

EXERCISE SERIES 8

Exercise 1: P-N junction

- a) Consider a p-n-junction with equal doping concentrations in both the p-doped and n-doped part and no bias voltage applied. Sketch the *charge densities*, the *electrical field* and *electrical potential* within the space charge region and explain how they are related to one another. Sketch also the *band diagram* for the same region.
- b) Consider now a junction with a bias voltage applied.
 - (a) Sketch the carrier concentration for electrons and holes that will arise throughout the junction for forward and reverse bias (direct or reverse polarization).
 - (b) What will happen to the electric field across the junction, the width of the depletion region and the energy bands (CB and VB) for each case?
- c) Explain in your own words how the current flows across the junction in equilibrium, forward bias, and reverse bias. *Hint:* Consider drift and diffusion currents.

Exercise 2: Lifetime, surface recombination velocity and saturation current

In this exercise we will consider a solar cell with an infinite base and determine the dominating contribution to the saturation current density J_0 . It is the sum of two parts: the base J_{0B} and the emitter J_{0E} saturation current density. J_0 is detrimental to the cell performance as it influences the V_{oc} and thus the overall cell efficiency.

We consider a solar cell based on p-type crystalline silicon wafer with an infinite base, i.e the thickness of the latter is much higher than the diffusion length of the electrons. The emitter is $1\text{ }\mu\text{m}$ thick ($x_j=1\text{ }\mu\text{m}$) and homogeneously n^{++} doped ($N_S = 2 \cdot 10^{19}\text{ cm}^{-3}$). After passivation of the emitter, the surface recombination velocity at the front surface S_p is 10^4 cm s^{-1} . The doping concentration in the base is $N_A = 1 \cdot 10^{16}\text{ cm}^{-3}$. Fig. 1 shows the relationship between J_{0E} , the surface recombination velocity S_p and the surface concentration N_S .

- a) Is the saturation current density in the base J_{0B} influenced by the surface recombination velocity in this specific case? Considering Fig. 1 and assuming a lifetime in the base of $\tau_n = 4\text{ ms}$, which saturation current governs the solar cell efficiency? Is it the same if τ_n is equal to $10\text{ }\mu\text{s}$?
- b) With the results of part a) in mind explain why the temperature coefficient for a-Si ($0.2\text{ \%}/^\circ\text{C}$) is lower than for c-Si ($0.5\text{ \%}/^\circ\text{C}$).

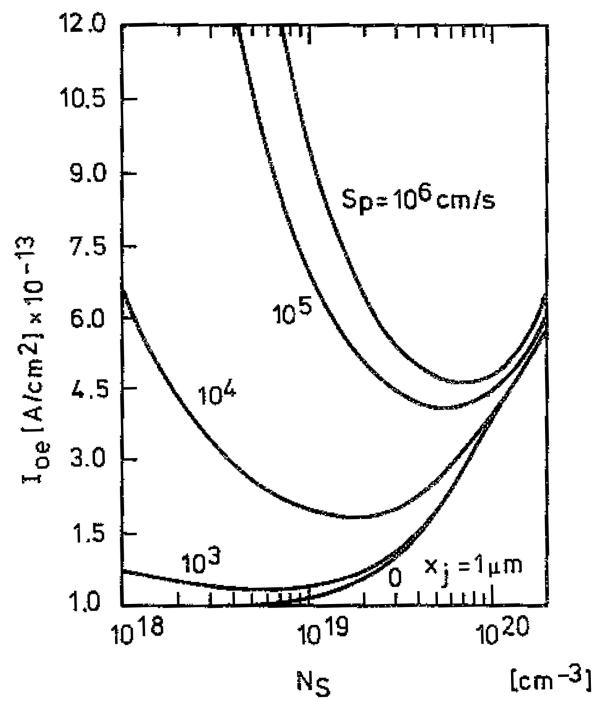


Figure 1: Saturation current of an emitter as a function of surface concentration, with S_p being parameter. Taken from *Crystalline silicon solar cells* by A. Goetzberger, J. Knobloch, and B. Voss.