

EXERCISE SERIES 3

Exercise 1: Grid-connected systems

Describe, with the aid of a suitable diagram, the basic structure and main components of a grid connected PV-system. Describe also the main function of each of the components.

Exercise 2:

- a) Describe curtailment. What are the pros and cons of this technique?
- b) Name typical losses that occur in a real grid connected PV system compared to ideal conditions. What parameter can be used to take into account the actual energy output of a PV system, compared to the theoretical one?
- c) Explain the concepts of energy yield and performance ratio and when it is relevant to use them.

Exercise 3:

Use PVGIS online tool (https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html) to answer the following task.

Consider residential PV installation with the following characteristics:

- Installed peak PV power = 10 kWp
- System loss = 14
- Optimal oriented slope and azimuth
- PV system cost = 20K CHF
- Interest rate = 3%

- a) Explain the effect of lifetime, location, and mounting position on the PV electricity cost.
- b) For a tracking PV system compare the yearly-PV energy production (a) With vertical axis, (b) With inclined axis (c) With two axis. Use optimized slopes.