

SOLUTION SERIES 4

Exercise 1: PV installations

We want to design a PV system for a house with a suitable roof area of ca. 5 m times 6 m. We use modules X22-360-COM whose data is provided on Moodle (datasheet Sunpower).

- What is the maximum number of modules you can install on the available surface and what is the nominal power of such a system?

Solution:

Datasheet 1 (eff=22.2%)

N° modules $\approx 5 \times 3 = 15$

The modules can be arranged with frame supports.

$15 \times 360 \text{ Wp} = 5.4 \text{ kWp}$

- On a sunny day in winter, reflection from surrounding snow compensates for the low position of the sun in the sky. Thus you can have irradiance of 1000 W m^{-2} at a module temperature $+5^\circ\text{C}$. How much power does the system generate under such conditions?

Solution:

$\text{Max V} = 15 \times 360 (1 - 0.0029 \times (-20)) = 5.71 \text{ kWp}$

- How would you accommodate the limitation of the maximum system voltage?

Solution:

The maximum voltage the system can reach is the number of modules times the open-circuit voltage of a module, which would happen if all the modules are connected in series and the system is disconnected from the inverted/grid during the day due to, for instance, a maintenance or malfunction. If this voltage exceeds the maximum allowed system voltage, the cells should be stringed in a way to lower the voltage.

In our case, the system voltage can reach up to $69.5 \times 15 \text{ V} = 1042.5 \text{ V}$, which is above the limit of the system. To lower the voltage, two strings of 8 + 7 modules or three strings of 5 and an inverter with multiple string input can be used.

(Bonus, probably not discussed in the course: if the inverter accepts only symmetric strings, you would have to reduce to 2 times 5 = 10 modules or 3 times 4 = 12 modules, or create an ugly patch of 2 times 5 plus two more that are rotated by 90° , or you have to use power optimizers.)

Exercise 2: Cell processing improvements

State 3 major improvements that made possible to reduce silicon usage/EPBT over the last few decades.

Solution:

The silicon usage has improved from 17 g/W to 3.5 g/W in the last twenty years. The energy payback time of PV is now reduced to 6 months - 1 year. The major improvements in the solar cell production chain that have made this reduction possible are:

- The Siemens silicon recrystallization process: it lowered the energy consumption related to Si production from 200 kWh/kg to 45 kWh/kg;
- The introduction of diamond wire in the wafer sawing process: it reduces the material losses from 200 μm to about 60 μm ;
- The fast improvement in the module efficiency, which is growing by 0.3-0.4 % every year.

These topics will be treated more in depth in dedicated lectures in the course.