑛 + 𝑖𝜅 2Relation:

refractive index extinction coefficient
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Frequency ranges of dispersion (e.g. c-Si)

Frequency dependence of contributions to polarizability arising from 

a) free electron plasma (depending on doping, can be up to vis) 

b) lattice vibrations (IR) 

c) displacement of electrons (vis and UV)

d) interactions with core electrons (X-ray regime)
Afsar, J. IR waves, (1994)

Green, Sol. En. Mat. (2008)

Palik, Handbook of Opt. Const.
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Propagation and absorption in media 

Wave vector: defined with effective wavelength 

Field amplitude and intensity (n complex):

Absorption coefficient: responsible for exponential decay of intensity

𝑘 =
2𝜋

𝜆𝑒𝑓𝑓
=
2𝜋 ⋅ 𝑛

𝜆0

𝐸 𝑥, 𝑡 = 𝐸0 exp 𝑖 𝑛 + 𝑖𝜅 𝑘𝑥 − 𝜔𝑡

𝐸 𝑥, 𝑡 2 = 𝐸0 exp 𝑖 𝑛 + 𝑖𝜅 𝑘𝑥 − 𝜔𝑡
2

= 𝐸 𝑥, 𝑡 2 exp − 2𝜅 ⋅ 2𝜋/𝜆 𝑥

α

α = 4𝜋𝜅/𝜆

x



L
a

rg
e

 A
re

a
 E

le
c
tr

o
n

ic
 M

a
te

ri
a

ls
 –

O
p

ti
c
a

l 
P

ro
p

e
rt

ie
s

F
.-

J
. 
H

a
u

g
 

6

Absorption coefficient

Strong absorbers (GaAs, CuInSe2): 

α~ 𝐸 − 𝐸𝑔
1/2

(direct gap)
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Weak absorbers (c-Si): 

α~ 𝐸 − 𝐸𝑔
2

(indirect gap) 

Absorption and band gap
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In c-Si: both mechanisms

Green, Sol. En. Mat. 2008

in vis and near IR (400 nm to 1000):

indirect gap dominates, 

α~ 𝐸 − 1.13eV 1/2is OK in Vis

direct gap in UV (< 400 nm)

Oscillator model: no gap behaviour
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Electronic and optic properties of 

materials with lattice
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Energy bands and the reduced scheme (1D)

free electron energy in 1D: 

express electron momentum p

by wave vector k (DeBroglie)

Periodic potential: Application of Bloch 

theorem gives rise to periodicity in E(k)

with reciprocal lattice vector G

𝐸 =
𝑝2

2𝑚
=

ℏ𝑘 2

2𝑚
𝐸 =

ℏ𝑘 2

2𝑚
=
ℏ2 𝑘 + 𝑛𝐺 2

2𝑚
𝐺 =

2𝜋

𝐿
, 𝑛 = 0,±1,±2,…

1st BZ 2ndBZ

𝐺 =
2𝜋

𝐿

𝑘

𝐸
𝐸

𝑘
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Energy gaps due to weak potential

One example of a periodic potential: 𝑈 = 𝑐𝑜𝑛𝑠𝑡.

Splitting at boundaries of 1st BZ by 2𝑈

Alternatively, definition by Fourier components

𝑈 = 𝑈1 exp 𝑖𝑘𝑥 + exp−𝑖𝑘𝑥 for cos-shape potential

1st BZ

𝐸

𝑘

2𝑈
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Projections of energy bands (2D)

free electron energy in 2D:

energy surface: 1D representation of 2D:

follow lines of high symmetry 

𝐸 =
𝑝2

2𝑚
=
ℏ2 𝑘𝑥

2 + 𝑘𝑦
2

2𝑚
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Γ X R ΓR

Γ (centre)

X (edge)

R (corner)

(corner sliced open for illustration) 
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Relation between real and reciprocal space

Elementary cell: smallest cell that represents the lattice 

Wigner-Seitz cell: construction rule for a common elementary cell 

• draw lines to all neighbours

• construct a perpendicular plane (2D: line) at half-distance

The Wigner Seitz cell of reciprocal space is called the first Brillouin zone (1st BZ)

Example: 

square lattice in 2D real space => square lattice also in reciprocal space

𝑎 2𝜋/𝑎
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Reciprocal lattice in 3D (e.g. fcc for Si)

Real lattice: 

face centred cubic (fcc)

Reciprocal lattice: 

body centred cubic (bcc)

Wigner Seitz cell: 

truncated octahedron
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Band diagrams of the fcc lattice

Free electron bands Band diagram of c-Si

Formation of band gap: 

VBM: rounding of intersection at Γ (heavy and light holes + split off band)  

CBM: 85% towards 𝑋 (6 equivalent minima in the [100] directions, “pockets”)

indirect gap: 1.13 eV

direct gap Γ𝑉𝐵→ Γ𝐶𝐵: ca. 3 eV
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Indirect absorption in c-Si

Band diagram of c-Si around gap

direct transitions > 3eV : E’0/E1 or E2 (vertical VBM to CB)

indirect transitions >1.13 eV (from VBM to CBM)

require “horizontal” component, e.g. phonon assistance 

Lautenschlager, PRB 36(9) 4821 (1987)

Eg

nmd
k

Si

B
543.0

22 
==

CB

VB
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Phonons: small energy, large momentum

Phonon band diagram, starting like 𝜔 = 𝑐𝑘 (sound wave)

LA (40 meV)

TA (20 meV)

LO (55 meV)

TO (60 meV)

Smith, PRL 26(11) 642 (1971)

Brockhouse, PRL 1959

Pop, JAP 96(9) 4998 (2004)

Phonon DOS

E
n

e
rg

y
 [

m
e
V

]

60

40

20

0

at 85% of [100]: 20 meV (TA) and ca. 60 meV TO (no longitudinal excitation by light)
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Origin of band-gaps in

materials with short-range order
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Ψ𝑏 = 𝑒− 𝑥+1 2
+ 𝑒− 𝑥−1 2

Ψa = 𝑒− 𝑥+1 2
− 𝑒− 𝑥−1 2

Orbitals and energy states

Example:  molecule, e.g. H2

Energy level of an 

electron in the atom

Bonding state 

(overlapping orbitals)

Antibonding state 

(zero between atoms)
orbitals Wave-functions (1D) 

Binding energy separates bonding state (occupied) and antibonding state (free)
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2

Shape of wave-functions (1D)
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𝑃 = 2

𝐺 = 2𝜋/𝑃 ≈ 3

A chain of four atoms

(reciprocal coordinate)
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A “chain” of two molecules

(reciprocal coordinate)
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Correct MO theory for Si nanoparticles

Hapala, PRB (2013)

Si∞
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Absorption below the gap

signature of disorder
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Close-up of low absorption region in c-Si
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E
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 = 1.130 eV
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 = 0.015 eV

+ 60 meV

replicas

Explanation: lattice vibrations 

(phonons) mediate absorption

below gap: lattice must provide phonons (cooling) 

above gap: phonons are emitted (heating)

Weakly absorbing tail below gap

Fine structure: 

- large signatures at ± 60 meV

- weak signatures at ± 20 meV

Haynes, JPCS 1959

Vouk, JPC 1977

Cody,  JNCS 1992
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Close up: sub-gap absorption
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McFarlane, PR 1958

Daub, PRL 1995

Trupke,  JAP 2003

Temperature dependence of ultra-low absorption: 

(use generalized Planck radiation law to inverse photoluminescence yield)

at low temperature:

• Absorption drops massively (cold lattice can provide fewer phonons) 

• Steps become more prominent (less thermal broadening)

• Average slope changes (up to about 10 meV)

Crude approximation:

𝛼 𝐸 = 𝛼0 exp 𝐸/𝐸𝑈
where 𝐸𝑈 is the Urbach energy

(or Urbach slope)
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Absorption in a-Si

Exponential absorption tail below the gap1 2 3 4
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Identical absorption for E > 3.2 eV:

nm7.0
2

2

==
mE

h


Same as near range order! 

Electron waves with E > 3 eV don’t 

feel the disorder

Indirect band  gap ~1.75 eV

a-Si

c-Si

Higher absorption in visible

corresponding electron wavelength (DeBroglie)
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Band edge absorption in a-Si

Absorption tail is associated with disorder (combination of structural and thermal)
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Cody, PRL 1981

Weiser, JNCS 1989
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Urbach absorption 𝛼 𝐸 = 𝛼0 exp 𝐸/𝐸𝑈

In device quality material: EU ~ 50 meV at RT

flattening at high T similar to c-Si (but with different numerical values)

a-Si

c-Si
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Disorder and Urbach absorption

Hypothesis: disorder of the displacement contributes to absorption signature, 

regardless whether thermal or static; 𝐸𝑈 𝑇 = 𝐸𝑈
2 0 + 𝛾𝑘𝑇 2

Low T: static disorder dominates (c-Si: almost zero)

High T: similar temperature dependence (curvature)

Cody, J. de Physique 1981

Stutzmann, Phil Mag Lett. 1992

a-Si

c-Si
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Summary

Bandgaps

• in crystals: bands and gaps as consequence of periodicity and binding 

potential

• in disordered materials: overlap of discrete states with increasing 

delocalization

Absorption below gap (Urbach region):

• in crystals: 

explained by thermal “disorder”

(a very ordered phenomenon explained by phonons)

• in disordered materials: 

a combination of structural and thermal disorder


