

EXERCISE SERIES 6

Exercise 1: Absorption

a) Which thickness of material do you need to absorb 90 % of the light with $\lambda = 500 \text{ nm}$ and 1000 nm in amorphous Si and in crystalline Si. Absorption coefficients are given in Tab. 1

Table 1: Absorption coefficients

$\lambda[\text{nm}]$	α for a-Si:H [cm^{-1}]	α for c-Si [cm^{-1}]
500	$2 \cdot 10^5$	10^4
1000	0.9	80

b) Draw the absorption profile for an intensity F_0 in a semi infinite wafer with a reflection of 10 % with $\lambda = 500 \text{ nm}$ and 1000 nm in amorphous Si and in crystalline Si.

c) Taking the results of a) & b) into account, what are options to increase the absorption to more than 99% in the films without making them thicker than what you calculated in a) ?

Exercise 2: Antireflection layer

Consider a multilayer stack with refractive indices n_1 , n_2 , and n_3 . The Fresnel equation of reflection at normal incidence for two layers i and j is $r_{ij} = ((n_i - n_j) / (n_i + n_j))^2$. To achieve minimal reflection the second reflection r_{23} , should nullify r_{21} . Derive a condition linking n_1 , n_2 , and n_3 .