

EXERCISE SERIES 1

Exercise 1: LCOE for a modern roof-top solar system

Consider you are buying new solar modules for roof-top mounting and (partial) self-consumption. The modules that you consider are 260€, measure 1.7 m^2 , and deliver 350 W_p . Your roof is pointed south, in Switzerland, and you can assume 1200h full sun equivalent per year. A 12 kW inverter is 1369€ and a 20 kW inverter is 1529€. Both have an efficiency of 97%.

- a) Calculate how many modules you would need, how much the full system would cost, and how much power would be generated per year for both a 12 kW_p system and a 20 kW_p system.
- b) Assume you save 20€cts per kWh that you don't purchase from the grid (it is unrealistic to 100% self consume, but calculating for grid buy-back or battery storage is complex). How many years would it take to repay the total initial cost of each system?
- c) Assume roughly 50€ per year in cleaning and maintenance costs, and 0.4% yearly loss in power output. What is the LCOE for each system, assuming a 25 year lifetime?

Exercise 2:

- a) Explain the behaviour of the thin film market share during the years. Why do silicon-based PV modules (i.e. made of Si wafers) currently rule the market (over thin films)?
- b) What is the main technology used for aerospace applications? What are the main differences in optimization strategies with respect to terrestrial solar cells?
- c) Assuming a transition towards electricity replacing all fossil fuel, with an averaged improved efficiency by a factor 3, and assuming we keep our primary energy needs constant at 166'000 TWh per year. How many W of solar panels placed in the desert would you need ? (yield of 1800 kWh/kW) How many W of offshore wind turbine ? (yield of 3500 kWh/kW) How many Small nuclear reactor of 100 MW ? (assuming 90% operational time).